Modelling Erroneous Operator Behaviours for an
Air-Traffic Control Task

Peter Lindsay

Simon Connelly

Software Verification Research Centre,
The University of Queensland,
Brisbane, Qld 4072, Australia.

{peter.lindsay, simonc}@svrc.uq.edu.au

Abstract

This paper introduces a new approach to formalising
analysis of human errors in human-computer interaction.
The approach takes account of the cognitive processes
involved in a task, and how mistakes arise and how errors
propagate through the task. It argues for modelling
errors as behaviours rather than as events (the usual
approach), at least for tasks involving highly interleaved
concurrent, ongoing activities. The models are formalised
using a combination of CSP and temporal logic, and the
approach is illustrated on a case study from Air Traffic
Control. By providing a richer modelling framework and
being more expressive, the approach overcomes signif-
icant limitations of existing human-error identification
techniques.

Keywords: human-computer interaction, human error
identification, user interfaces

1 Introduction
1.1 Motivation

Human Reliability Assessment (HRA) received much
attention in the 1970’s and 80’s, especially in the nu-
clear industry following the Three Mile Island inci-
dent, and a number of different HRA techniques have
emerged [Swain and Guttmann, 1983, Kirwan, 1990].
For the most part however, safety assessment of User
Interface (UI) designs and interactive-system opera-
tor performance is still largely done in an ad hoc man-
ner [Leveson, 1995].

Two of the main problems with applying existing
HRA techniques to interactive systems is that the
techniques lack objectivity [Svenson, 1989] and typ-
ically only apply to tasks involving well-defined se-
quence of essentially independent activities: i.e., se-
quential tasks in which the failure of one activity
is assumed to be largely independent of the others
[Kirwan, 1992]. Formal modelling has been proposed
Copyright ©2001, Australian Computer Society, Inc. This
paper appeared at the Third Australasian User Interfaces
Conference (AUIC2002), Melbourne, Australia. Confer-
ences in Research and Practice in Information Technology,
Vol. 7. John Grundy and Paul Calder, Eds. Reproduction
for academic, not-for profit purposes permitted provided
this text is included.

as a way of making parts of the analysis more ob-
jective, as well as providing the basis for new analy-
sis techniques [Palanque et al., 1997, Johnson, 1997,
Leveson et al, 1997]. The second, task-modelling
problem is harder to overcome and requires the de-
velopment of new modelling and analysis techniques.
This is particularly true for tasks involving highly in-
terleaved, concurrent, ongoing activities — such as are
involved in Air Traffic Control (ATC) for example.

A previous paper [Leadbetter et al., 2001] described
an ATC case study and introduced an approach to
predicting the sources of possible operator errors
based on formal models of the ATC system and its
user interface, and of the cognitive processes involved.
The formal models provided the basis for a system-
atic exploration of the different sources of error that
could arise, using a method adapted from Hazard and
Operability Studies (HAZOP) and Functional Failure
Analysis.

The purpose of the present paper is to step back from
looking at failures of individual activities, and instead
to consider failure of the task as a whole. In partic-
ular, the paper proposes a means for formally mod-
elling operator behaviours and propagation of errors
between activities, as a way of overcoming the inde-
pendence limitation of existing HRA techniques noted
above.

The proposed new HRA approach involves the use of
a number of interrelated models:

e cognitive models to describe how the operator’s
attention flows between different activities;

o event-trace models to capture activity-level fail-
ures;

e temporal logic to express the behaviours that
constitute task-level failures; and

e stochastic extensions of the event-trace models
to capture quantitative aspects.

The present paper describes the error identification
and classification part of the overall HRA process
only, and omits stochastic modelling for now. The
approach is illustrated below on a simple Air Traffic
Control (ATC) case study involving en-route control
through a simulated airspace.

1.2 Overview of this paper

Section 2 describes the ATC simulator and task on
which the error identification approach will be illus-
trated. Section 3 briefly describes the cognitive pro-
cesses and operator actions involved in the ATC task.
Section 4 introduces the model of operator choices
(decisions and actions) and their system-level effects,
which will serve as the basis for task-level failure anal-
ysis. The Operator Choice Model (OCM), as it is
called here, is formalised in Hoare’s CSP notation.

Section 5 introduces temporal logic notation to de-
scribe operator behaviours as sets of possible traces
through the OCM. Section 6 describes part of a top-
down failure analysis based on the OCM and using
temporal logic to aid reasoning. One particular task-
level failure mode — failure to take action — is decom-
posed into the different possible behaviour types that
could lead to the failure. This illustrates one of the
new approach’s main contributions: the use of formal
models to help break a complex problem down into
more manageable problems.

The description of how the approach can be extended
to support (semi-)quantitative Human Reliability As-
sessment is the subject of a future paper. The present
paper focusses on the conceptual approach to descrip-
tion and classification of task failure types, which is
essentially new.

1.3 Related work

We briefly survey the literature on human-error mod-
elling and formal models of ATC tasks.

As Kirwan [Kirwan, 1990, Kirwan, 1992] notes, few
practical techniques have been developed for human-
error classification for use in risk assessment. Human-
error identification techniques mostly focus on errors
in individual activities (such as Reason’s “slips” and
“mistakes” [Reason, 1987]) or treat them as single
events (e.g. error of omission, error of commission,
extraneous error [Swain and Guttmann, 1983]).

