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Abstract 

Automation is changing the way that many safety critical 

systems are operated, by changing the nature of the tasks 

operators perform. In such cases operating procedures 

need to be redesigned to find a balance between ensuring 

the operator performs the tasks that the machine requires, 

while allowing operators the flexibility they require. But 

how do system designers ensure that human errors are 

adequately mitigated? Safety standards dictate the degree 

of rigour that needs to be applied in assurance of software 

and hardware, but say little about design and verification 

of operating procedures.  

This paper proposes a rigorous qualitative approach to 

safety evaluation of operating procedures, illustrated on a 

new Air Traffic Management (ATM) function. Formal 

models of human-computer and human-human interaction 

were developed using Behavior Trees, and hazard 

analysis was performed using automated model checking. 

Because of the highly interleaved, concurrent nature of 

the operators’ tasks, it was necessary to develop a new 

way of categorising human error modes and system 

hazards. Model checking showed that the operating 

procedures prevented or mitigated errors in many cases, 

and revealed potential accident sequences in the other 

cases, thereby effectively validating informal hazard 

analysis results.  The talk will also illustrate use of the 

safety assurance approach to derive requirements for a 

modification to the human-computer interface.
 .
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1 Introduction 

Computers are gradually replacing humans in key 

roles in safety critical systems (Repperger and Phillips 

2009). In many cases the human operator retains the 

decision-making role but relies increasingly on 

automation for information and decision options. Yet 

safety assurance standards are not keeping up. Many of 

them mandate or highly recommend use of rigorous 

techniques for specifying, developing and verifying 

software and hardware, but say little about the design of 

operating procedures – the human part of the system. For 

example, IEC 61508 devotes entire parts to assurance 

techniques for electronics and software (Parts 2 and 3 
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respectively) but only two pages (Section B.4 in Part 7) to 

operating procedures, and then only in very general terms 

(IEC 2010).  

1.1 ATM operating procedures 
ATM systems are complex federations of many 

different systems, tools and technologies, typically from 

different vendors, as well as legacy systems. Often 

software systems are developed by specialist engineering 

organisations as “configurable products” and then 

acquired, configured and integrated by operating 

organisations, such as Air Navigation Service Providers 

(ANSPs) in the case of ATM systems. There are 

standards that offer guidance for the degree of rigour that 

goes into specification, development and verification of 

hardware and software – such as DO-278A, an adaptation 

of the airborne software standard DO-178C for ground-

based systems such as ATM (RTCA 2011) – but no 

equivalent standards for the human element. Yet human 

error is a prime cause of system failures in complex 

systems (Reason 1990).  

Air Traffic Controllers (ATCos) need to work with 

multiple systems and tools in parallel. Operation is 

further constrained by legal requirements (such as Letters 

of Agreement) governing communications protocols, 

jurisdiction and handoffs between controllers, protocols 

for interacting with pilots and other controllers, and so 

on. Operating procedures need to be designed with all of 

these factors in mind. For these reasons, it is typically the 

ANSP who develops, specifies and evaluates the 

operational procedures rather than the ATM subsystem 

developers. Human Machine Interfaces (HMIs) and 

operational procedures need to be designed to reduce the 

occurrence of errors and to ensure that, if errors occur, 

they can be detected and corrected easily.  

1.2 Use of formal methods  
This paper reports on a case study in the use of formal 

methods in specification and verification of operating 

procedures for a new mode of working in Air Traffic 

Management (ATM), based on automated Trajectory-

Based Conflict Detection (TBCD). Because of the highly 

interleaved, concurrent nature of the operator’s tasks, it 

was necessary to develop a new way of categorising 

human error modes and system hazards, to capture the 

main concerns of the ATM experts involved. 

