SOFTWARE VERIFICATION RESEARCH CENTRE
SCHOOL OF INFORMATION TECHNOLOGY

THE UNIVERSITY OF QUEENSLAND

Queensland 4072
Australia

TECHNICAL REPORT

No. 00-17

Safety Assurance of Commercial-Off-The-Shelf Software

Peter Lindsay and Graeme Smith

May 2000

Phone: +61 7 3365 1003
Fax: +61 7 3365 1533

Note: Most SVRC technical reports are available via
anonymous FTP, from svrc.it.ug.edu.au in the directory
/pub/SVRC/techreports. Abstracts and compressed
postscript files are available via http://svrc.it.ug.edu.au.

Safety Assurance of COTS Software SEA 2000

Safety Assurance of Commercial-Off-The-Shelf Software

Dr Peter Lindsay & Dr Graeme Smith
Software Verification Research Centre
University of Queensland, Brisbane, QId 4072, Australia
email: pal @svrc.ug.edu.au, smith@svrc.ug.edu.au

Abstract: Commercial-Off-The-Shelf (COTS) software is increasingly being suggested for
use in systems development, for reasons including cost, functionality, useability, testedness,
availability of support and upgrades. At the same time, standards for use of software in safety-
related systems are becoming increasingly stringent. This paper examines the issue of
providing safety assurance for systems involving COTS software, and surveys what
international standards say about the issue. The strengths and weaknesses of a number of
different approaches are discussed. The paper suggests that “whole life-cycle” costing
estimates, including estimates of the cost of developing and maintaining safety assurance, be
made prior to deciding whether to use COTS components in safety-related applications.

1 Introduction

11 Why COTS?

System developers are under increasing pressure to use Commercial-Off-The-Shelf (COTS)
software components: that is, software that was originally designed by someone else, for other
(possibly more general) purposes, and which is not intended to be internally modified by the
system developer. COTS software includes for example application packages, operating
systems, user-interface builders and graphics packages, software embedded in COTS
hardware components, and so on.

Arguments typically advanced for the use of COTS products are:

e Cost: COTS products are generally cheaper because of economies of scale, whereby
development and maintenance costs are amortised over a large user base;

¢ Functionality: COTS products may provide a high percentage of the desired
functionality, plus a lot more besides;

e Useability: operators and end users often feel more comfortable with user interfaces based
on or resembling ones they use at home or in the office;

e Testedness: because of the wide user base, the product has generally been thrashed pretty
hard, and where problems are found they often get reported and may get fixed in future
releases;

e Support: again because of the wide user base, training and in-service support are often

)

. Lindsay & G. Smith, Software Verification Research Centre 1

Safety Assurance of COTS Software SEA 2000

available, perhaps even from multiple sources if the user base is sufficiently large;

¢ Future proof: as technology moves on, the product may also evolve to stay up to date and
to move to new platforms.

As attractive as these arguments seem at first sight, however, there are many traps to be wary
of, and some especially difficult — and expensive — problems to be overcome before using
COTS products in safety-related systems. By safety-related system we mean one whose
failure could have safety implications. This includes systems that control or include physical
devices, including those displaying information or advice to operators, which may cause
injury or death [Std5679].

This paper surveys the issues and the options available, and makes recommendations for
organisations considering using COTS software in safety-related systems. Although the paper
focuses on safety issues, many of the lessons extend to other properties of critical systems
where assurance of system dependability is a concern. It also applies to COTS-like
components, such as Non-Development Items (NDIs), Government Off-The-Shelf (GOTS)
products (also known as Government Furnished Equipment), and legacy systems. The term
Software of Unknown Pedigree (SOUP) has recently been coined to cover this more general
class of software. Many of the issues apply to hardware as well as software.

In what follows, we follow [McDermid98] in using COTS to refer to software components
which are readily available from commercial sources, for general applications and not easily
modified. (Access to source code is generally denied.) Typical characteristics of COTS
components are that a number of different configurations may be available, and upgrades may
occur either during system development or while it is in service, or both.