One of the best-known HRA techniques is the Tech-
nique for Human Error Rate Prediction (THERP)
[Kirwan, 1990], which uses event trees with recovery
paths to analyse task failures. THERP is typically
used in highly proceduralised situations in which the
task is broken down into a sequence of individual
steps, some of which involve checks on the outcomes
of previous steps. For each step, the probabilities of
success, failure and recovery (if applicable) are es-
timated. The probability of task failure can then
be calculated by combining the probabilities of er-
rors in individual steps in branches without recovery
paths. THERP is one of the few techniques which
takes dependency between actions(/errors) into ac-
count quantitatively.

As noted in the ATC literature however, many
tasks are more complicated than can be mod-

elled using event trees, since they involve rep-
etition and interleaving of events, and activities
are often not performed in a predetermined order
[Redding and Seamster, 1996, Seamster et al., 1997].
In particular, none of the methods that Kirwan dis-
cusses apply very well to our ATC simulator case
study.

A number of formal (and semi-formal) modelling tech-
niques have however been applied to Air Traffic Con-
trol. The Eurocontrol organisation has developed a
very sophisticated model of the cognitive processes
involved in en-route control [Kallus et al., 1999]; to
the best of our knowledge it has not yet been used
to analyse human error in any depth. Palanque et al
applied Petri Nets to modelling the effect on an ATC
task of the introduction of a new UI technology (data
link) [Palanque et al., 1997]. Johnson illustrates the
use of formal models to support the findings of ac-
cident investigations, and illustrates the approach on
an aircraft accident [Johnson, 1997].

Leveson et al document the outcomes of a system
safety program for development of an ATC subsys-
tem (CTAS) for arrival control [Leveson et al, 1997].
The program included modelling and safety analysis
of part of the operator’s “normal” behaviour. Formal
models were used to analyse the possibility of “mode
confusion” resulting from error-prone automation fea-
tures, and to make recommendations concerning Ul
design. An informal human-factors analysis was also
conducted, to predict the effect of introduction of
CTAS on controller performance.

2 The ATC case study

The ATC case study was designed by the Australian
Key Centre for Human Factors and Applied Cog-
nitive Psychology (KCHFAPC) in consultation with
ATC domain experts. It concerns a highly simpli-
fied ATC task performed on a simulator. A joint
SVRC/KCHFAPC project is using the case study to
develop a semi-quantitative approach to predicting
risk associated with operator error. Although the
task is highly simplified from an ATC viewpoint, it
is sufficiently complicated to challenge existing tech-
niques.

This section briefly describes the ATC simulator and
task: for more details see [Leadbetter et al., 2000].
The User Interface is described in detail for the inter-
est of the current audience.

2.1 Overview

In broad terms, the simulator presents a highly
simplified ATC system in which aircraft fly along
straight-line segments — called flight paths — between
waypoints within a fixed sector of airspace (see Fig-
ure 1). The primary task of the operator is to ensure
that the aircraft moving through the sector remain
separated by no less than the defined minimum sepa-

Figure 1: A (black and white) screenshot of the ATC simulator.

ration distance (5000 metres): failure of this require-
ment is called separation violation. For the simula-
tor, the only control that the operator can exert is to
change the speed of individual aircraft (see below).
To keep them motivated, experiment subjects receive
scores based on how fast they move aircraft through
the sector without a separation violation occurring.

2.2 ATC simulator display

The ATC simulator has a display which depicts a
simulated sector of airspace — consisting of airports,
waypoints and flight paths — together with the lo-
cation and details of aircraft currently flying within
the sector: see Figure 1. Flight paths are shown as
dark lines, aircraft as circles, airports as squares, and
waypoints as triangles. Details of each aircraft (call
sign, aircraft type, speed and flight route) are shown
near the aircraft. Flight routes are represented as se-
quences of waypoint/airport codes. The display is
updated at short intervals to give the impression that
the aircraft are moving.

2.3 User Interface functionality

Operators interact with the simulator via two main
UI functions:

e selecting (by highlighting) a single aircraft, and

e changing the speed of the selected aircraft.

Figure 2: A partial screenshot of the Speed Menu for
the selected aircraft.

An aircraft is selected by clicking the left button when
the cursor is positioned over an aircraft. The selected
aircraft is highlighted using a solid dot within the cir-
cle that represents the aircraft (see Figure 2). Only
one aircraft can be selected at a time: when a new air-
craft is selected the previously selected aircraft loses
its highlighting.

Changing the speed of the selected aircraft involves
three steps:

1. Opening the speed menu by clicking the right
button. The aircraft must be selected before the
speed menu can be accessed. The menu appears
at the position of the cursor.

Control Airspace
L] Perform Actions
alarm R Scanning ChangeAircraftSpeed
“matched /Store Actions
g%’(')’nf;g"‘r’ﬁ) ! /OpenSpeedMenu =
i o—= Ranew Actions
V .
N Monitor Problem o [NavigateSpesdMenu]
. class. =7 =
o - Perceve E’roblem bedted] 5 [arcraf(
Details -§’ /SelectSpeed
[class. = ?or 5 /SelectAlrcraft
not AsExpected] §>’
Classify problem =g)%
S — Decide Action
! Prioritisation

‘ 1 Project ‘ Z
L ookup ! Forward . o E
Memory ! Assign Priority ° . §
I — /Fetch | g
CIIO) 5 Episodes %
e 4] i i
@ 3] | =
L ¥ Q Memory ! a
/CollateExperience S g based ! Rule a
g e Decision | based g
3| ' | Decision 2

Q |

. Compare Priorities) C o%.» !

/Store Episode liied) s [no &, !