Formal methods are typically mandated or highly 

recommended for safety critical systems (Bowen and 

Stavridou 1993). Formal methods are mathematically 

based approaches that model the system of interest and 

analyse its properties and behaviour. They are more 



rigorous than traditional verification techniques such as 

review, simulation and testing, and are preferred in 

principle because they cover all of the state space (that is, 

all of the conditions which the system may realise) rather 

than just the parts of the state space that get checked 

during testing.  We contend that this argument applies 

even more strongly to operating procedures than 

software, since human-in-the-loop testing is expensive 

and time-consuming, and almost impossible to configure 

to test all situations that might arise. Moreover, operator 

behaviour is highly nondeterministic, with observable 

differences between individual operators’ behaviour, and 

even differences in the way an individual operator 

undertakes their task from one situation to the next.  

Several different formal methods have been proposed 

for Human Computer Interaction (HCI) design: Bolton et 

al have written a very comprehensive survey article 

(Bolton, Bass et al. 2013). For the most part the focus has 

been on specification and design of the HMI rather than 

on the operational procedures themselves. Sections 2 and 

3 of this paper illustrate the use of a particular formal 

method – Behavior Trees (Dromey 2006) with automated 

model checking (Grunske, Lindsay et al. 2005) – on 

safety evaluation of a collection of proposed operating 

procedures for a new ATM tool.  

In modern safety analysis the term “use error” is often 

substituted for human error, to capture the idea that some 

errors are due to poorly designed user interfaces. While 

this has some relevance to the current study, the issue 

addressed in this paper is that existing approaches to error 

categorisation do not apply well, because it is not feasible 

to define, let alone model, the difference between a 

correct action and an incorrect action: a wide variety of 

operator responses are possible, and controllers need the 

flexibility to apply different tactics. A better approach to 

evaluation of operating procedures, we contend, is to 

model system and operator behaviour over time, 

investigate possible divergences from desired behaviour, 

check the circumstances under which hazardous states of 

the system can arise from them, and thereby determine 

whether operating procedures are adequate to prevent or 

recover from such divergences. This seems to be similar 

to Leveson’s treatment of accidents as violation of system 

safety constraints in the STAMP approach (Leveson 

2004).  

It is not enough however simply to verify safety of a 

particular design. HCI design is an art: if there are too 

many operational procedures or they are too complex, the 

operators won’t use them as intended. The HCI designer 

needs to trade usability off against hazard mitigation. We 

contend that formal methods can help here, by helping 

designers and analysts understand how procedures 

interact, what errors they mitigate and how effective they 

are as hazard controls, and by supporting derivation of 

requirements for new HMI features. Section 4 of this 

paper illustrates this with excerpts from the modelling 

and analysis we undertook.  

2 Background: Trajectory Based Conflict 

Detection and Resolution 

The case study concerns a medium-term conflict 

detection function, called Trajectory Based Conflict 

Detection (TBCD). We introduce our own terms here, in 

part to avoid possible confusion with the evolving 

concept and in part to harmonise with international 

terminology.  

In short: TBCD operates in airspace where all aircraft 

are required to report their planned 4D trajectories and 

seek approval for changes from the assigned controller. 

TBCD detects possible aircraft conflicts based on the 

predicted trajectories of flights. Conflict resolution 

planning and implementation is done by the controller, 

supported by tools that provide detail about the conflict 

(such as conflict start time and point of closest approach) 

and “what if” tools for trialling possible interventions. 

The operational concept and operational procedures are 

described in more detail below 

2.1 Conflicts and separation standards  

To explain the TBCD operational concept further we 

need to define what is a conflict, which in turn involves 

explaining separation standards. Loosely speaking, a 

separation standard is an acceptable “distance” between 

flights. Distance here might be lateral, longitudinal) or 

vertical distance, or separation in time. Separation 

standards often depend on the nature of the airspace (e.g. 

terminal area vs en route), the equipment on board the 

aircraft, the nature of surveillance (e.g. radar vs ADSB vs 

pilot position reports), and more. For our purposes it is 

enough to know that there are some separation standards 

that TBCD can monitor and verify by itself, and there are 

others that require the controller to monitor and verify. 