1.2 Overview of paper

Section 2 overviews the requirements of current and emerging safety standards for systems
involving COTS software. Section 3 examines the purported benefits of COTS software when
viewed from a safety perspective and outlines the fundamental requirements of safety
assurance for COTS components. Section 4 describes approaches for providing safety
assurance for systems with COTS components and outlines the approaches’ strengths and
weaknesses. Section 5 summarises our findings and makes recommendations for
organisations considering using COTS software in safety-related systems.

2 Safety assurance and standards

2.1 Recent developments in safety standards

The last couple of years have seen the emergence of new international safety standards for
systems involving software [Waben99]. These include

e The long-awaited release of international (and now Australian) standard IEC 61508

“Functional safety of electrical/electronic/programmable electronic safety-related
systems” [Std61508], which is likely to have a profound influence on civilian safety

P. Lindsay & G. Smith, Software Verification Research Centre 2

Safety Assurance of COTS Software SEA 2000

systems;

e New CENELEC standards in the railways sector, and emerging standard IEC 61511 in the
industrial control sector; and

* A new Australian defence standard, Def(Aust) 5679 “The procurement of computer-based
safety critical systems” [Std5679]

A new, substantially revised version of the US defence standard MIL_STAN 882 has been
released [Std882D], and debate is reopening about the aerospace standard DO-178B
[Std178B]. See Section 6 for a broader list of system safety standards; several good surveys
are available [Waben99, WWW].

It is difficult to generalise about all these new standards, but some general trends — and
common requirements — are becoming apparent. Most standards now require, in one form or
another, that a Safety Case be developed, which presents documented evidence that the
system is safe to operate. For software components, there generally needs to be an assessment
of the software’s required contribution to safety, in the form of a Safety Integrity Level
(SIL) that indicates how much the system relies on the software for safety [Lindsay97].

The standards typically recommend that certain activities (typically safety-oriented V&V
activities, but also important infrastructure activities such as configuration management) be
undertaken during development of safety-related software, and require that the rigor and
independence with which the activities are carried out be commensurate with the Safety
Integrity Level. (Note that the definition of SILs and the requirements for activities differ
from standard to standard.) This might be termed a process-oriented approach, and reflects the
degree of consensus currently available. Many commentators and evaluators would prefer to
see more product-oriented evidence, but consensus on exactly what — and how much — should
be required has been harder to reach.

Because of their focus on provision of assurance through development processes, however,
standards generally have less guidance to offer to system developers and safety evaluators
when it comes to COTS components. The rest of this section outlines what some of the
standards say in relation to COTS software. It turns out that there are limited practical options
available, and that while most standards allow concessions to be made, the preferred solution
is to require equivalent rigor for the assurance for COTS and bespoke items. In Section 3 we
return instead to fundamentals to develop some useful guidance for safety assurance of COTS
software.

22 IEC61508

IEC 61508 [Std61508] requires that, if standard or previously used components are to be
used, they shall be clearly identified and their suitability justified. Justification may be derived
from operation in a similar application or evidence of suitable verification and validation
procedures. However, the previous environment(s) should also be evaluated to establish that
any operational assumptions are satisfied by the new environment.

23 MIL-STD-882D
US system-safety defence standard MIL-STD 882D [Std882D] notes the difficulties presented

P. Lindsay & G. Smith, Software Verification Research Centre 3

Safety Assurance of COTS Software SEA 2000

by COTS products. It recommends tailoring the safety program to incorporate safety
management and summary of assessment only for small COTS products. For larger COTS
products, a formal safety plan is recommended, along with a safety working group and safety
requirements/criteria analysis. General consideration is given to the assessment of any
documentation or operational evidence and to performing additional hazard analyses as
necessary.

24 Def(Aust) 5679

Australian defence standard Def(Aust) 5679 [Std5679] provides requirements and guidance
for both COTS systems and COTS components (referred to as Non-Development Items).

Components developed in accordance with other safety standards may be assigned a level up
to SIL S, if the Auditor approves and evidence is provided that component specifications
meet the derived component safety requirements. To be assigned a SIL of S3 or higher, COTS
components require the application of full design and implementation assurance. Otherwise,
components may only be rated Sy.

