
Safety Assurance for Operating Procedures

– a formal methods approach

Peter A. Lindsay
School of Information Technology and Electrical Engineering,

The University of Queensland

Brisbane, Queensland 4072, Australia

p.lindsay@uq.edu.au

Abstract

Automation is changing the way that many safety critical

systems are operated, by changing the nature of the tasks

operators perform. In such cases operating procedures

need to be redesigned to find a balance between ensuring

the operator performs the tasks that the machine requires,

while allowing operators the flexibility they require. But

how do system designers ensure that human errors are

adequately mitigated? Safety standards dictate the degree

of rigour that needs to be applied in assurance of software

and hardware, but say little about design and verification

of operating procedures.

This paper proposes a rigorous qualitative approach to

safety evaluation of operating procedures, illustrated on a

new Air Traffic Management (ATM) function. Formal

models of human-computer and human-human interaction

were developed using Behavior Trees, and hazard

analysis was performed using automated model checking.

Because of the highly interleaved, concurrent nature of

the operators’ tasks, it was necessary to develop a new

way of categorising human error modes and system

hazards. Model checking showed that the operating

procedures prevented or mitigated errors in many cases,

and revealed potential accident sequences in the other

cases, thereby effectively validating informal hazard

analysis results. The talk will also illustrate use of the

safety assurance approach to derive requirements for a

modification to the human-computer interface.
 .

Keywords: ATM, formal methods, operating procedures.

1 Introduction

Computers are gradually replacing humans in key

roles in safety critical systems (Repperger and Phillips

2009). In many cases the human operator retains the

decision-making role but relies increasingly on

automation for information and decision options. Yet

safety assurance standards are not keeping up. Many of

them mandate or highly recommend use of rigorous

techniques for specifying, developing and verifying

software and hardware, but say little about the design of

operating procedures – the human part of the system. For

example, IEC 61508 devotes entire parts to assurance

techniques for electronics and software (Parts 2 and 3

Copyright © 2014, Australian Computer Society, Inc. This

paper appeared at the Australian System Safety Conference

(ASSC 2014), Melbourne 28-30 May, 2014. Conferences in

Research and Practice in Information Technology (CRPIT),

Vol. 156, Ed. Tony Cant. Reproduction for academic, not-for-

profit purposes permitted provided this text is included.

respectively) but only two pages (Section B.4 in Part 7) to

operating procedures, and then only in very general terms

(IEC 2010).

1.1 ATM operating procedures
ATM systems are complex federations of many

different systems, tools and technologies, typically from

different vendors, as well as legacy systems. Often

software systems are developed by specialist engineering

organisations as “configurable products” and then

acquired, configured and integrated by operating

organisations, such as Air Navigation Service Providers

(ANSPs) in the case of ATM systems. There are

standards that offer guidance for the degree of rigour that

goes into specification, development and verification of

hardware and software – such as DO-278A, an adaptation

of the airborne software standard DO-178C for ground-

based systems such as ATM (RTCA 2011) – but no

equivalent standards for the human element. Yet human

error is a prime cause of system failures in complex

systems (Reason 1990).

Air Traffic Controllers (ATCos) need to work with

multiple systems and tools in parallel. Operation is

further constrained by legal requirements (such as Letters

of Agreement) governing communications protocols,

jurisdiction and handoffs between controllers, protocols

for interacting with pilots and other controllers, and so

on. Operating procedures need to be designed with all of

these factors in mind. For these reasons, it is typically the

ANSP who develops, specifies and evaluates the

operational procedures rather than the ATM subsystem

developers. Human Machine Interfaces (HMIs) and

operational procedures need to be designed to reduce the

occurrence of errors and to ensure that, if errors occur,

they can be detected and corrected easily.

1.2 Use of formal methods
This paper reports on a case study in the use of formal

methods in specification and verification of operating

procedures for a new mode of working in Air Traffic

Management (ATM), based on automated Trajectory-

Based Conflict Detection (TBCD). Because of the highly

interleaved, concurrent nature of the operator’s tasks, it

was necessary to develop a new way of categorising

human error modes and system hazards, to capture the

main concerns of the ATM experts involved.