They are often simply called procedural separation 

standards; in what follows the latter are called Controller 

Implemented Separation Standards (CISSs) for clarity.   

For our purposes, a conflict occurs between two flights 

when TBCD detects that, if they continue to follow their 

current trajectories, at some time in the near future the 

aircraft will violate all of the separation standards that 

TBCD can monitor. (In fact there may be other separation 

standards that TBCD cannot monitor but controllers can, 

as described below.) Typically the look-ahead time is at 

least 20 minutes but this can depend on the nature of the 

airspace and its traffic.  

We coin the term CISS conflict for a TBCD-detected 

conflict for which the controller can verify (“establish”) 

that a suitable CISS exists. No intervention is required for 

CISS conflicts provided the controller continues to 

monitor the pair and verify that the standard holds. If no 

CISS can be established then the controller needs to 

intervene and instruct one or both of the flights to modify 

their trajectories; for clarity we call these true conflicts 

below. If intervention does not occur early enough, a Loss 

of Separation (LoS) will occur. While there are typically 

other layers of protection, such as TCAS, LoS is a serious 

incident for a controller, even if no accident occurs: they 

will typically be stood down and sent for retraining, or 

even be dismissed. Note that CISS conflicts need to be 

continually monitored to detect differences between 

expected and actual aircraft performance/behaviour; also, 

an equipment failure or environmental change (such as a 

GPS RAIM outage) external to the system may cause the 

CISS to be no longer valid. 



2.2 TBCD operational concept  

TBCD accesses the trajectories of aircraft from the ATM 

system. It maintains two lists of conflicts: the Active 

Conflict List (ACL) and the Suppressed Conflict List 

(SCL). When a new conflict arises (e.g. because the 

conflict start time falls within the look-ahead timeframe) 

it is added to the ACL. The controller can click on a 

conflict and get more details, to determine whether a 

CISS applies or whether intervention is required; this 

process is called assessment.  

If a CISS can be established, the controller 

“suppresses” the conflict, which moves it from the ACL 

to the SCL. If they decide to intervene, they can bring up 

a what-if tool – called the Trajectory Modification Tool 

(TMT) here – on one of the flights, which allows them to 

trial a new trajectory for the flight and see what conflicts 

would result. When they have determined what 

intervention to apply, they instruct the pilot and click 

‘accept’ in TMT, which updates the trajectory in the 

ATM system. A safety warning alert is activated at a pre-

determined interval before conflict start time for conflicts 

on the ACL; the warnings are suppressed for conflicts on 

the SCL (as the name suggests).  

The main steps are depicted in Figure 1. Note that 

controllers have other tasks and activities, such as issuing 

weather reports, ensuring smooth traffic flow, and 

responding to requests from pilots or other controllers for 

trajectory modifications. (Typically the controller can 

only intervene on flights within their sector; otherwise 

they need to request a change via another controller.)  

TMT enables them to trial requests before approving 

them. For the sake of simplicity we’ve only shown 

interaction with pilots in Figure 1: interaction with other 

controllers for the purpose of modifying trajectories is 

analogous.   We also don’t distinguish between pilot and 

co-pilot here, for simplicity.  

All these activities are typically carried out in parallel, 

sometimes with non-trivial delays between one step and 

the next. This is represented in our model by having the 

operator return to scanning before undertaking another 

task. 

TCBD has features that can be configured to support 

operational procedures.  Space does not permit a full 

description of the features here, but for the purposes of 

this paper we focus on the following features: 

 When a new conflict appears on the ACL it is 

flagged (by displaying it with a coloured border) as 

being new. 

 After the controller has clicked on a new conflict its 

flag changes to ‘needing assessment’.  

 The controller can set a timer on a particular conflict 

to remind them to come back to it later.  

Other ATM functions monitor conformance to 

trajectories, with procedures for non-compliance. 