COTS systems must be developed to a safety standard. The processes of Def(Aust) 5679 must
still be followed as far as is possible, including production of a Safety Case meeting the intent
of Def(Aust) 5679. Presented safety arguments and processes can be approved at the
discretion of the safety Auditor and Evaluator.

25 STANAG 452

Analysis Task 8 of NATO standardisation agreement STANAG 4452 [Std4452] on
munitions-related systems requires that commercial or government-furnished software be
analysed and tested unless specifically excluded by the Managing Activity. The level of
analysis and test required is not indicated.

2.6 UK defence standards

UK system-safety defence standard Def Stan 00-56 [Std00-56] requires the production of a
Safety Case for COTS products. Detailed guidance on the retrospective application of the
standard is given in Annex D of part 2. In particular, a Safety Programme Plan, a Project
Quality Plan, a Project Configuration Management Plan and a Hazard Log should be
established. Existing safety analysis information, including service histories, should be
examined for deficiencies, and evaluated against the Def Stan 00-56 requirements.

In safety-critical software standard Def Stan 00-55 [Std00-55], the use of previously
developed software in a new or modified system must be shown to not adversely affect the
safety of the new system. Reverse engineering, verification and validation activities are
required for any software not produced according to the standard; this is likely to require
access to source code. The extent of reverse engineering may be reduced if other assurance
activities have been conducted or the in-service history of the software is appropriate, and
detailed guidance is given on this matter. In particular, quantified error rates and failure
probabilities for the software may be taken into account.

Safety-critical hardware standard Def Stan 00-54 [Std00-54] notes the widespread use of

P. Lindsay & G. Smith, Software Verification Research Centre 4

Safety Assurance of COTS Software SEA 2000

COTS products in hardware development. A COTS product may only be used if evidence of
its integrity can be gathered from the process used in its design and production, its source of
supply, and its service history. The argument used is qualitative. The COTS product must
have been supplied with a comprehensive specification. Safety analysis is required to show
that the item is not used outside the limits documented in the specification. Evidence is
required of comprehensive testing that the item operates in accordance with its specification.
Any failures of the COTS product must be recorded in the Safety Records Log, together with
measures taken to prevent further occurrence of the fault. Any modifications to COTS
products must be made in accordance with the standard. The configurations of all COTS
products must be recorded.

2.7 Avionics standards

The Society of Automotive Engineer’s Aerospace Recommended Practice ARP4754
[Std4754] considers COTS-like products in relation to the modification of aircraft. In
particular, the problems of altering a legacy system and integrating a system with a different
aircraft type are examined. In general, the certification data necessary to support the safety
assessment are required. Credit may be sought for previous assurance activities if the aircraft
or subsystem is traceable to the certification data. Otherwise, the applicant should identify and
substantiate the assumptions necessary to support the assessment. If it is unavailable,
certification data may be generated by reverse engineering or from an analysis of the service
history.

The widely used aerospace-software development standard DO-178B [Std178B] discusses the
use of existing software in new aircraft and software whose data does not satisfy the
guidelines of the standard. Certification data should be reviewed and supplemented where
necessary to satisfy the safety assessment and verification activities. Reverse engineering may
be employed if data is not available. The service history may be used provided the
configuration can be identified and an analysis confirming relevance of the service history can
be provided. Some estimate of the software reliability is also required based on length of
service period and records of observed failures.

3 Safety assurance requirements for COTS components

Having seen that standards offer little practical guidance on development of safety assurance
of COTS software, we return instead to fundamentals and focus on three general criteria for
the assurance of COTS components:

1. Veritying specified behaviour, including the elimination of unspecified behaviour;
2. Validating the safety of specified behaviour in the new operational context; and
3. Ensuring safety under change.

These are explained in more detail below.

P. Lindsay & G. Smith, Software Verification Research Centre 5

Safety Assurance of COTS Software SEA 2000

3.1 Verifying specified behaviour

Assurance needs to be provided that the item behaves in accordance with specified
functionality. The form of this assurance will vary with each strategy but must satisfy two
conditions:

e Specified behaviour is satisfied with a level of confidence commensurate with the
claimed integrity level; and

e No unspecified behaviour or influence can arise through undocumented functionality,
dormant code or use of common resources. This requirement is often overlooked and
can be difficult to achieve [Kohl98].