Formal methods are typically mandated or highly

recommended for safety critical systems (Bowen and

Stavridou 1993). Formal methods are mathematically

based approaches that model the system of interest and

analyse its properties and behaviour. They are more

rigorous than traditional verification techniques such as

review, simulation and testing, and are preferred in

principle because they cover all of the state space (that is,

all of the conditions which the system may realise) rather

than just the parts of the state space that get checked

during testing. We contend that this argument applies

even more strongly to operating procedures than

software, since human-in-the-loop testing is expensive

and time-consuming, and almost impossible to configure

to test all situations that might arise. Moreover, operator

behaviour is highly nondeterministic, with observable

differences between individual operators’ behaviour, and

even differences in the way an individual operator

undertakes their task from one situation to the next.

Several different formal methods have been proposed

for Human Computer Interaction (HCI) design: Bolton et

al have written a very comprehensive survey article

(Bolton, Bass et al. 2013). For the most part the focus has

been on specification and design of the HMI rather than

on the operational procedures themselves. Sections 2 and

3 of this paper illustrate the use of a particular formal

method – Behavior Trees (Dromey 2006) with automated

model checking (Grunske, Lindsay et al. 2005) – on

safety evaluation of a collection of proposed operating

procedures for a new ATM tool.

In modern safety analysis the term “use error” is often

substituted for human error, to capture the idea that some

errors are due to poorly designed user interfaces. While

this has some relevance to the current study, the issue

addressed in this paper is that existing approaches to error

categorisation do not apply well, because it is not feasible

to define, let alone model, the difference between a

correct action and an incorrect action: a wide variety of

operator responses are possible, and controllers need the

flexibility to apply different tactics. A better approach to

evaluation of operating procedures, we contend, is to

model system and operator behaviour over time,

investigate possible divergences from desired behaviour,

check the circumstances under which hazardous states of

the system can arise from them, and thereby determine

whether operating procedures are adequate to prevent or

recover from such divergences. This seems to be similar

to Leveson’s treatment of accidents as violation of system

safety constraints in the STAMP approach (Leveson

2004).

It is not enough however simply to verify safety of a

particular design. HCI design is an art: if there are too

many operational procedures or they are too complex, the

operators won’t use them as intended. The HCI designer

needs to trade usability off against hazard mitigation. We

contend that formal methods can help here, by helping

designers and analysts understand how procedures

interact, what errors they mitigate and how effective they

are as hazard controls, and by supporting derivation of

requirements for new HMI features. Section 4 of this

paper illustrates this with excerpts from the modelling

and analysis we undertook.

2 Background: Trajectory Based Conflict

Detection and Resolution

The case study concerns a medium-term conflict

detection function, called Trajectory Based Conflict

Detection (TBCD). We introduce our own terms here, in

part to avoid possible confusion with the evolving

concept and in part to harmonise with international

terminology.

In short: TBCD operates in airspace where all aircraft

are required to report their planned 4D trajectories and

seek approval for changes from the assigned controller.

TBCD detects possible aircraft conflicts based on the

predicted trajectories of flights. Conflict resolution

planning and implementation is done by the controller,

supported by tools that provide detail about the conflict

(such as conflict start time and point of closest approach)

and “what if” tools for trialling possible interventions.

The operational concept and operational procedures are

described in more detail below

2.1 Conflicts and separation standards

To explain the TBCD operational concept further we

need to define what is a conflict, which in turn involves

explaining separation standards. Loosely speaking, a

separation standard is an acceptable “distance” between

flights. Distance here might be lateral, longitudinal) or

vertical distance, or separation in time. Separation

standards often depend on the nature of the airspace (e.g.

terminal area vs en route), the equipment on board the

aircraft, the nature of surveillance (e.g. radar vs ADSB vs

pilot position reports), and more. For our purposes it is

enough to know that there are some separation standards

that TBCD can monitor and verify by itself, and there are

others that require the controller to monitor and verify.

They are often simply called procedural separation

standards; in what follows the latter are called Controller

Implemented Separation Standards (CISSs) for clarity.

For our purposes, a conflict occurs between two flights

when TBCD detects that, if they continue to follow their

current trajectories, at some time in the near future the

aircraft will violate all of the separation standards that

TBCD can monitor. (In fact there may be other separation

standards that TBCD cannot monitor but controllers can,

as described below.) Typically the look-ahead time is at

least 20 minutes but this can depend on the nature of the

airspace and its traffic.

We coin the term CISS conflict for a TBCD-detected

conflict for which the controller can verify (“establish”)

that a suitable CISS exists. No intervention is required for

CISS conflicts provided the controller continues to

monitor the pair and verify that the standard holds. If no

CISS can be established then the controller needs to

intervene and instruct one or both of the flights to modify

their trajectories; for clarity we call these true conflicts

below. If intervention does not occur early enough, a Loss

of Separation (LoS) will occur. While there are typically

other layers of protection, such as TCAS, LoS is a serious

incident for a controller, even if no accident occurs: they

will typically be stood down and sent for retraining, or

even be dismissed. Note that CISS conflicts need to be

continually monitored to detect differences between

expected and actual aircraft performance/behaviour; also,

an equipment failure or environmental change (such as a

GPS RAIM outage) external to the system may cause the

CISS to be no longer valid.