R — 3 DemsonFound] R

[class. = conflict or 7] /T\ 2 3| % Y
%, -
[class. = nonconflict] % —— . Validate Dedision /Store Decision
%
"memory cued problem monitoring"
" defer” 'S [not MustActNow]

Figure 3: Control-flow model of the ATC-simulator operator’s cognitive processes.

2. Navigating the speed menu by moving amongst
the menu entries. The speed choices in the menu
depend on the type of aircraft selected. A tick
(v) within the menu indicates the aircraft’s
current speed (see Figure 2).

3. Selecting a speed by left clicking on the desired
menu entry.

The operator may abort this operation by clicking the
left button when the cursor is positioned outside the
speed menu.

3 Cognitive Model

This section outlines a cognitive model for the ATC
case study which was developed in collaboration with
Andrew Neal and Mike Humphreys at KCHFAPC.
The model identifies the main cognitive processes in-
volved and how “control” (roughly, the operator’s at-
tention) flows from one process to another under dif-
ferent conditions. It is included here to provide the
“semantics” of the Operator Choice Model described
later in the paper. As will become evident, the full
cognitive model illustrated in Figure 3 is more de-
tailed than strictly required for the purposes of this
paper; its description here is thus kept brief. (The
interested reader is referred to [Connelly et al., 2001]
for more details.)

3.1 Overview and terminology

First, some terminology: A conflict is defined as two
aircraft being on courses that — if their speeds are
left unchanged — will lead them to violate the min-
imum separation distance at some time while they
are within the sector. For simplicity of explanation, a
problem is defined to be a pair of aircraft to which the
controller pays attention as possibly being in conflict
(although in general an en-route control problem may
involve two or more aircraft).

In brief, the main cognitive processes in Fig. 3 are:

e “scanning”, in which the operator systematically
scans the display searching for possible conflicts;

e focussing on a particular problem (pair) and clas-
sifying the pair as being in conflict or not;

o if the monitored pair is in conflict, determining
an action plan for the pair, and

e performing corrective actions on the pair (i.e.,
setting new speeds for one or both of the aircraft
via the UT).

The model is reasonably generic but is primarily in-
tended to represent the behaviour of relatively expe-
rienced air-traffic controllers. It has been reviewed
by ATC domain experts, and it is broadly consistent
with the Eurocontrol task analysis of en-route control

[Kallus et al., 1999] (although of course our simulator
and task are far simpler than in a real ATC system).

3.2 Modelling notation and more detail

The model uses the UML statechart notation
[Oestereich, 1999]. Each statechart state represents
an abstract cognitive process (such as monitoring a
conflict), which in some cases is further subdivided
into subprocesses. The model purposefully blurs the
distinction between cognitive processes and physical
actions such as navigating a speed menu. For the
purposes of this paper, transition decisions are made
nondeterministically.

The underlying memory structures for the
cognitive model are explained in detail in
[Connelly et al., 2001]. Briefly, the operator’s
long-term memory stores episode records, each
of which consists of a collection of data relations
representing the problem’s details at different points
in time. The operator’s short-term memory is
modelled as a small array of truncated data relations,
consisting of the location and priority information
pertaining to recently considered problems.

The processes in Figure 3 access memory in various
ways: e.g. MemorybasedDecision in DecideAction ex-
tracts possible solutions from the collection of data
relations in long-term memory; this is termed a “con-
flict resolution library” in [Kallus et al., 1999).

4 Operator Choice Model (OCM)

This section introduces the key model for use in error
identification and classification; we call it the Oper-
ator Choice Model (OCM). The OCM describes the

order in which certain events can take place during
runs of the simulator.

4.1 Overview of approach

Monitor Problem

o Decision Perform
Classification making action

s |
)

Figure 4: Operator Choice Model process

The OCM encompasses both correct and “incorrect”
decisions, in order to record how mistakes arise, prop-
agate and get corrected (“recovered from”) in the
course of a run of the simulator. The OCM was de-
rived from the Cognitive Model of Section 3 by fo-
cussing on certain key events: namely, decisions and

actions that critically influence the subsequent run of
the simulator or later decisions of the operator. To
keep analysis tractable, the set of analysed events has
been kept small, and certain less commonly occurring
transitions have been ignored. The events chosen for
inclusion are ones that are observable (measurable)
in experiments.

As a result, the OCM is modelled at a higher level
of abstraction than the Cognitive Model, and the
process diagram can be simplified considerably: see
Fig. 4. The omitted transitions for the most part
concern “jumps in control” cued by memory or alerts
in the UI, such as suddenly remembering there is a
higher priority problem requiring urgent attention.

As well as being more coarse-grained than the Cog-
nitive Model, the OCM is somehow more generic —
in that it describes the general logic of “handling an
ATC problem”. For example the OCM could be used
to model the sequencing of aircraft for arrival control.
(In fact, the model in Fig. 4 is really quite general and
could represent almost any decision/action process.
The tailoring of the model to the case study occurs
in the CSP details below.)

The rest of this section is structured as follows: Sec-
tion 4.2 introduces the formal notation used in defin-
ing the OCM. Sections 4.3-4.6 build up the model
incrementally by describing each of the individual ac-
tivities and their possible outcomes (in terms of the
scenario unfolding on the simulator). The model is
nondeterministic in the sense that the operator has
the power to make different choices at different points.
Section 4.7 constrains the model further, to reflect the
fact that the simulator behaves totally deterministi-
cally.

4.2 Notation

The OCM is defined in a formal notation based upon
Hoare’s CSP notation for describing Communicating
Sequential Processes [Hoare, 1985]. Only the part of
the CSP notation dealing with (CSP) events and pro-
cesses is used here.