3.2 Validating safety of item behaviour

Even if the behaviour of an item can be trusted, it is also necessary to demonstrate that the
behaviour is safe in the application environment. Safety is defined with respect to a particular
operational environment so, if the environment is changed, “safeness” of the specified
behaviour must be re-evaluated. (In particular, Safety Integrity Levels have no force outside
the context in which a component’s safety assurance was developed.) Furthermore, the item
assurance must be qualified for the new operational demands as well as the environmental
conditions such as stress, temperature, humidity and electromagnetic interference.

Demonstrating safety of an item’s behaviour in a new application can be treated
independently of assuring the behaviour itself. Some methods that have been proposed
include:

e Hazard analysis. In most cases, it will be necessary to perform at least some hazard
analysis to identify the hazardous conditions of the application in its operating
environment. For COTS components, it is also possible to refine the analysis through the
system architecture to define safety requirements that the item must satisfy
[McDermid98].

e Testing. One proposal for certification of items is to use black-box testing together with
system-level fault injection, to determine the effect on the system if the component fails,
and operational system testing, to determine the effect on the system if the component
functions properly [Voas98]. This has the benefit of using the real system but it can be
time consuming and often relies on a sophisticated test environment. Of course, it is also
difficult to achieve certainty of correctness with testing alone.

e Modelling and simulation. A similar approach is to model the item, together with
bespoke components, and demonstrate that emergent safety requirements derived
elsewhere in the safety case are met. The complexity of this task is reduced if the proofs
can be discharged automatically by a model-checking (exhaustive simulation) tool as in
the proposed approach of the Systems Assurance Group at DERA [O’Halloran99]. Where
behaviour of an item is uncertain, this approach models the item pessimistically to allow
for worst-case scenarios. Similarly, it incorporates fault injection to allow for errors in the
COTS and bespoke components.

P. Lindsay & G. Smith, Software Verification Research Centre 6

Safety Assurance of COTS Software SEA 2000

3.3 Retaining assurance under change

Like any software system, COTS items are likely to change. In particular, they frequently
undergo modifications which are not always backwards compatible. A significant problem is
maintaining assurance in the face of modification. To begin, we must be certain that the item
configuration in operation corresponds to the assurance evidence of the safety case, even in
the face of change. If the item changes, the assurance must be regenerated. Reacquiring
assurance when items are modified can be costly, particularly when the scope of
modifications are outside our control or even unknown.

34 The benefits of COTS measured up against safety goals

Before turning to possible approaches to providing safety assurance for COTS components in
Section 4, it is worth revisiting the perceived benefits of COTS as described in Section 1, to
see how they measure up:

e Cost: There is considerable debate as to whether COTS components really do reduce costs
when the whole life-cycle, including maintenance, of the developed system is considered
[McDermid98]. Some of the main reasons are given in the bullet points that follow.

¢ Functionality: As discussed, one of the main safety assurance activities is concerned with
eliminating undesirable behaviour, including unexpected, unanticipated or unpredictable
behaviour. It is thus important to be able to tightly constrain functionality, and to
eliminate un-needed functionality. This is especially important where such functionality
can have side-effects that are not easy to determine or to control. The unconstrained nature
of many COTS applications, and the trend to add functionality in upgrades (often without
notification), are major problems for developers of critical systems. (The Ariane 5 maiden
flight is one example where un-needed functionality caused a system to fail.)

e Useability: While safety is generally increased by improving the display of information to
operators, there is also a danger that operators will assume too much — a case of
familiarity breeding contempt. Subtle differences in user interface functionality can have
major undesired effects, as users of many applications packages will know.

e Testedness: Having a broad user base definitely can lead to better test coverage, at least at
“black box” level. However, the environment in which the COTS component operates
strongly influences its behaviour. Testing may not have taken place in a similar
environment, or the same kind of requirements might not have been tested. Also, it has
often been observed that many software failures occur in areas of functionality less tested.
In recognition of this, software safety standards typically require evidence of high
coverage of all possible “paths” through the software, especially where related to safety
critical functionality. Such evidence cannot be collected if source code and detailed
designs are not available.