2.2 TBCD operational concept

TBCD accesses the trajectories of aircraft from the ATM

system. It maintains two lists of conflicts: the Active

Conflict List (ACL) and the Suppressed Conflict List

(SCL). When a new conflict arises (e.g. because the

conflict start time falls within the look-ahead timeframe)

it is added to the ACL. The controller can click on a

conflict and get more details, to determine whether a

CISS applies or whether intervention is required; this

process is called assessment.

If a CISS can be established, the controller

“suppresses” the conflict, which moves it from the ACL

to the SCL. If they decide to intervene, they can bring up

a what-if tool – called the Trajectory Modification Tool

(TMT) here – on one of the flights, which allows them to

trial a new trajectory for the flight and see what conflicts

would result. When they have determined what

intervention to apply, they instruct the pilot and click

‘accept’ in TMT, which updates the trajectory in the

ATM system. A safety warning alert is activated at a pre-

determined interval before conflict start time for conflicts

on the ACL; the warnings are suppressed for conflicts on

the SCL (as the name suggests).

The main steps are depicted in Figure 1. Note that

controllers have other tasks and activities, such as issuing

weather reports, ensuring smooth traffic flow, and

responding to requests from pilots or other controllers for

trajectory modifications. (Typically the controller can

only intervene on flights within their sector; otherwise

they need to request a change via another controller.)

TMT enables them to trial requests before approving

them. For the sake of simplicity we’ve only shown

interaction with pilots in Figure 1: interaction with other

controllers for the purpose of modifying trajectories is

analogous. We also don’t distinguish between pilot and

co-pilot here, for simplicity.

All these activities are typically carried out in parallel,

sometimes with non-trivial delays between one step and

the next. This is represented in our model by having the

operator return to scanning before undertaking another

task.

TCBD has features that can be configured to support

operational procedures. Space does not permit a full

description of the features here, but for the purposes of

this paper we focus on the following features:

 When a new conflict appears on the ACL it is

flagged (by displaying it with a coloured border) as

being new.

 After the controller has clicked on a new conflict its

flag changes to ‘needing assessment’.

 The controller can set a timer on a particular conflict

to remind them to come back to it later.

Other ATM functions monitor conformance to

trajectories, with procedures for non-compliance.

2.3 Standard Operational Procedures (SOPs)

As noted above, there are many operational procedures

for different aspects of the controller’s task. We extracted

the procedures that involved use of TBCD functions and

developed a Behavior Tree (BT) model from them.

Examples include:

1. When a new conflict appears on the ACL, the

controller should click on it and view the TBCD

display of details of the conflict. (This will result in

the new-conflict flag being removed.)

2. After a conflict has been assessed and it has been

determined that intervention is required, the

controller should clear the ‘needs assessment’ flag.

(Thus, any conflict on the ACL without flags

implicitly needs intervention.)

3. Before modifying the trajectory of any flight, the

controller should open TMT on the flight, enter

details of the proposed modification, and check what

new conflicts would result. Note that the

modification may be acceptable even if conflicts

remain – either because the controller may be able to

establish a CISS, or because a modification of the

other trajectory in the conflict is planned.

4. If the trajectory modification is acceptable, the

controller issues the instruction to the pilot and hits

‘accept’ in TMT to update the trajectory in the

system.

5. After receiving an instruction the pilot is expected to

read it back. The controller should check the read-

back instruction against the new trajectory recorded

in the system.

6. If the controller determines a CISS exists for a

conflict on the ACL, they move the conflict to the

Figure 1. TBCD operator activities

SCL. (The ‘needs assessment’ flag gets deleted

automatically.)

7. The controller should regularly visit each conflict on

the SCL to check that the CISS still applies and

move it back to the ACL if not.

The natural flow of tasks is either: assess/trial trajectory

change/accept and instruct/check read-back, in the case of

conflicts requiring intervention; or assess/suppress/monit-

or in the case of CISS conflicts.