2.3 Standard Operational Procedures (SOPs)  

As noted above, there are many operational procedures 

for different aspects of the controller’s task. We extracted 

the procedures that involved use of TBCD functions and 

developed a Behavior Tree (BT) model from them. 

Examples include: 

1. When a new conflict appears on the ACL, the 

controller should click on it and view the TBCD 

display of details of the conflict. (This will result in 

the new-conflict flag being removed.)  

2. After a conflict has been assessed and it has been 

determined that intervention is required, the 

controller should clear the ‘needs assessment’ flag. 

(Thus, any conflict on the ACL without flags 

implicitly needs intervention.) 

3. Before modifying the trajectory of any flight, the 

controller should open TMT on the flight, enter 

details of the proposed modification, and check what 

new conflicts would result. Note that the 

modification may be acceptable even if conflicts 

remain – either because the controller may be able to 

establish a CISS, or because a modification of the 

other trajectory in the conflict is planned. 

4. If the trajectory modification is acceptable, the 

controller issues the instruction to the pilot and hits 

‘accept’ in TMT to update the trajectory in the 

system.  

5. After receiving an instruction the pilot is expected to 

read it back. The controller should check the read-

back instruction against the new trajectory recorded 

in the system.  

6. If the controller determines a CISS exists for a 

conflict on the ACL, they move the conflict to the 

Figure 1. TBCD operator activities 



SCL. (The ‘needs assessment’ flag gets deleted 

automatically.)  

7. The controller should regularly visit each conflict on 

the SCL to check that the CISS still applies and 

move it back to the ACL if not.  

The natural flow of tasks is either: assess/trial trajectory 

change/accept and instruct/check read-back, in the case of 

conflicts requiring intervention; or assess/suppress/monit-

or in the case of CISS conflicts.  

As noted above, each or all of these steps could be 

interrupted by other tasks, including dealing with other 

conflicts in parallel, and often can be deferred for 

significant periods of time. In fact, some conflicts 

“resolve themselves” (as far as the controller is 

concerned) because some other agent modifies the traj-

ectory of one of the flights involved, or requests a change 

(such as a pilot requesting permission to start to descend 

on approach to its destination). This leads to another 

SOP: 

8. If the controller defers any of the above procedures 

without completing them, they should set a timer on 

the conflict to remind them to come back and 

complete it later. The timer should be set to expire 

well before conflict start time.  

 

The BT model also captured the behaviour of conflicts 

(including the fact that a CISS conflict could switch to 

become a true conflict at any time) and behaviours of 

pilots (such as responding that they were unable to 

modify their trajectory as instructed). As noted above, 

failures of TBCD components were not included in the 

model as being out of scope, but could have been 

included if desired. 

Figure 2 shows an excerpt from the operator section of 

the BT model, corresponding to selecting a new conflict c 

that has appeared on the ACL. (Note that Figure 1 is not 

BT notation. The BT model has more information than 

shown in Figure 1, but is too large to display here.) If the 

controller selects c, a message is sent to the TBCD HMI 

to remove the new-conflict flag from c, and parameters 

flight1 and flight2 are set equal to the identities of the two 

flights involved in c; a “selected” message is returned 

once the TBCD HMI is updated. The controller can then 

choose whether to assess c or set a timer and return to 

scanning. The interested reader is referred to the BT 

website
1
 for details of the syntax and tools available. The 

“for some” quantifier notation [] c:ACL.new is explained 

in (Winter, Colvin et al. 2009). 

3 Hazard Analysis  

3.1 Hazards 

As noted above, Loss of Separation (LoS) is the primary 

TBCD-related safety incident to protect against. But this 

is already too late: we want to capture states of the system 

where “trouble is brewing”, well before LoS. After 

discussion with domain experts we arrived at the 

following states as the system hazards to be analysed: 

 Haz0: The controller fails to assess a conflict prior to 

activation of the TBCD safety warning.  
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 Haz1: The TBCD safety warning has been 

suppressed for a true conflict.  