The CSP meaning of process is close enough to our
meaning of the cognitive processes being performed
by the operator as to not need further explanation.
The processes modelled in the OCM correspond to
the main cognitive and physical processes involved in
the ATC task, as outlined above. In fact, the operator
part of the OCM does not use concurrency at all: at
the level of granularity modelled here, the operator is
considered to be only thinking about one thing at a
time.

CSP events correspond to observations of the system
at selected points in the above processes. They are
labelled with information pertaining to the operator’s
intentions and the true simulator “state”. The event
labels are explained in more detail as they are intro-
duced below. Generally speaking, the events “occur”

when the operator makes transitions between the cor-
responding cognitive processes.

CSPp meaning
X [I Y | nondeterministic choice between
processes X and Y
X || Y | parallel combination of processes X
and Y
a — X | event a occurs then process X starts

Table 1: Some CSP notation for processes

CSP processes are defined by describing the events
and transitions (to other processes) that can take
place. They are described in terms of the corre-
sponding processes in the Cognitive Model. Table 1
summarises the CSP notation used below. Note that

i:1..nXi is used as shorthand to represent a choice
between processes Xj,..., X,.

A trace of the model is the sequence of events cor-
responding to the choices made by the operator in a
particular run of the simulator.

Puairs will stand for the set of all possible pairs of air-
craft within the sector over the course of the simula-
tion. (Not all pairs will be observable by the operator
at any one time.) In what follows, certain events and
processes will be labelled with subscript p, meaning
they are specific to pair p from Pairs.

4.3 Scanning

S stands for the scanning process. It is modelled as
a period of scanning of the screen followed by nonde-
terministic (operator) choice of a pair p to monitor as
possibly being in conflict.! In CSP this is written as:

S:s—>|:| sp = Cp)

p:Pairs(
where s is the label for the “start of scanning” (or
equivalently “end of attending to a particular pair”)
event, and s, is the label for the “beginning to mon-
itor pair p” event (i.e., the MonitorProblem state in
Figure 3). Here p represents the pair the operator
is thinking about, not necessarily the pair they are
observing (e.g. in the case of mistaken identity).

4.4 Classify pair

Cp stands for the “classify” process for a particular
pair p of aircraft; there is one such process for each p
in Pairs. The operator tries to classify p as being a
conflict or non-conflict? and “the environment” (the
simulator) determines whether it actually is a conflict.
(The model could be said to be omniscient, in that it

LAt any one time only a subset of Pairs will actually be
visible to the operator; the environment is in control of which
aircraft are visible — see Section 4.7 below.

2For simplicity of modelling the decision is treated as a bi-
nary choice, although in practice the classification would have
some kind of confidence weighting attached.

knows more about what is really going on than the
operator.) This process also includes the prioritise
sub-process.

label | operator thinks | actual situation

c! conflict conflict
c? conflict non-conflict
c? non-conflict conflict
ct non-conflict non-conflict

Table 2: ‘Classify’ event labels

Table 2 explains the event labels. Event c}, repre-
sents the operator’s classification of pair p, and oc-
curs when the operator stores the episode in memory
(i-e., the StoreEpisode action in Figure 3).

Cp = (Ui:1..4czil - S)”([Im..zczi) — Dy)

After classifying the pair, the operator can nondeter-
ministically return to scanning or proceed to decid-
ing on corrective actions (the D, process described
below). For example, even if the problem is classified
as a conflict the operator may decide that its priority
is too low for it to require immediate attention. Note
that the operator will proceed to Dy, only if they think
the pair is in conflict (i.e., i = 1,2). On the other
hand, they can defer deciding an action and return to
scanning no matter what the outcome of the classify
process (i.e., i =1,2,3,4).

4.5 Decide action

D, stands for the course of the “decide action” pro-
cess for a particular pair p; there is one such process
for each p in Pairs. Again, the model combines non-
deterministic operator choice with deterministic sim-
ulator outcomes. Table 3 explains the labels. The
event, dI’j occurs at the moment when the operator
finalises their decision on how to handle the conflict
(i-e., the StoreDecision action in the Cognitive Model).

DP = (|:|113d;) - (APUS))I:I(I:IZ34C;) - S)

label | operator’s plan vs reality

d! decide on an action, and the action
would resolve the conflict in the pair

d? decide on an action, but the action
would not resolve the conflict

d3 decide on an action, but no action
is actually necessary since the pair
are not in conflict

Table 3: ‘Decision’ event labels

After an action plan is decided, the operator can go
immediately on to performing actions (the A, process
below) or return to scanning. Another possibility is

that projecting forward in DecideAction (ValidateDe-
cision) results in the pair being reclassified as a non-
conflict (event cg or cf,), and the operator returning
to scanning.

4.6 Perform action
A, stands for the “perform actions on pair p” process.

Ay = (I]z':1..3a1i7 - S)D(Dq:Pairsag = 5)

label | effect of action on the given pair

at action resolves conflict &
no new conflicts created

a? action does not resolve conflict,
but no new conflicts created

a® no action was necessary for this pair
(because nonconflict) but is benign
although non-optimal

at action turns nonconflict into conflict

Table 4: ‘Action’ event labels

Table 4 describes the different possible outcomes of
this process in terms of the effects of the operator’s ac-
tions on the selected pair. The table includes an event
afll that represents the (presumably unintentional) act
of creating a new conflict pair ¢ as a result of modify-
ing the speed of one of the aircaft in p and bringing
it into conflict with a third aircraft.?