There is also an unfortunate commercial reality that time-to-market is often more
important for COTS suppliers than correctness. Software is often released with known
bugs included.

P. Lindsay & G. Smith, Software Verification Research Centre 7

Safety Assurance of COTS Software SEA 2000

e Support: An effect of broadening the user base is that you may now be a small fish in a
large pond, and have little or no contractual leverage to get problems fixed. The COTS
package may evolve, leaving your version unsupported.

¢ Future proof: From an assurance viewpoint, upgrades can be problematical. Any change
to a component may mean the whole system needs to be retested, which can be expensive
and time-consuming. If the component changes substantially, it may mean redesigning
and re-implementing system interfaces. These costs can outweigh any initial savings
achieved for the component [McDermid98].

4 Providing safety assurance for COTS components

Four general approaches for generating safety assurance are examined below:

1. Transferring assurance from other development processes. This is particularly
effective where the assurance processes are similar to those required by the safety
standard being used or can be argued to be equivalently rigorous.

2. Isolate COTS components using appropriate design. Some appropriate design
techniques are discussed, including wrappers and redundancy.

3. Post-development safety case construction. This is the approach favoured by most
standards but can be prohibitively expensive.

4. Using empirical evidence of operational use. While this may offer a low-cost
alternative, it is unlikely that sufficient accurate data collected under the same
operational conditions and using the same version of the COTS item will be available
to support the claims of required integrity. Arguments will therefore need to be made
based on assumptions.

41 Transferring Assurance

When items are developed under standards other than that being used, it may be possible to
transfer evidence into the safety case. Ideally, this would involve little or no technical
evaluation and would be based on review of the kinds of supporting evidence provided under
the other standard.

The major difficulty with this approach is relating levels of assurance between standards. The
assurance tasks applied by different standards, and even the principles behind them can vary
substantially. In general, it is not possible to provide a straightforward mapping between
standard assurance levels and a more detailed comparison of processes is required. In some
cases, the relationship between process is clear, for example the application of formal proof
under UK Def Stan 00-55 or IEC 61508. However, justifying equivalence between different
assurance processes, for example test and formal proof, will be very difficult.

Of course, it is still necessary to validate the claimed assurance in the context of the new
application. This in itself can require some technical analysis. Hence the approach is more
acceptable within particular domains, e.g., it is proposed as a strategy for COTS components

P. Lindsay & G. Smith, Software Verification Research Centre 8

Safety Assurance of COTS Software SEA 2000

used in nuclear reactors [Preckshot95, Scott95]. When this is not the case, additional evidence
needs to be provided.

4.2 Restricting Components Through Design

It may be possible to utilise the functionality of low integrity COTS components within a high
integrity design by restricting the influence of the component on the rest of the system. This is
an attractive option where the functionality of an item is desirable and trust in item reliability
is impossible or costly to achieve.

However, ensuring that an item is adequately restricted can also be costly and sometimes
requires detailed knowledge of the item design. In particular, all possible influences of COTS
components need to be established, including possible interference from dormant code and
use of common resources.

One way of restricting the influence of COTS components is by isolating them using
encapsulation mechanisms such as wrappers [Brown98, O’Halloran99]. Wrappers provide
two roles: they can prevent certain inputs from reaching the COTS component and thus
prevent it from performing particular functions, and they can check outputs from the COTS
component and ensure they meet certain requirements [Voas98]. This can ensure that the
COTS component does not adversely impact the rest of the system.

Effective use of wrappers requires that the COTS component’s interface is well-understood.
Any unexpected outputs may be able to pass through the wrapper. Lack of detailed and
accurate documentation is therefore a problem when using this approach. Black box testing of
COTS components with wrappers installed, and fault-injection testing, i.e., testing with
random errors introduced, have been suggested as a means of increasing the assurance of the
effectiveness of wrappers [Voas98]. However, testing may not be able to provide the high
levels of confidence required. Another problem with wrappers is that they can be quite
complex. It is possible that the wrapper can be larger than the COTS component it is isolating
[McDermid98]. In such cases, it may be more effective to develop a new component than use
the COTS component.