 Haz2: The trajectory being flown by the pilot is 

different from the trajectory in the system. 

Haz0 corresponds to a ‘late’ failure of the conflict 

detection and resolution (CDR) system function. Haz1 

corresponds to an ‘omission’ failure of the CDR function. 

Haz2 is a common-mode fault that undermines the 

integrity of the whole trajectory-based CDR function. 

We could have modelled and investigated other 

system failures – such as unnecessary or inefficient 

interventions, excess additional controller workload, or 

pilot requests not being acted on sufficiently early – but 

they were not as safety critical as the hazards above and 

so were set aside. (A parallel project evaluated controller 

workload quantitatively and came up with its own 

recommendations on workload.) Our methods are 

concerned with qualitative analysis, as will be explained 

further below.  

3.2 Hazard formalisation  

Our analysis method consisted of modelling operator 

behaviour (as captured in the SOPs) and the behaviour of  

the environment (in this case, primarily the changeable 

nature of conflicts and the effects of trajectory 

modifications on them), then injecting operator failure 

modes into the model and using automated model 

checking to determine if any of the hazards became 

reachable. The interested reader is referred to (Grunske, 

Lindsay et al. 2005) for more details of the modelling 

languages and tools involved. The hazards first had to be 

formalised in Linear Temporal Logic (LTL), the logic 

used by the model checker.  

Temporal logic supports reasoning about the orders in 

which events and conditions may occur. The “linear” part 

of LTL refers to the fact that every possible sequence of 

events and conditions in the model get checked. Model 

checkers have been developed for other forms of 

temporal logic but they tend to be less efficient, or return 

less useful results. LTL is good for our purposes because, 

if the hazard being checked can occur, the model checker 

returns an example sequence of events (called a 

counterexample) that illustrates how the hazard can 

occur. Counterexamples are useful for debugging models 

and, in our case, for identifying possible accident 

sequences, which in turn reveals where the deficiencies 

occur in hazard controls.  

The first two hazards are straightforward to formalise 

in LTL. Haz0 can be formulated as “after a new conflict 

appears, its ‘needs assessment’ flag should get cleared 

before the safety warning activates”. Haz1 can be 

formulated simply as the condition that a true conflict 

appears on the SCL. Haz2 is a little more subtle: “The 

system trajectory and the pilot trajectory disagree when 

the controller returns to scanning”. We added the 

qualification “returns to scanning” because instructing the 

pilot and accepting in TMT occur as separate steps in our 

model, and hence the hazard would arise every time an 

intervention occurred without it; this way the steps can 

occur in either order, but no other steps should be taken in 

between them. 

http://www.itee.uq.edu.au/sse/dccs


 

Figure 2. Excerpt from the BT model  

Note that temporal logic is concerned only with the 

order in which things occur, not with when they occur or 

how long they take to occur: that is, our approach is 

qualitative rather than quantitative.  Methods such as 

simulation and worst-case real-time analysis can be used 

for quantitative analysis, but unlike our approach such 

methods are not exhaustive (in the sense of being able to 

analyse all of the different cases that might occur). Our 

models could be used to support quantitative analysis, for 

example by generating the sequences of events for which 

the system and pilot trajectories disagree, to help 

calculate hazard exposure time for Haz2. 

3.3 Operator failure modes  

The next step in our modelling and analysis was to 

capture the different kinds of operator error that could 

occur. (Failures of the TBCD and other ATM system 

elements were analysed by others and were out of scope 

of our analysis. The approach could be extended to apply 

to these factors, as illustrated for example by Grunske et 

al (Grunske, Winter et al. 2011).)  

We generated a variant BT model from the BT model 

of desired behaviour (i.e., behaviour in accordance with 

the operating procedures of interest) for each error by the 

following systematic process: At each point in the BT 

model where there is an operator action, consider 

omissions, commissions and incorrect executions. 

Omission error models are generated by removing one of 

the actions that are possible at a choice point. 