That completes the description of the choices and ac-
tions available to the operator in the general case.
The rest of this section focuses on the simulator case
study.

4.7 Simulator model

The CSP model above is quite general and describes
all possible choices and outcomes, including some
which are not physically possible. For example, since
the simulator behaves totally deterministically, it is
not possible an aircraft pair’s conflict state to change
without an explicit action by the operator. More pre-
cisely, for the purposes of the case study we can as-
sume:

e At any time a pair p can be in conflict or not.

e The conflict status of p can change as the result —
and only as the result — of the operator perform-
ing an action on one or the other of the aircraft
4
in p.

30ther outcomes are also possible, such as creating or re-
solving more than one conflict. We have developed a more so-
phisticated model that uses a mapping from pairs to outcomes
to handle such cases, but the simpler model is given here for
ease of explanation.

4The aircraft will be considered still to be in conflict if they
have already violated separation and are moving apart.

The determination of whether or not two aircraft are
in conflict assumes they do not change their behaviour
in the meantime. This assumption is valid for the sim-
ulator but would not be true for real ATC systems,
where e.g. the aircraft could change speed indepen-
dently of the controller’s command.?

This section adds constraints to the processes defined
above, to rule out physically impossible behaviours.
Process I, below will represent the conflict states that
pair p passes through, for a pair that starts life as a
conflict (i.e., has been programmed into the simulator
to violate separation if the operator makes no change
to either aircraft’s speed). N, is the analogous process
for pair which starts as a nonconflict. (I can be read
as meaning “in conflict” and N as meaning “not in
conflict”.)

The simulator’s behaviour with respect to events from
the CSP model can be described as the parallel com-
bination of processes I, for each pair p which begins
as a conflict, and processes N, for each pair p which
begins as a nonconflict, where:

I, = (I]e:A;ce - Ip)l](l]e:A;"e - N)
N, = ([Ie:Agne - Np)”(”e:Agce - 1)

Here A7¢ is the set of events which are possible for
a conflict pair p but which leave it as a conflict pair,
and so on (cc means from conflict to conflict, ne from
non-conflict to conflict, etc):

_ i1
Ayt =1a }3 1 42 2
cC
Ap = {cpz, cp4, dp3, dp3, a,
nn ——
.A%C = {cg,cp,dp,ap
Ape ={ay}

Thus for example, if pair p is in conflict (I,) and the
operator erroneously classifies them as not being in
conflict (¢3), the pair none-the-less remains in conflict

(Ip)-

Finally, the Operator Choice Model is the parallel
combination of the operator choice model from Sec-
tion 4 and the simulator model above:

ocM =8 ” (” p:InitrIp) ” (|| p:InitNNp)

where Init; and Inity are the set of conflict pairs and
non-conflict pairs when the simulation begins, respec-
tively.

Thus for example, the operator is “physically con-
strained” by the simulator from choosing the c}, event
for a pair p which is not at that moment in conflict.

5 Modelling erroneous behaviours

This section introduces temporal logic as a means for
describing erroneous behaviours as sets of traces over
the Operator Choice Model.

5The modelling approach could be extended to capture non-

deterministic behaviour of the “environment” (including e.g.
failure to obey the ATC operator’s command) if desired.

5.1 What constitutes a failure?

In order to assess operator reliability it is necessary
to define what constitutes a task failure. For a task
like ATC, however, it is difficult to say exactly when a
failure has occurred. Separation violation is an unam-
biguous indication that a failure has occurred some-
time during the task, but to analyse how it comes
about it is necessary to study possible causes further
back in the ATC process — such as having failed ever
to monitor the pair during scanning, or being unable
to access the speed menu for the given aircraft. Sim-
ilarly, classifying a conflict pair as “probably not in
conflict” may be an innocent mistake when the pair
are far apart, since in the normal course of events
there would be ample opportunity to reclassify the
pair as they get closer and to intervene; the mistake
is clearly critical however if it continues to be repeated
until it is too late to take corrective action.

As a second point, although the main task-level fail-
ure of interest in the ATC case study is separation
violation, unnecessarily slowing down an aircraft —
or slowing it down too much — can also be consid-
ered task failures in a sense (or at least suboptimal
performance). The techniques discussed below apply
equally well to such cases.

Clearly it is not sufficient to consider individual errors
in isolation, as done in the OCM above: a more gen-
eral way of expressing erroneous behaviours is needed.
This section introduces (discrete-time) temporal logic
notation (e.g. [Ben-Ari et al., 1983]) to describe op-
erator behaviours — and their system-level effects — as
sets of event traces over the OCM.

5.2 Temporal logic notation

Temporal logic extends standard predicate logic with
notation for talking about the order in which events
occur in time. Table 5 explains the basic tempo-
ral logic notation used in this paper. Note that the
truth of a temporal formula is interpreted at a given
reference point in time (“now”) which needs to be
supplied: see the examples below. The successive
(“next”) points in time correspond to the events in
an OCM trace for a run of the simulator. Time “fin-
ishes” when the simulator terminates or a separation
violation occurs, whichever comes first.

A single temporal formula defines a set of possible
traces of the OCM. Temporal logic thus provides a
simple and concise notation for reasoning about be-
haviours that abstracts away from detail about pre-
cisely when events occur.

The abbreviation
F.G==FANQG

will be used below to mean that F is true now and G
is true immediately after the next transition.

temporal formula | meaning

e (event label) event e occurs now

- F not F'

FV G For G

FAG F and G

OF F is true after the next
transition

OF F' is true now or at
some time in the future

OF F is true now and hereafter

Table 5: Some temporal operators

5.3 Examples

This section formalises the description of some opera-
tor behaviours over the course of a simulator run. The
descriptions should be interpreted as starting from
some given point in time.