Another approach to restricting the influence of COTS components is by using a redundant
architecture. Replication and majority voting are effective approaches for dealing with
hardware. However, similar techniques cannot be effectively applied to software where faults
are systematic: for the same inputs, replicated software components will produce the same
results. N-version programming, e.g., using COTS products with the same functionality from
different vendors, has been suggested, but has debatable reliability [LLeveson95].

An alternative form of redundancy is to partition the system into a high-performance portion
and a high-assurance kernel (also called a safety kernel [Std5679, Std4452]). COTS
components can be used in the high-performance portion and, if they fail, the high-assurance
kernel takes over and provides the required functionality (typically less efficiently). One such
example is the Simplex Architecture [Sha98] and the approach is used in the nuclear and
process control industries by separating control and protection functionality. Unfortunately,
this approach suffers the same weaknesses as using wrappers: the kernel may not catch
unexpected functionality, and the kernel may be prohibitively complex.

P. Lindsay & G. Smith, Software Verification Research Centre 9

Safety Assurance of COTS Software SEA 2000

43 Post Development Safety Case Production

In principle, a safety case may be produced from documentation after development. This is a
strategy favoured by all standards but it is often expensive and, in some cases, not practical
since the COTS item cannot be subsequently altered. Faults, should they be found, cannot
necessarily be fixed since the modification of COTS items is not controllable. This is not
acceptable if the fault discovered could be the source of a critical hazard. Furthermore, the
design implementation techniques used, e.g., the choice of programming language, may not
conform to what the standard requires or be amenable to the required analysis techniques.

A primary difficulty with this strategy is that it requires access to source code and other
documents which may not be readily available or too expensive to procure. (Thanks to Y2K,
Australian law now allows a certain amount of reverse engineering of design, for purposes of
testing functionality and integration of components into systems.) However, even if all such
documentation is available, it may not accurately represent the actual COTS item’s
configuration.

Where documentation is available, it is not always feasible to reverse engineer a safety case
due to the complexity of the task. In fact, it can be much more complex than developing a
safety case for bespoke software [McDermid98]. This is particularly the case if the system has
been developed without assessment in mind.

An alternative proposal for post-development certification of COTS items is to use black-box
testing together with system-level fault and operational system [Voas98]. However, the
effectiveness of black-box testing to achieve high levels of integrity is questionable and more
rigorous testing generally requires knowledge of design and source code structure [Scott]. A
particular problem is determining the total functionality of the COTS item to test
[McDermid98].

44 Using Empirical Evidence

Some standards such as DO-178B [Std178B] and IEC 61508 [Std61508] allow assurance to
be generated from empirical evidence such as operational use. Where it is applicable, this is a
low-cost option for gaining assurance but much care needs to be taken to justify validity of
the evidence.

Since empirical evidence is based on operational use, strong justification is required to show
that the evidence will transfer into the new environment. In particular, it is difficult to reuse
evidence of reliability when the operational demands differ significantly. For this reason, this
strategy suffers the same weaknesses as transferring assurance and is similarly more
acceptable in domains with stable operational profiles, e.g., it is also proposed as a strategy
for dealing with COTS components used in nuclear reactors [Preckshot95, Scott95].

Even if operational profiles are similar, a very large body of evidence is required to provide
sufficient assurance for safety-critical functions. Thus, operational evidence is mostly
proposed to complement, rather than replace, other assurance methods [Preckshot95]. In fact,
the number of operational hours required to demonstrate that the COTS item satisfies high
levels of integrity is probably orders of magnitude greater than the COTS item's lifetime. For

P. Lindsay & G. Smith, Software Verification Research Centre 10

Safety Assurance of COTS Software SEA 2000

this reason, the approach is more applicable to particular COTS items such as real-time
operating systems, which tend to be very stable and are used in hundreds of thousands of
applications, than more general COTS items which are continuously upgraded
[McDermid98].

Providing accurate records of operational use can also be an issue. Operational profiles are
rarely recorded and difficult to estimate. Accurate incident logs are also scarce so the data on
which to base evidence is unlikely to be valid, or even available.