As noted above, each or all of these steps could be

interrupted by other tasks, including dealing with other

conflicts in parallel, and often can be deferred for

significant periods of time. In fact, some conflicts

“resolve themselves” (as far as the controller is

concerned) because some other agent modifies the traj-

ectory of one of the flights involved, or requests a change

(such as a pilot requesting permission to start to descend

on approach to its destination). This leads to another

SOP:

8. If the controller defers any of the above procedures

without completing them, they should set a timer on

the conflict to remind them to come back and

complete it later. The timer should be set to expire

well before conflict start time.

The BT model also captured the behaviour of conflicts

(including the fact that a CISS conflict could switch to

become a true conflict at any time) and behaviours of

pilots (such as responding that they were unable to

modify their trajectory as instructed). As noted above,

failures of TBCD components were not included in the

model as being out of scope, but could have been

included if desired.

Figure 2 shows an excerpt from the operator section of

the BT model, corresponding to selecting a new conflict c

that has appeared on the ACL. (Note that Figure 1 is not

BT notation. The BT model has more information than

shown in Figure 1, but is too large to display here.) If the

controller selects c, a message is sent to the TBCD HMI

to remove the new-conflict flag from c, and parameters

flight1 and flight2 are set equal to the identities of the two

flights involved in c; a “selected” message is returned

once the TBCD HMI is updated. The controller can then

choose whether to assess c or set a timer and return to

scanning. The interested reader is referred to the BT

website
1
 for details of the syntax and tools available. The

“for some” quantifier notation [] c:ACL.new is explained

in (Winter, Colvin et al. 2009).

3 Hazard Analysis

3.1 Hazards

As noted above, Loss of Separation (LoS) is the primary

TBCD-related safety incident to protect against. But this

is already too late: we want to capture states of the system

where “trouble is brewing”, well before LoS. After

discussion with domain experts we arrived at the

following states as the system hazards to be analysed:

 Haz0: The controller fails to assess a conflict prior to

activation of the TBCD safety warning.

1
 http://www.itee.uq.edu.au/sse/dccs

 Haz1: The TBCD safety warning has been

suppressed for a true conflict.

 Haz2: The trajectory being flown by the pilot is

different from the trajectory in the system.

Haz0 corresponds to a ‘late’ failure of the conflict

detection and resolution (CDR) system function. Haz1

corresponds to an ‘omission’ failure of the CDR function.

Haz2 is a common-mode fault that undermines the

integrity of the whole trajectory-based CDR function.

We could have modelled and investigated other

system failures – such as unnecessary or inefficient

interventions, excess additional controller workload, or

pilot requests not being acted on sufficiently early – but

they were not as safety critical as the hazards above and

so were set aside. (A parallel project evaluated controller

workload quantitatively and came up with its own

recommendations on workload.) Our methods are

concerned with qualitative analysis, as will be explained

further below.

3.2 Hazard formalisation

Our analysis method consisted of modelling operator

behaviour (as captured in the SOPs) and the behaviour of

the environment (in this case, primarily the changeable

nature of conflicts and the effects of trajectory

modifications on them), then injecting operator failure

modes into the model and using automated model

checking to determine if any of the hazards became

reachable. The interested reader is referred to (Grunske,

Lindsay et al. 2005) for more details of the modelling

languages and tools involved. The hazards first had to be

formalised in Linear Temporal Logic (LTL), the logic

used by the model checker.

Temporal logic supports reasoning about the orders in

which events and conditions may occur. The “linear” part

of LTL refers to the fact that every possible sequence of

events and conditions in the model get checked. Model

checkers have been developed for other forms of

temporal logic but they tend to be less efficient, or return

less useful results. LTL is good for our purposes because,

if the hazard being checked can occur, the model checker

returns an example sequence of events (called a

counterexample) that illustrates how the hazard can

occur. Counterexamples are useful for debugging models

and, in our case, for identifying possible accident

sequences, which in turn reveals where the deficiencies

occur in hazard controls.

The first two hazards are straightforward to formalise

in LTL. Haz0 can be formulated as “after a new conflict

appears, its ‘needs assessment’ flag should get cleared

before the safety warning activates”. Haz1 can be

formulated simply as the condition that a true conflict

appears on the SCL. Haz2 is a little more subtle: “The

system trajectory and the pilot trajectory disagree when

the controller returns to scanning”. We added the

qualification “returns to scanning” because instructing the

pilot and accepting in TMT occur as separate steps in our

model, and hence the hazard would arise every time an

intervention occurred without it; this way the steps can

occur in either order, but no other steps should be taken in

between them.

http://www.itee.uq.edu.au/sse/dccs

Figure 2. Excerpt from the BT model

Note that temporal logic is concerned only with the

order in which things occur, not with when they occur or

how long they take to occur: that is, our approach is

qualitative rather than quantitative. Methods such as

simulation and worst-case real-time analysis can be used

for quantitative analysis, but unlike our approach such

methods are not exhaustive (in the sense of being able to

analyse all of the different cases that might occur). Our

models could be used to support quantitative analysis, for

example by generating the sequences of events for which

the system and pilot trajectories disagree, to help

calculate hazard exposure time for Haz2.

