SOFTWARE VERIFICATION RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE

THE UNIVERSITY OF QUEENSLAND

Queensland 4072

Australia

TECHNICAL REPORT
No. 00-14

Modelling and Hazard Identification
in an Air-Traffic Control
User-Interface

Andrew Hussey, David Leadbetter, Peter Lindsay,
Andrew Neal' and Mike Humphreys'

'Key Centre for Human Factors and Applied Cognitive Psychology
The University of Queensland

April, 2000

Phone: 461 7 3365 1003
Fax: +61 7 3365 1533

Note: Most SVRC technical reports are available
via anonymous ftp, from ftp.cs.uq.edu.au in
the directory /pub/SVRC/techreports.

Modelling and Hazard Identification in an Air-Traffic
Control User-Interface

Andrew Hussey, David Leadbetter, Peter Lindsay,
Andrew Neal' and Mike Humphreys!

'Key Centre for Human Factors and Applied Cognitive Psychology
The University of Queensland

Abstract

Growing use of computers in safety-critical systems increases the need for Human
Computer Interfaces (HCIs) to be both smarter - to detect human errors - and better
designed - to reduce likelihood of errors. We are conducting a research project that
aims to combine improved understanding of the psychological causes of human errors,
with new formal methods for modelling human-computer interaction. In this paper, we
formally model an air-traffic control system HCI and show how hazardous scenarios where
controller error may lead to loss of separation between aircraft can be formally defined.
Later in our project, the hazard scenarios will be used to develop metrics for determining
the likelihood of operator errors for a given system state, without psychological expertise.

1 Introduction

1.1 Scope

This technical report presents the preliminary results of the SafeHCI project which concern the
modelling of hazards in an air-traffic control (ATC) system. The SafeHCI project is an ARC
Small Grant in collaboration with the Key Centre for Human Factors and Applied Cognitive
Psychology. The next section outlines the broad aims of the SafeHCI project and provides
background details.

1.2 Background

Computers are increasingly being used in safety-critical systems. Examples include interactive
control systems for transport (road, rail and air), medical equipment, power stations and process
plants. As society increasingly relies on computerised systems for safety, this is an area that will
continue to grow in umportance. One of the key factors influencing the safety of computerised
systems is the design of the Human-Computer Interface (HCI). A human-computer interface
is safety-critical when the potential arises for injury or loss of life from defects in the design of
the HCI. Safety has frequently been compromised and lives have been lost because of operator
errors caused by HCI design deficiencies (eg., see [11]). Current system safety standards - such

as in defence [2], railways [5], and process industries [9] - mandate or highly recommend formal
(mathematical) modelling for safety aspects of hardware and software functionality because
such models promote methodical, reproducible and auditable software development. However,
the techniques used for evaluating and enhancing the safety of HCI designs are informal at
best. This is largely attributable to:

difficulty of formally modelling the interaction between operators and the system;

lack of understanding of the psychological processes responsible for operator error;

inability to formally specify the antecedent conditions that trigger those processes, and
to estimate the resulting likelihood of errors; and

lack of precise methods for mapping operator errors to design solutions.

We are conducting a project that will develop formal methods for evaluating the safety of
interactive systems. These methods will incorporate mathematical models of operators, the
HCI, and safety aspects of the system and the environment in which it operates. The project
1s, therefore, interdisciplinary in nature, involving collaboration between computer scientists
(working at the Software Verification Research Centre: SVRC) and psychologists (working at
the ARC Key Centre for Human Factors and Applied Cognitive Psychology). The specific aims
of the project are to:

1. Develop formal models of the conditions giving rise to operator error and of human-
computer interaction within a simplified ATC system.

2. Develop a risk analysis model for the simplified ATC system, to enable tracing of the
effects of operator errors through to system mishaps, based on the models of operator

error and the HCI.

3. Empirically test the formal models and calibrate the risk analysis model by quantifying
the likelihood of operator error and system mishaps under different ATC operational
profiles.

4. Evaluate the effectiveness of HCI design solutions generated by the methodology by mod-
ifying the HCI of the ATC system to reduce frequency of operator errors and system
mishaps in accordance with the results of the methodology, and experimentally testing
the result.

5. Validate the methodology by applying it to selected aspects of ATC systems currently
used in the field.

This paper discusses progress made towards satisfying the first of these aims. To date, little
progress has been made in this field, because existing models of human error have not provided
a precise specification of the conditions leading to error, or the mechanisms responsible for
error. This problem has been compounded by the complexity of modelling human behaviour
in complex real world systems. One of the most commonly used methods for safety analy-
sis is Failure-Modes and Effects Analysis (FMEA). Two examples in the HCI domain are the
SHERPA (Systematic Human Error Reduction and Prediction Approach) and THERP (Tech-
nique for Human Error Rate Prediction) methods [10]. In such an FMEA, the designer inspects

components of the system and identifies possible failure modes and their potential effects using
a “checklist” of common failure-modes (i.e., for the human component) [7]. Unfortunately,
this approach is limited, because FMEA methods are subjective and informal, and the link
between failure-modes and underlying psychological error mechanisms is weak. Instead, we are
developing formal models of safety-critical systems that are based on psychological theories of
human error.