1. Conflict p is persistently classified as a noncon-
flict, every time it is noticed henceforth (if ever):

- Oc, (or equivalently O cj)

2. Pair p is not monitored henceforth (e.g. it is for-
gotten or ignored altogether):

- Osp (or equivalently (O sp)

3. Conflict p is eventually handled correctly, with-
out creating any new conflicts:

O(ep-dy-ay)
4. Nonconflict p is handled as a conflict, with the
result that it actually becomes a conflict:

2 13 4
cp.dp.ap

6 Analysing task failure

This section illustrates how the OCM can be used
to analyse and classify task failures with the aid of
temporal logic.

In what follows, the temporal formulae should be in-
terpreted as starting from the beginning of the run of
the simulator.

6.1 Top-level decomposition

As noted above, the main task failure for analysis is
occurrence of a separation violation, for pair p say.
This can initially be decomposed into different kinds
of failure by exploiting the structure of the simulator
model defined in Section 4.7; namely:

e Conflict not resolved: conflict pair p was never
resolved (i.e., no A;" event occurs)

never_resolvedp == Oa;

e Conlflict created: some operator action caused p
to become a conflict (an A€ event occurs)

4
Oay

Henceforth we focus on the “never resolved” case, and
assume p is a conflict pair. Considering paths through
Figure 4, there are two cases to consider:

e Non-response: no action was ever taken to re-
solve p (i.e. operator never makes transition to
Perform Action)

__ 1 2
non_response, == = O(a, V ay)
e Ineffective response: action was taken on p but

it was ineffective, and no subsequent action was
taken on p

O(a) A non_response,,)

(Note that selecting the aircraft’s current speed from
the menu falls into the “ineffective” category, by the
definitions in Table 4.)

The rest of this section analyses the “non-response”
task failure for a given conflict pair p. Analysis pro-
ceeds by decomposing the behaviour type by consid-
ering Figure 4 and the “cycles” that avoid the “per-
form action on p” event. The diagram is useful for
identifying different possible “non-action cycles”, but
the formal OCM model is needed for distinguishing
exactly what event sequences are possible, and the
temporal logic is needed to distinguish exactly which
trace-sets belong to the different behaviour types.

For each failure type we briefly discuss possible causes
and contributing factors, to aid understanding of the
formalisation. Note however that the analysis is
driven entirely by the OCM: it turns out that many
of the failure types correspond closely to behaviours
described informally in the ATC literature, which to
some degree corroborates the effectiveness of the ap-
proach.

6.2 Failure of scanning

The first obvious “non-action cycle” through Figure 4
is where the operator fails to take the transition from
scanning to monitoring p. (They may of course mon-
itor and act on other pairs than p.) This class of be-
haviours is described formally by the formula = $sp.

This behaviour type is considered to be a fail-
ure of scanning. Scanning methods that predis-
pose the operator to not monitoring possible conflicts
include tunnel vision, encystment and vagabond-
ing [Reason, 1987]. Tunnel vision can be described
by analogy with scanning with a searchlight: the op-
erator looks only at a small section of the display at
a time, without taking notice of what is happening
elsewhere on the display. Encystment is where the

operator focusses on a single problem and ignores ev-
erything else. Vagabonding is where the operator is
skipping from problem to problem without spending
enough time on each, and could be caused for exam-
ple by high workload. Other possible causes of failure
of scanning include poor Uls (e.g. low resolution dis-
plays, ambiguous display of flight route information).

6.3 Persistent mis-classification

The next “non-action cycle” through Figure 4 is
where the operator monitors the pair p but persis-
tently passes straight back to scanning after classify-
ing the pair. There are two cases to consider:

e Persistent mis-classification: every time the op-
erator monitors the pair they classify it as a non-
conflict (and thus return immediately to scan-
ning)

Osp A O(sp = Ocd)

O sp is included above to avoid overlap with fail-
ure of scanning.

e Persistent mis-prioritisation: the operator cor-
rectly classifies the conflict, but always defers
determining corrective actions (see Section 6.4
below).

There are many cases where a controller might moni-
tor a conflict pair and yet not classify it as a conflict:
for example, because of a failure to “project forward”
correctly, or a case of mistaken identity, or because
the operator believes that have already dealt with the
problem.

Under normal circumstances, it is likely that the op-
erator will recover from single a mis-classification er-
ror, since the rule-based ProjectForward process will
eventually win out over LookupMemory as the dis-
tance between the pair decreases. However, having
once classified a pair as a nonconflict, the weight of
the memory-based part of the classification process
(LookupMemory) is likely to be strengthened, perhaps
to the point where the operator’s perception is dis-
torted by the mistaken belief that the pair is not in
conflict. (Experiments with the ATC simulator have
demonstrated that prior exposure to repeated “near
miss” problems at a particular waypoint increases the
likelihood that operators will classify a similar episode
as a non-conflict, even if it actually is a conflict.)

Other factors which decrease the likelihood of recov-
ery from mis-classification include distractions that
prevent return to monitoring the pair, prior exposure
to a large number of non-conflicts that are very sim-
ilar to the current event, and workload.

6.4 Persistent mis-prioritisation

The “persistent mis-prioritisation” failure described
above can be formalised as follows:

Ij(czl, = 0s) A <>c;[1J

To avoid overlap with the “persistent mis-
classification” failure, we include the condition
that at some time the operator correctly classifies
the pair.