3.3 Operator failure modes

The next step in our modelling and analysis was to

capture the different kinds of operator error that could

occur. (Failures of the TBCD and other ATM system

elements were analysed by others and were out of scope

of our analysis. The approach could be extended to apply

to these factors, as illustrated for example by Grunske et

al (Grunske, Winter et al. 2011).)

We generated a variant BT model from the BT model

of desired behaviour (i.e., behaviour in accordance with

the operating procedures of interest) for each error by the

following systematic process: At each point in the BT

model where there is an operator action, consider

omissions, commissions and incorrect executions.

Omission error models are generated by removing one of

the actions that are possible at a choice point.

Commission error models are generated by adding

actions which are not already present but which are

possible at that point (i.e., are consistent with the

“unconstrained behaviour” from Figure 1). Incorrect-

execution error models are generated at parameterised

action points (i.e., points where the operator chooses a

value for a parameter of a particular action, such as which

trajectory to trial in TMT) by replacing the intended value

by a different value.

Examples of the errors generated by this process are:

 Inadvertently performing actions. These are similar

to Reason’s slips and lapses (Reason 1990).

 Performing actions with the wrong (/unintended)

data parameter.

 Performing the wrong action – typically here, in

contravention of a recommended operating

procedure. These are similar to Reason’s mistakes.

 Never performing the action that will progress the

situation, when some other action (typically deferral)

is available.

We claim that, by its systematic nature, this gives

complete coverage of possible operator errors. The

resulting errors were validated against a list prepared by

the ATM experts: where there were differences they were

typically matters of detail due to some of the abstractions

used in the BT model, or related to timing issues.

It is interesting to compare this approach to other

approaches to error categorisation, such as Hollnagel’s

well-known “error phenotypes” (Hollnagel 1993). His so-

called first order error phenotypes included things such

as: omission, in the wrong order, wrong action, late and

early. But he was dealing primarily with sequential tasks,

and many of his phenotypes are difficult to interpret in

the current context, where there are multiple (instances

of) tasks running in parallel, and task goals and the

environment are changing dynamically. To illustrate the

difficulties, consider the following vignettes: Controllers

often defer certain decisions (“let it run”) because the

situation will eventually resolve itself; thus for TBCD it

is not always possible to say that an omission has

occurred, since a task can often be safely deferred. There

is no fixed order for doing things: the controller needs

flexibility when prioritising and resolving conflicts.

Most HCI formal methods use error type

classifications similar in nature to Hollnagel’s approach,

which has been shown to result in large unwieldy models

that are not suited to model checking (Bolton and Bass

2013). We contend that an approach based on functional

failure analysis (i.e., where errors are categorised

according to how behaviour differs from desired

behaviour) is more natural and leads to better insights in-

to how to improve operating procedures, as demonstrated

below. We think they are also more amenable to model

checking, in terms of computational efficiency.

3.4 Model checking

Failure modes were injected into the BT model one by

one and the SAL model checker (Moura, Owre et al.

2004) was used to determine if there were any

circumstances under which the hazards were reachable. If

so, the resulting counterexample was examined to

determine which operating procedures were violated (if

any) and whether the error would be revealed and

recovered from. Recommendations were formulated for

additional operating procedures to recover from errors

and for modifications to operating procedures to reduce

the likelihood of the failure. (The latter was done

informally, based on our improved understanding of

procedures from modelling.)

Figure 3 illustrates the kind of accident sequence that

was revealed by the model checker. In this case the

controller has selected the wrong flight in response to a

trajectory change request (step 2) and trialled the change

on that flight, then approved the original request (step 4).

As a result, both flights are flying trajectories different to

the ones assigned to them in the ATM system (Haz2).

The error is discovered when the pilot of the first flight

reads back the instruction and the controller checks it

against the system trajectory (step 7). While it is possible

they could check it against the other flight’s trajectory,

the differences should be apparent, so there is low

likelihood of a second error compounding the first.