Commission error models are generated by adding 

actions which are not already present but which are 

possible at that point (i.e., are consistent with the 

“unconstrained behaviour” from Figure 1). Incorrect-

execution error models are generated at parameterised 

action points (i.e., points where the operator chooses a 

value for a parameter of a particular action, such as which 

trajectory to trial in TMT) by replacing the intended value 

by a different value.  

Examples of the errors generated by this process are: 

 Inadvertently performing actions. These are similar 

to Reason’s slips and lapses (Reason 1990). 

 Performing actions with the wrong (/unintended) 

data parameter. 

 Performing the wrong action – typically here, in 

contravention of a recommended operating 

procedure. These are similar to Reason’s mistakes. 

 Never performing the action that will progress the 

situation, when some other action (typically deferral) 

is available.  

We claim that, by its systematic nature, this gives 

complete coverage of possible operator errors. The 

resulting errors were validated against a list prepared by 

the ATM experts: where there were differences they were 

typically matters of detail due to some of the abstractions 

used in the BT model, or related to timing issues.  

It is interesting to compare this approach to other 

approaches to error categorisation, such as Hollnagel’s 

well-known “error phenotypes” (Hollnagel 1993). His so-

called first order error phenotypes included things such 

as: omission, in the wrong order, wrong action, late and 

early. But he was dealing primarily with sequential tasks, 

and many of his phenotypes are difficult to interpret in 

the current context, where there are multiple (instances 

of) tasks running in parallel, and task goals and the 

environment are changing dynamically. To illustrate the 

difficulties, consider the following vignettes: Controllers 

often defer certain decisions (“let it run”) because the 

situation will eventually resolve itself; thus for TBCD it 

is not always possible to say that an omission has 

occurred, since a task can often be safely deferred. There 

is no fixed order for doing things: the controller needs 

flexibility when prioritising and resolving conflicts.  

Most HCI formal methods use error type 

classifications similar in nature to Hollnagel’s approach, 

which has been shown to result in large unwieldy models 

that are not suited to model checking (Bolton and Bass 

2013). We contend that an approach based on functional 

failure analysis (i.e., where errors are categorised 

according to how behaviour differs from desired 

behaviour) is more natural and leads to better insights in- 



to how to improve operating procedures, as demonstrated 

below. We think they are also more amenable to model 

checking, in terms of computational efficiency.  

3.4 Model checking 

Failure modes were injected into the BT model one by 

one and the SAL model checker (Moura, Owre et al. 

2004) was used to determine if there were any 

circumstances under which the hazards were reachable. If 

so, the resulting counterexample was examined to 

determine which operating procedures were violated (if 

any) and whether the error would be revealed and 

recovered from. Recommendations were formulated for 

additional operating procedures to recover from errors 

and for modifications to operating procedures to reduce 

the likelihood of the failure. (The latter was done 

informally, based on our improved understanding of 

procedures from modelling.)  

Figure 3 illustrates the kind of accident sequence that 

was revealed by the model checker. In this case the 

controller has selected the wrong flight in response to a 

trajectory change request (step 2) and trialled the change 

on that flight, then approved the original request (step 4). 

As a result, both flights are flying trajectories different to 

the ones assigned to them in the ATM system (Haz2). 

The error is discovered when the pilot of the first flight 

reads back the instruction and the controller checks it 

against the system trajectory (step 7). While it is possible 

they could check it against the other flight’s trajectory, 

the differences should be apparent, so there is low 

likelihood of a second error compounding the first.   

The model checker found the steps through to the 

hazard occurring and the error being revealed; this shows 

that the proposed operating procedures are generally 

adequate for revealing this kind of error. The steps for 

correcting the error (the last two steps in Figure 3) were 

added as recommendations for further operating 

procedures to be developed and stressed in training and 

assessment. Analysis of the sequence led to discussion 

about hazard exposure time and a recommendation that 

policy be developed for how soon the controller should 

prompt the pilot for read back, if no read back has been 

received. Consideration of error recovery led to the 

recommendation that tool support be provided for 

recovering previous trajectory information; this is 

discussed further below. 