It is often the case that an operator will be working
on one problem when another becomes apparent. If
this problem is of a higher priority than the current
one, it is often the best course of action to change the
focus to the more urgent problem.® Mis-Prioritisation
can arise for example because of a failure of the Pri-
oritisation process, or because the time planned for
taking corrective action is mis-calculated, mis-stored
or mis-retrieved from memory.

6.5 Defer action for too long

This is the case where the operator has determined
corrective actions but defers taking them for too long;
formally:

O(dy v d2) AD((dy v d2) = Os)

The formalisation covers both the “effective plan” and
“ineffective plan” cases.

This sort of error is often associated with failure of
memory, where the operator has intended to return to
a task, but for some reason the intention has not been
retrieved from memory (more likely when there is a
very high workload). It can also occur if the operator
mis-calculates when to take corrective action.

This error can also occur if an action is intended but
not successfully invoked (e.g. because the user slips
when selecting from the speed menu, and clicks out-
side the menu without realizing it).

6.6 TUnable to take action

The next case is where the operator has determined
corrective actions but for some reason is unable to
take them. For the ATC simulator, this case would
only arise if the operator is unable to use the Ul, say
because of a hardware failure (such as the mouse cable
breaking) or because they have trouble selecting the
aircraft or using the speed menu. In a “real” ATC
system even such UI failures would be recoverable,
since radio communications would normally still be
available to the controller (although of course if the
display failed altogether the controller’s task will be
a lot harder!)

6Strictly, transitions of the form ¢, — s4 should be added
to the OCM to cover this “memory cued problem monitor-
ing” case; if this is done, then (s will need to be replaced by
= O(d} v d2) in the failure mode.

This failure is harder to express in our formalism;
the following trick says that the OCM trace did not
progress past determining the action plan:

O((d) v d?). false)

Note that the case where the operator is unable to
take action on p, but continues interaction with the
system, is a subcase of “defer action for too long”.

6.7 Discussion

The above discussion illustrates how the formalism
can be used to describe task failures precisely and
concisely, and how the Operator Choice Model can
be used decompose the high-level task-failure condi-
tions into subtypes of operator behaviour that can
be analysed separately. A partial validation of this
approach to human-error identification and classi-
fication is that we have subsequently found that
many of the behaviour types predicted above cor-
respond closely to those described by domain ex-
perts (e.g. use of inefficient scanning techniques as
a key contributor to loss of situational awareness
[Redding and Seamster, 1996]).

The formality of the OCM means that the above
categories can be argued to be complete and non-
overlapping. The approach is thus effective in break-
ing down the high-level failure (in this case, non-
response) into subclasses of operator failure that can
analysed separately. It is an open research problem to
determine what additional constraints (if any) need to
be placed on the OCM in order to formally prove that
the lower-level behaviours in Section 6.2-6.5 cover all
of the “non-response” behaviours defined in Section
6.1.

In the above treatment no distinction was drawn be-
tween the “effective plan” (d}) and “ineffective plan”
(d?) cases. At this point the reader may be asking
whether the OCM should try to distinguish the two
cases at all. In fact, the distinction is probably not at
all important for this level of analysis; it does however
become important when associating likelihoods with
different types of behaviour.

Returning to the question of limitations of the model,
it will be observed that certain kinds of error cause are
not well represented. Common-mode causes such as
workload and distractions are not directly expressible
over the model. A more specific example is “pair
confusion”, whereby the operator is thinking about
one pair but actually looking at another. As with any
modelling approach, certain compromises have to be
made in order to make analysis tractable.

7 Conclusions and further work

In summary, this paper has introduced a new ap-
proach to formalising analysis of human errors in

human-computer interaction, and to decomposing op-
erator failure modes into subtypes. The approach
improves on existing human-error identification tech-
niques by providing a richer modelling framework and
being more expressive. This is particularly important
for analysis of tasks involving highly interleaved con-
current, ongoing activities, since it enables errors to
be modelled as behaviours rather than as events.

The formal models use a combination of CSP and
temporal logic — two techniques familiar to computer
scientists and applicable to a wide class of interactive
systems. The paper illustrates a top-down analytic
approach to human-error classification for a highly
simplified Air Traffic Control task. Although the task
studied is relatively simplistic from a real ATC oper-
ator’s viewpoint, the example illustrates many of the
issues that would be involved in analysis of a “real-
life” task. Perhaps the most challenging aspect of
applying the approach to real-life systems will be in
developing appropriate models of their environments:
the analysis for the example given here was relatively
simple because the environment (the ATC simulator)
was entirely deterministic.

The approach is part of a broader approach be-
ing developed for quantitative Human Reliability As-
sessment (HRA). The models will be extended with
stochastic information such as probabilities and time-
durations of transitions. Continuous Time Prob-
abilistic Automata [Hung and Chaochen, 1999] pro-
vide the conceptual framework for the extensions.
Simulator-based experiments are being used to cal-
ibrate the stochastic model. At this point the fea-
sibility of the calculations involved — and credibility
of quantitative results — is yet to be established, but
even so, the approach is expected to help analysts
express and reason about HCI design options.

At this stage, independent validation of the effective-
ness of the approach is limited to feedback we have re-
ceived from domain experts (that the behaviour types
that our models predict do indeed occur) and from
our cognitive psychology colleagues (that the models
aid in experimental design).

Another area for future work concerns investigation
of the extent to which the approach can usefully
be pushed down to finer levels of granularity in the
analysis of errors associated with cognitive processes.
Propagation of errors through the cognitive model in
Section 3 could clearly be analysed further, exploiting
CSP’s facility for expressing concurrent processes.