The model checker found the steps through to the

hazard occurring and the error being revealed; this shows

that the proposed operating procedures are generally

adequate for revealing this kind of error. The steps for

correcting the error (the last two steps in Figure 3) were

added as recommendations for further operating

procedures to be developed and stressed in training and

assessment. Analysis of the sequence led to discussion

about hazard exposure time and a recommendation that

policy be developed for how soon the controller should

prompt the pilot for read back, if no read back has been

received. Consideration of error recovery led to the

recommendation that tool support be provided for

recovering previous trajectory information; this is

discussed further below.

We repeated the automated hazard analysis on variants

of the BT model obtained by removing operational

procedures one by one. This allowed us to identify which

procedures were needed to prevent each hazard –

effectively providing traceability from controls to the

hazards they prevent

4 Design Improvement

To illustrate the approach’s use in design improvement

we proposed a modification to the TBCD HMI and

repeated the analysis. The proposal consisted of an

additional flag on flights, called the Confirmation

Pending Flag (CPF) here, to indicate whether the

trajectory has been changed. The controller would be

required to check the details and clear the flag promptly.

The CFP should be easy to locate at read-back, and would

include details of the original trajectory as well as the

change. The TMT should be able to be opened from the

original trajectory, if the controller plans to undo the

change.

The BT model was changed to incorporate the

proposed new feature. The process of integrating the

CPF’s (and the operator’s) behaviour into the model,

together with the experience gained in identifying

behaviour required for recovering from errors, helped us

refine the concept and identify further requirements for

CPF. For example, the analysis in Figure 2 above

suggested the idea that CPF would be a good place to

store the previous trajectory information, in order to

easily undo a trajectory change. The idea of accessing

TMT from CFP, rather than simply replacing the current

trajectory by the old trajectory directly in the ATM

system, came from realising that other trajectories may

have changed in the meantime, meaning that the

controller needs to check that the old trajectory is still

safe before rolling back to its old value in the ATM

system.

5 Discussion

The Behavior Tree specification language provides an

integrated view of the requirements of a system and

maintains traceability to the original textual requirements

(Dromey 2003). Behavior Trees have been used for

modelling large and complex systems and for conducting

hazard analyses of such systems (Grunske, Winter et al.

2011, Lindsay, Yatapanage et al. 2012). A key feature of

a BT model is its graphical format that makes it easy to

understand without a formal methods background. The

systematic process of building a BT model, and ease of

understanding for non-experts, have been shown to

significantly improve the quality of requirements

specifications for complex computer-based systems

(Powell 2010).

Figure 3. Accident sequence leading to Haz2

We use fully automated model checking to increase

assurance that all cases have been covered. Even with

relatively small models the number of different

combinations of circumstances (events and component

states) that need to be taken into account is difficult for

human analysts to handle: automation relieves the tedium

and is far less error-prone. The trade-off is in

expressiveness of the models and properties to be

checked. To avoid the so-called “state explosion

problem” of automated model checking we focus on

capturing and investigating the “logic” of procedure

design and avoid quantitative aspects such as time and

physical attributes such as separation distance.

Computation time was very reasonable (typically less

than 60 seconds per error/hazard combination) but

maintaining the failure views was time consuming.

The behaviour model was particularly important for

facilitating communications between ATM domain

experts and modeller analysts. The modellers would ask

probing questions about how the proposed TBCD tools

would work, and the modelling notation and model

checking forced the team to systematically consider all

the different circumstances that could arise. The ATM

experts reviewed the models to ensure that functionality

and behaviour were captured correctly. One of the main

outcomes of the process was a set of recommendations

for TBCD operational procedures; the rigour of

modelling forced a consistent approach across the system

and increased confidence that hazard analysis was applied

across the TBCD concept completely. Overall the process

significantly increased the quality of safety requirements

specification and assurance.

The BT notation has no way of specifying behaviours

such as the requirement that the operator should regularly

check for flagged items and deal with them promptly. It

was necessary to reformulate the safety properties to be

model checked so as to include “fairness conditions” for

such behaviours. This part of the analysis was tricky; we

are investigating how best to model and check such

procedures.

As noted above, the approach is not suited to

quantitative analysis: techniques such as Event Tree

Analysis (Storey 1996) or THERP (Kirwan, Gibson et al.

2008) would need to be applied to determine whether

HMI features and requirements such as the above really

do reduce risk effectively.

6 Related work
BT support for Functional Failure Analysis and FMEA

has been investigated in a number of domains, including

manufacturing and medical devices (Grunske, Winter et

al. 2011) and aerial firefighting (Lindsay, Winter et al.