5 Conclusions

We conclude with a brief summary of our findings, and a list of issues that need to be
considered in selecting, acquiring and integrating COTS software into safety-related systems,
over and above usual system-level safety assurance activities.

51 Summary

Four general approaches for generating safety assurance are examined above:

1. Transferring assurance from other development processes. Ideally, this involves little or
no technical evaluation. However, relating levels of assurance between standards can be
difficult and the claimed assurance must be validated in the new operating environment.

2. Restricting the influence of COTS components using appropriate design. This is
particularly attractive where a COTS component with the desired functionality exists but
its reliability is impossible or costly to ascertain. However, proposed approaches, such as
wrappers and redundant architectures, require a good understanding of the component's
interface, in particular a good understanding of un-needed functionality provided by the
component, and may be prohibitively complex.

3. Post-development safety case construction. This is favoured by most standards but
requires access to source code and other documents of the correct configuration, and can
be more complex than developing a safety case for bespoke components. The inability to
modify the COTS product to fix faults or use an implementation technique compliant with
the standard is also an issue.

4. Using empirical evidence of operational use. This can be a low-cost option for gaining
assurance. However, it is necessary to justify that the evidence is applicable in the new
operating environment and generally a very large body of accurate evidence is required.

5.2 Issues in selecting COTS

e Where possible, choose components which have been used in similar applications, with a
good record of freedom from failure, and for which a safety case has already been
developed.

e The general consensus currently seems to be that COTS should not be used for
components at Safety Integrity Levels above IEC61508 SIL2.

e Consider full life-cycle costs, and determine strategy with regard to upgrades.

P. Lindsay & G. Smith, Software Verification Research Centre 11

Safety Assurance of COTS Software SEA 2000

5.3 Issuesin acquiring COTS
® Where a safety case has been developed, be sure to acquire it too.

e Failing that, try to get access to design and testing information (including source code), as
well as in-service history (with full details of the environment in which the component
was used).

e At very least, get a full component specification (including a detailed interface
specification) and information about the component's known failure modes and (if
available) their observed frequency. Component specifications should include all
component functionality, not just desired functionality.

e Negotiate an ongoing support agreement, particularly if a no-upgrades strategy is to be
followed. If upgrades are to be incorporated, ensure configuration and version
identification will be accurate and specifications will be kept up to date, and determine a
system upgrade and regression testing strategy in advance.

54 Issues in integrating COTS components into system

e Use protective design techniques such as wrappers to isolate the component and/or safety
kernels to monitor its state and maintain a safe system state.

e [In addition to usual analysis (including failure modes analysis), analyse for possible
effects of invocation of un-needed functionality.

5.5 Research issues

Further evaluation of the strengths and weaknesses of the four strategies we have presented
needs to be carried out and criteria for the selection of the most effective approach in
particular situations needs to be determined. In addition, a number of issues relating to the use
of individual approaches need to be researched.

To use the approach of transferring assurance, guidance on the relationship between integrity
levels of different standards needs to be provided. Also, techniques for transferring assurance
into different operating environments need to be developed.

In order to use the approach of restricting components, there is a need to identify robust
architectural design techniques that would allow low integrity components to be used in
higher integrity environments. In addition, methods for identifying and analysing dormant
code and un-needed functionality need to be developed. This approach also needs to be
incorporated into existing safety standards by the provision of guidance on acceptable SIL
reductions for protective architectures.

6 References

6.1 Software Safety Standards

[Std5679] Australian Department of Defence, Def(Aust) 5679, The Procurement of
Computer-Based Safety Critical Systems, 1998.

P. Lindsay & G. Smith, Software Verification Research Centre 12

Safety Assurance of COTS Software SEA 2000

[Std178B]

[Std4754]

[Std882D]

[Std50128]

[Std61508]

[Std61511]

[Std00-54]

[Std00-55]

[Std00-56]

[Std4452]

Radio Technical Commission for Aeronautics, Software Considerations in
Airborne Systems and Equipment Certification. RTCA/DO-178B, 1992.

Society of Automotive Engineers. Aerospace Recommended Practice
4754: Certification Considerations for Highly-Integrated or Complex
Aircraft Systems, 1996.