In another direction, we shall use model checkers
[Clarke et al., 2000] to try to prove that our decompo-
sition is logically complete. More generally, such tools
may be useful during error classification for identify-
ing behaviours that have not yet been considered.

Acknowledgements

The authors gratefully acknowledge the collaboration
of Andrew Neal and Mike Humphreys from the Uni-
versity of Queensland’s Key Centre for Human Fac-
tors and Applied Cognitive Psychology in the devel-
opment of the cognitive model in Section 3. Andrew
Neal is also our resident ATC domain expert, and
the Key Centre provided the ATC simulator. The
Key Centre’s Shayne Loft is designing and supervis-
ing the experiments that are being used to validate
the cognitive model and to calibrate the error model.
Finally, the ARC’s support for the research reported
here — by way of a Small Grant in 2000 and a Large
Grant in 2001-3 - is gratefully acknowledged.

References

[Ben-Ari et al., 1983] M. Ben-Ari, Z. Manna, and
A. Pnueli. The temporal logic of branching time.
Acta Informatica, 20:207-226, 1983.

[Clarke et al., 2000] E. Clarke, O. Grumberg, and
D. Peled. Model Checking. MIT Press, 2000.

[Connelly et al., 2001] S. Connelly, P. Lindsay,
A. Neal, and M. Humphries. A formal model of
cognitive processes for an air traffic control task.
Software Verification Research Centre TR01-31,
The University of Queensland, August 2001.

[Hoare, 1985] C.A.R. Hoare. Communicating Sequen-
tial Processes. Prentice-Hall, 1985.

[Hung and Chaochen, 1999] Dang Van Hung and
Zhou Chaochen. Probabilistic duration calculus
for continuous time. Formal Aspects of Comput-
ing, 11:21-44, 1999.

[Johnson, 1997] C. Johnson. Reasoning about hu-
man error and system failure for accident analy-
sis. In S. Howard, J. Hammond, and G. Lindgaard,
editors, Human-Computer Interaction INTERACT
’97, pages 331-338. Chapman and Hall, 1997.

[Kallus et al., 1999] K. Kallus, D. van Damme, and
A. Dittmann. Integrated task and job analysis
of air traffic controllers — phase 2: task anal-
ysis of en-route controllers. Technical Report
HUM.ET1.ST01.1000-REP-04, European Organi-
sation for the Safety of Air Navigation (Eurocon-
trol), October 1999.

[Kirwan, 1990] B. Kirwan. Human reliability assess-
ment. In Evaluation of Human Work, chapter 28.
Taylor and Francis, 1990.

[Kirwan, 1992] B. Kirwan. Human error identifi-
cation in human reliability assessment. part 1:
Overview of approaches. Applied FErgonomics,
25(5):299-318, 1992.

[Leadbetter et al., 2000] D. Leadbetter, P. Lind-
say, and A. Hussey. Formal modelling of

an air-traffic control simulator. Techni-
cal Report 00-25, Software Verification Re-
search Centre, The University of Queensland,
Brisbane 4072, Australia, December 2000.
http://svre.it.uq.edu.au/Bibliography /svrc-
tr.html?00-25.

[Leadbetter et al., 2001] D. Leadbetter, A. Hussey,
P. Lindsay, A. Neal, and M. Humphreys. Towards
model-based prediction of human error rates in in-
teractive systems. In Proc 2nd Australasian User
Interface Conference (AUIC 2001), number 5 in
Australian Computer Science Communications vol.
23. IEEE Press, 2001.

[Leveson et al, 1997] N. Leveson et al Final
report: Safety analysis of air traffic con-
trol upgrades. NASA technical report, 1997.
http://sunnyday.mit.edu/papers/dfw2.pdf.

[Leveson, 1995] N. G. Leveson. Safeware: System
Safety and Computers. Addison-Wesley, 1995.

[Oestereich, 1999] B. Oestereich. Developing Soft-
ware with UML. Addison Wesley, 1999.

[Palanque et al., 1997] P. Palanque, R. Bastide, and
F. Paterno. Formal specification as a tool for
objective assessment of safety-critical interactive
systems. In S. Howard, J. Hammond, and
G. Lindgaard, editors, Human-Computer Interac-
tion INTERACT 97, pages 323-330. Chapman
and Hall, 1997.

[Reason, 1987] J. Reason. Generic error-modelling
system (GEMS): A cognitive framework for locat-
ing common human error forms. In J. Rasmussen,
K. Duncan, and J. Leplat, editors, New Technology
and Human Error, chapter 7, pages 63—-83. John
Wiley and Sons Ltd., 1987.

[Redding and Seamster, 1996] R.E. Redding and
T.L. Seamster. Cognitive task analysis of air
traffic control instruction to identify rule-based
measures of student simulator performance. In

Proceedings of the Human Factors and Ergonomics
Society 40th Annual meeting, pages 269273, 1996.

[Seamster et al., 1997] T.L. Seamster, R.E. Redding,
and G.L. Kaempf. Applied Cognitive Task Analysis
in Aviation. Aldershot, 1997.

[Svenson, 1989] O. Svenson. On expert judgements in
safety analysis in the process industries. Reliability
Engineering and System Safety, 25:219-256, 1989.

[Swain and Guttmann, 1983] A. Swain and
H. Guttmann. Handbook of Human Reliabil-
ity Analysis with Emphasis on Nuclear Power
Plant Applications. NUREG/CR-1278, U.S.
Nuclear Regulatory Commission, 1983.