2012). The approach has been adapted to Cut Set

Analysis (discovering combination of component failures

that can lead to hazards) in aerospace (Lindsay,

Yatapanage et al. 2012).

There is a wide range of HCI safety analysis

techniques for socio-technical systems, including ATM.

Leveson et al (Leveson, de Villepin et al. 2001) propose a

human-centred, safety-driven design process with wide-

ranging coverage; our approach focuses on modelling

operational concepts and using model checking to

automate analysis, and yield more objective and

repeatable results. The HERA project (Isaac, Shorrock et

al. 2002) analysed ATM human error from a cognitive

viewpoint: our approach to error identification was

informed by their approach. Most human performance

modelling approaches (e.g. (Blom, Daams et al. 2000))

evaluate risk on a scenario basis, whereas our approach

applies directly to the operational concept as a whole.

Formal methods have been applied to HCI for a wide

variety of purposes: see Bolton et al (Bolton, Bass et al.

2013) for an excellent review. Paterno et al (Paternò and

Santoro 2001) apply model checking to ConcurTaskTrees

(CTT) models translated to LOTOS, to verify user

interface protocols, using a case study from ATM. In

(Paterno and Santoro 2002) they show how CTT can be

used to evaluate HCI design options from safety and

usability viewpoint; it is not clear how to apply the

approach post hoc to an existing HMI.

Bolton et al (Bolton, Siminiceanu et al. 2011)

introduce the Enhanced Operator Function Model

(EOFM) notation and apply the SAL model checker to

find a failure pathway, via a counterexample, for an

automotive cruise-control case study. They then propose

a design change and show that the hazard is no longer

reachable. Like BTs, EOFM is a graphical notation.

EOFM has the advantage over BTs that models can be

represented hierarchically; the downside is the state

explosion problem seems to occur earlier for hierarchical

models due to the extra overhead. It is not clear how well

EOFM would cope with a task model as complex as

TBCD nor how easily failure modes could be injected

into the model for capturing human errors. In (Bolton,

Bass et al. 2012) they propose a way of automating

generation of failure models but quickly run into the state

explosion problem.

7 Conclusion
The paper describes the application of formal methods to

modelling and safety analysis of operating procedures for

a Trajectory-Based Conflict Detection (TBCD) function

for airspace that includes procedural separation standards.

The paper evaluates a set of HMI features and operating

procedures designed as hazard controls, to maintain

system safety and integrity. The robustness of the

procedures is evaluated in terms of which operator errors

and system hazards they mitigate. It introduces a new

approach to classification and analysis of operator errors

for highly interleaved concurrent tasks, addressing a

limitation of existing approaches by enabling operator

actions to be judged dynamically over time and in a

systems context.

The results in this paper were derived using the

Behavior Tree modelling notation and the SAL symbolic

model checker. Formal modelling expedited

consideration of cross-system interactions and

dependencies and enforced consistency across the design.

It also provided an objective basis for error

categorisation. Model checking automated the

consequence analysis, relieving the analyst of one of the

most labour-intensive and error-prone aspects of analysis,

and increased repeatability of the analysis and assurance

that all cases have been taken into account. Overall the

process significantly increased the quality of (qualitative)

safety requirements specification and assurance.

Acknowledgements

The author gratefully acknowledges the assistance of

Nisansala Yatapanage and Soon Kyeong Kim in

development of the formal models and model checking,

and Andrew Neal, Ed Macfarlane, Damien Armenis and

Phil Hong for discussions and review in the ATM

domain.

8 References

Blom, H. A., J. Daams and H. B. Nijhuis (2000). Human

cognition modelling in ATM safety assessment. 3rd

USA/Europe Air Traffic Management R&D Seminar,

NLR.

Bolton, M. L. and E. J. Bass (2013). "Generating

erroneous human behavior from strategic knowledge in

task models and evaluating its impact on system safety

with model checking." Systems, Man, and Cybernetics:

Systems, IEEE Transactions on 43(6): 1314-1327.

Bolton, M. L., E. J. Bass and R. I. Siminiceanu (2012).

"Generating phenotypical erroneous human behavior to

evaluate human–automation interaction using model

checking." International Journal of Human-Computer

Studies 70(11): 888-906.

Bolton, M. L., E. J. Bass and R. I. Siminiceanu (2013).

"Using formal verification to evaluate human-automation

interaction: a review." Systems, Man, and Cybernetics:

Systems, IEEE Transactions on 43(3): 488-503.

Bolton, M. L., R. I. Siminiceanu and E. J. Bass (2011).