We repeated the automated hazard analysis on variants 

of the BT model obtained by removing operational 

procedures one by one. This allowed us to identify which 

procedures were needed to prevent each hazard – 

effectively providing traceability from controls to the 

hazards they prevent 

4 Design Improvement  

To illustrate the approach’s use in design improvement 

we proposed a modification to the TBCD HMI and 

repeated the analysis. The proposal consisted of an 

additional flag on flights, called the Confirmation 

Pending Flag (CPF) here, to indicate whether the 

trajectory has been changed. The controller would be 

required to check the details and clear the flag promptly. 

The CFP should be easy to locate at read-back, and would 

include details of the original trajectory as well as the 

change. The TMT should be able to be opened from the 

original trajectory, if the controller plans to undo the 

change.  

The BT model was changed to incorporate the 

proposed new feature. The process of integrating the 

CPF’s (and the operator’s) behaviour into the model, 

together with the experience gained in identifying 

behaviour required for recovering from errors, helped us 

refine the concept and identify further requirements for 

CPF. For example, the analysis in Figure 2 above 

suggested the idea that CPF would be a good place to 

store the previous trajectory information, in order to 

easily undo a trajectory change. The idea of accessing 

TMT from CFP, rather than simply replacing the current 

trajectory by the old trajectory directly in the ATM 

system, came from realising that other trajectories may 

have changed in the meantime, meaning that the 

controller needs to check that the old trajectory is still 

safe before rolling back to its old value in the ATM 

system. 

5 Discussion   

The Behavior Tree specification language provides an 

integrated view of the requirements of a system and 

maintains traceability to the original textual requirements 

(Dromey 2003). Behavior Trees have been used for 

modelling large and complex systems and for conducting 

hazard analyses of such systems (Grunske, Winter et al. 

2011, Lindsay, Yatapanage et al. 2012). A key feature of 

a BT model is its graphical format that makes it easy to 

understand without a formal methods background. The 

systematic process of building a BT model, and ease of 

understanding for non-experts, have been shown to 

significantly improve the quality of requirements 

specifications for complex computer-based systems 

(Powell 2010). 

Figure 3. Accident sequence leading to Haz2 



We use fully automated model checking to increase 

assurance that all cases have been covered. Even with 

relatively small models the number of different 

combinations of circumstances (events and component 

states) that need to be taken into account is difficult for 

human analysts to handle: automation relieves the tedium 

and is far less error-prone. The trade-off is in 

expressiveness of the models and properties to be 

checked. To avoid the so-called “state explosion 

problem” of automated model checking we focus on 

capturing and investigating the “logic” of procedure 

design and avoid quantitative aspects such as time and 

physical attributes such as separation distance. 

Computation time was very reasonable (typically less 

than 60 seconds per error/hazard combination) but 

maintaining the failure views was time consuming.  

The behaviour model was particularly important for 

facilitating communications between ATM domain 

experts and modeller analysts. The modellers would ask 

probing questions about how the proposed TBCD tools 

would work, and the modelling notation and model 

checking forced the team to systematically consider all 

the different circumstances that could arise. The ATM 

experts reviewed the models to ensure that functionality 

and behaviour were captured correctly. One of the main 

outcomes of the process was a set of recommendations 

for TBCD operational procedures; the rigour of 

modelling forced a consistent approach across the system 

and increased confidence that hazard analysis was applied 

across the TBCD concept completely. Overall the process 

significantly increased the quality of safety requirements 

specification and assurance.  

The BT notation has no way of specifying behaviours 

such as the requirement that the operator should regularly 

check for flagged items and deal with them promptly. It 

was necessary to reformulate the safety properties to be 

model checked so as to include “fairness conditions” for 

such behaviours. This part of the analysis was tricky; we 

are investigating how best to model and check such 

procedures.  