US Department of Defense, MIL-STD-882D Standard Practice: System
Safety, 1999.

European Committee for Electrotechnical Standardization, CENELEC
prEN 50128, Railway Applications: Software for Railway Control and
Protection Systems, draft 1998.

International Electrotechnical Commission, IEC 61508, Functional Safety

of electrical/electronic/programmable electronic safety-related systems,
1998.

International Electrotechnical Commission, IEC 61511, Functional safety:
Safety instrumented systems for the process industry sector, draft 2000.

UK Ministry of Defence, Interim Defence Standard 00-54: Requirements
for Safety Related Electronic Hardware in Defence Equipment, 1999.

UK Ministry of Defence, Defence Standard 00-55: The Procurement of
Safety Critical Software in Defence Equipment, 1995.

UK Ministry of Defence, Defence Standard 00-56: Safety Management
Requirements for Defence Systems, 1991.

North Atlantic Treaty Organisation. NATO STANAG 4452: Safety
Assessment of Munition-Related Computing Systems, September 1996

6.2 Research papers, books and resource material

[Brown98]

[ESA96]

[Kohl98]

[McDermid98]

[O’Halloran99]

[Leveson95]

M.L. Brown. Commercially Developed and Non-Development Items in
Safety Critical Systems. Slide presentation, 1998.

European Space Agency. ARIANE 5: Flight 501 Failure.
http://www.esrin.esa.it/tidc/Press/Press96/arianeSrep.html

R. Kohl. V & V of COTS Dormant Code: Challenges and Issues. Slide
presentation, 1998.

N. Talbert. Interview with John McDermid: The Cost of COTS. 1EEE
Computer, 31(6):46-52, June 1998.

C. O’Halloran. Assessing Safety Critical COTS Systems. Journal of the
System Safety Society, 35(2), 1999.

N.G. Leveson. Safeware: System Safety and Computers. Addison-Wesley,
1995.

P. Lindsay & G. Smith, Software Verification Research Centre 13

Safety Assurance of COTS Software SEA 2000

[Lindsay97]

[Preckshot95]

[Scott]

[Scott95]

[SCS]

[Sha98]

[Voas98]

[Waben99]

[WWW]

P.A. Lindsay and J.A. McDermid, A Systematic Approach To Software
Safety Integrity Levels, in: Proceedings 16" Internat Conf on Computer
Safety, Reliability and Security (SAFECOMP’97), York 1997, Springer
Verlag, 1997. http://svrc.it.uq.edu.au/Bibliography/svrc-tr.html?797-04

G.G. Preckshot and J.A. Scott. A Proposed Acceptance Process for
Commercial Off-The-Shelf (COTS) Software in Reactor Applications.
Lawrence Livermore National Laboratory, Report UCRL-ID-122526,
September 1995.

J.A. Scott and J.D. Lawrence. Testing Existing Software for Safety-Related

Applications. Lawrence Livermore National Laboratory, Report UCRL-
ID-117224, Revision 7.1.

J.A. Scott, G.G. Preckshot and J.M. Gallagher. Using Commercial-Off-the-
Shelf (COTS) Software in High-Consequence Safety Systems. Lawrence
Livermore National Laboratory, Report UCRL-JC-122246, November
1995.

Safety critical systems e-mail forum. High Integrity Systems Engineering
group, University of York. http://www.cs.york.ac.uk/hise/sclist/sclist.html

L. Sha, J.B. Goodenough and B. Pollack. Simplex Architecture: Meeting
the Challenges of Using COTS in High-Reliability Systems. Crosstalk,
April 1998.

JM. Voas. Certifying Off-the-Shelf Software Components. 1EEE
Computer, 31(6):53-59, June 1998.

A.K. Wabenhorst and B. Atchison, A survey of international safety
standards, Software Verification Research Centre technical report 99-30,
1999. http://svre.it.ug.edu.au/Bibliography/svre-tr.htm1799-30

WWW Virtual Library — safety critical systems.
http://www.comlab.ox.ac.uk/archive/safety.html

P. Lindsay & G. Smith, Software Verification Research Centre 14