"A systematic approach to model checking human-

automation interaction using task analytic models."

Systems, Man and Cybernetics, Part A: Systems and

Humans, IEEE Transactions on 41(5): 961-976.

Bowen, J. and V. Stavridou (1993). "Safety-critical

systems, formal methods and standards." Software

Engineering Journal 8(4): 189-209.

Dromey, R. G. (2003). From requirements to design:

Formalizing the key steps. Software Engineering and

Formal Methods, 2003. Proceedings. First International

Conference on, IEEE: 2-11.

Dromey, R. G. (2006). "Climbing over the "No Silver

Bullet" Brick Wall." IEEE Software 23(2): 120-119.

Grunske, L., P. Lindsay and K. Winter (2005). An

automated failure mode and effect analysis based on

high-level design specification with Behavior Trees.

Proceedings Integrated Formal Methods. Berlin,

Heidelberg, Springer. 3771: 129-149.

Grunske, L., K. Winter, N. Yatapanage, S. Zafar and P.

A. Lindsay (2011). "Experience with fault injection

experiments for FMEA." Software: Practice and

Experience 41(11): 1233-1258.

Hollnagel, E. (1993). "The phenotype of erroneous

actions." International Journal of Man-Machine Studies

39(1): 1-32.

IEC (2010). 61508: Functional Safety of Electrical/

Electronic/ Programmable Electronic Safety-related

Systems, International Electrotechnical Commission.

Isaac, A., S. T. Shorrock and B. Kirwan (2002). "Human

error in European air traffic management: the HERA

project." Reliability Engineering & System Safety 75(2):

257-272.

Kirwan, B., W. H. Gibson and B. Hickling (2008).

"Human error data collection as a precursor to the

development of a human reliability assessment capability

in air traffic management." Reliability Engineering &

System Safety 93(2): 217-233.

Leveson, N., M. de Villepin, J. Srinivasan, M. Daouk, N.

Neogi, E. Bachelder, J. Bellingham, N. Pilon and G.

Flynn (2001). A safety and human-centered approach to

developing new air traffic management tools.

Proceedings Fourth USA/Europe Air Traffic

Management R&D Seminar: 1-14.

Leveson, N. G. (2004). "A systems-theoretic approach to

safety in software-intensive systems." IEEE Transactions

on Dependable and Secure Computing 1(1): 66-86.

Lindsay, P. A., K. Winter and S. Kromodimoeljo (2012).

Model-based safety risk assessment using Behavior

Trees. Asia Pacific Conference on Systems Engineering

(APCOSE)/Australian Systems Engineering, Test &

Evaluation (SETE) 2012 combined conference, Systems

Engineering Society of Australia.

Lindsay, P. A., N. Yatapanage and K. Winter (2012).

"Cut Set Analysis using Behavior Trees and model

checking." Formal Aspects of Computing 24(2): 249-266.

Moura, L., S. Owre, H. Rueß, J. Rushby, N. Shankar, M.

Sorea and A. Tiwari (2004). SAL 2. Computer Aided

Verification. R. Alur and D. Peled, Springer Berlin

Heidelberg. 3114: 496-500.

Paterno, F. and C. Santoro (2002). "Preventing user errors

by systematic analysis of deviations from the system task

model." International Journal of Human-Computer

Studies 56(2): 225-225.

Paternò, F. and C. Santoro (2001). Integrating model

checking and HCI tools to help designers verify user

interface properties. Interactive Systems Design,

Specification, and Verification, Springer: 135-150.

Powell, D. (2010). Behavior engineering-a scalable

modeling and analysis method. Software Engineering and

Formal Methods (SEFM), 2010 8th IEEE International

Conference on, IEEE: 31-40.

Reason, J. T. (1990). Human error. Cambridge, England ;

New York :, Cambridge University Press.

Repperger, D. W. and C. A. Phillips (2009). The Human

Role in Automation. Springer Handbook of Automation,

Springer: 295-304.

RTCA (2011). DO-278A: Software Integrity Assurance

Considerations for Communication, Navigation,

Surveillance and Air Traffic Management (CNS/ATM)

Systems (aka EUROCAE ED-109A), Radio Technical

Commission for Aeronautics.

Storey, N. R. (1996). Safety Critical Computer Systems,

Addison-Wesley Longman Publishing Co., Inc.

Winter, K., R. Colvin and R. G. Dromey (2009).

Dynamic relational behaviour for large-scale systems.

Australian Software Engineering Conference (ASWEC):

173-182.