As noted above, the approach is not suited to 

quantitative analysis: techniques such as Event Tree 

Analysis (Storey 1996) or THERP (Kirwan, Gibson et al. 

2008) would need to be applied to determine whether 

HMI features and requirements such as the above really 

do reduce risk effectively. 

6 Related work 
BT support for Functional Failure Analysis and FMEA 

has been investigated in a number of domains, including 

manufacturing and medical devices (Grunske, Winter et 

al. 2011) and aerial firefighting (Lindsay, Winter et al. 

2012). The approach has been adapted to Cut Set 

Analysis (discovering combination of component failures 

that can lead to hazards) in aerospace (Lindsay, 

Yatapanage et al. 2012). 

There is a wide range of HCI safety analysis 

techniques for socio-technical systems, including ATM. 

Leveson et al (Leveson, de Villepin et al. 2001) propose a 

human-centred, safety-driven design process with wide-

ranging coverage; our approach focuses on modelling 

operational concepts and using model checking to 

automate analysis, and yield more objective and 

repeatable results.  The HERA project (Isaac, Shorrock et 

al. 2002) analysed ATM human error from a cognitive 

viewpoint: our approach to error identification was 

informed by their approach. Most human performance 

modelling approaches (e.g. (Blom, Daams et al. 2000)) 

evaluate risk on a scenario basis, whereas our approach 

applies directly to the operational concept as a whole. 

Formal methods have been applied to HCI for a wide 

variety of purposes: see Bolton et al (Bolton, Bass et al. 

2013) for an excellent review. Paterno et al (Paternò and 

Santoro 2001) apply model checking to ConcurTaskTrees 

(CTT) models translated to LOTOS, to verify user 

interface protocols, using a case study from ATM. In 

(Paterno and Santoro 2002) they show how CTT can be 

used to evaluate HCI design options from safety and 

usability viewpoint; it is not clear how to apply the 

approach post hoc to an existing HMI.  

Bolton et al (Bolton, Siminiceanu et al. 2011) 

introduce the Enhanced Operator Function Model 

(EOFM) notation and apply the SAL model checker to 

find a failure pathway, via a counterexample, for an 

automotive cruise-control case study. They then propose 

a design change and show that the hazard is no longer 

reachable. Like BTs, EOFM is a graphical notation. 

EOFM has the advantage over BTs that models can be 

represented hierarchically; the downside is the state 

explosion problem seems to occur earlier for hierarchical 

models due to the extra overhead. It is not clear how well 

EOFM would cope with a task model as complex as 

TBCD nor how easily failure modes could be injected 

into the model for capturing human errors. In (Bolton, 

Bass et al. 2012) they propose a way of automating 

generation of failure models but quickly run into the state 

explosion problem. 

7 Conclusion 
The paper describes the application of formal methods to 

modelling and safety analysis of operating procedures for 

a Trajectory-Based Conflict Detection (TBCD) function 

for airspace that includes procedural separation standards. 

The paper evaluates a set of HMI features and operating 

procedures designed as hazard controls, to maintain 

system safety and integrity. The robustness of the 

procedures is evaluated in terms of which operator errors 

and system hazards they mitigate. It introduces a new 

approach to classification and analysis of operator errors 

for highly interleaved concurrent tasks, addressing a 

limitation of existing approaches by enabling operator 

actions to be judged dynamically over time and in a 

systems context.  

The results in this paper were derived using the 

Behavior Tree modelling notation and the SAL symbolic 

model checker. Formal modelling expedited 

consideration of cross-system interactions and 

dependencies and enforced consistency across the design. 

It also provided an objective basis for error 

categorisation. Model checking automated the 

consequence analysis, relieving the analyst of one of the 

most labour-intensive and error-prone aspects of analysis, 

and increased repeatability of the analysis and assurance 

that all cases have been taken into account. Overall the 

process significantly increased the quality of (qualitative) 

safety requirements specification and assurance. 
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