Our approach will improve on existing interactive system safety analysis approaches, because
the method will:

e operate on formal models of interactive systems so as to be precise, objective (auditable)
and repeatable;

e be informed by psychological theory and thus enable deeper aspects of HCI design to be
modelled and analysed;

e be empirically validated by psychological experiments and by application to industrial
problems.

The advantage of formal models is that they enable human-computer interactions to be pre-
cisely specified and modelled at arbitrary levels of abstraction. Typically such models capture
functions, tasks, information structures and environmental context using set theory (e.g., the
Z notation [17]) and process notations (e.g., CSP [6]). Hussey has demonstrated the feasibility
of using formal notations such as Object-Z [3] for producing system models [8]. Such models
provide task descriptions in terms of sequences of actions and corresponding executions and
can be analysed for memory-based errors such as selection of a wrong action sequence and
autonomous execution errors [15]. Preliminary work has been conducted on applying these
techniques to analyse safety aspects of HCI designs [7].

The formal models developed in the current project will incorporate mathematical models
of human error. Although considerable progress has been made in understanding the task
conditions that are likely to lead to human error [16], these traditional approaches do not
allow us to develop mathematical formulations of error. Our approach is based on a number of
recent advances in cognitive psychology, many of which have been pioneered by the project’s
partner investigator (Prof. Humphreys). Theoretical advances that we draw upon include the
development of connectionist models of memory [14], and mathematical specifications describing
the input-output functions required to model different tasks [13]. Empirical advances that we
draw upon include new experimental techniques for studying prospective memory (e.g., [4]),
and demonstrations of a wide variety of new types of memory errors due to misattributions of
familiarity [1] and source monitoring errors [12]. These advances allow us to develop precise
specifications of the conditions and processes that lead to a wide range of human memory
errors.

Section 2 considers the characteristics of the ATC domain that are modelled in this paper,
and the operator error based hazards which we provide formal definitions of. In section 3, we
give a formal Z [17] model of an air-traffic control system. The Z model captures the state of
the system, and the allowable operations that a controller may engage in. Section 4 formally
models scenarios that require controller intervention (i.e., that are precursors to the occurrence
of undesirable states, such as loss of separation). In section 5 we consider the significance of
the work, and our future plans for the project.

2 Hazards in the Air-Traffic Control domain

We model an en-route sector of airspace. For example, such a sector might look like that
depicted in Figure 1. The model presented in this paper considers only movement of aircraft
through the sector in a two dimensional plane. Coordinates in the model are of the form
(latitude, longitude) where the latitude and longitude are relative to the sector (and so are not
necessarily global coordinates). For example, in Figure 1 aircraft 123 is at latitude 129 north
and longitude 33 east. Vertical separation of aircraft is not considered here.

. | Waypaint
" |identity: A
position: (150,25)

Aircraft >
call sign: 123

type: B747
position: (129,33)
speed: 6
instructedSpeed: 5
route: <A ,EH,>>
eta: <10,40,90,110>
next: 2

Waypoint
identity: E
position: (106,40)

Figure 1: An en-route sector of controlled airspace

The focus of this model is the analysis of controller errors in managing a sector of air space.
Counsequently, aspects of the model relating to pilot behaviour are simplified. It is assumed, for
example, that aircraft follow the flight paths meticulously. In this sense the model more closely
reflects a simplistic computer simulation of an air sector than it reflects reality.

The primary task of controllers, in managing a sector of airspace is to ensure that the aircraft
moving through the sector remain separated by a defined “minimum separation” distance. This
distance may be 5 nautical miles for example. Controllers are also concerned with ensuring
that aircraft move efficiently through the sector, with minimal delay and disruption, and that
the movement of aircraft is orderly (e.g., aircraft are evenly spaced as they approach concen-
tration points). For the purpose of this paper, however, we are concerned only with the safety
requirement that minimum separation be observed.

In this paper we consider two scenarios in which operator error is possible, and the occurrence
of such error has the potential to contribute to a loss of aircraft separation:

1. Convergence, when two aircraft are each travelling on two separate routes that merge.
This situation is depicted in Figure 2.

2. Overtaking, when two aircraft are travelling on the same route in the same direction, and

the leading aircraft is slower than the following aircraft. This situation is depicted in

Figure 3.

Both of these scenarios involve the aircraft reaching the culminating position close to the same
time.

In the ATC domain, loss of separation is regarded as an accident situation. Hence both con-
vergence and overtaking define hazardous system states in which the operator may need to
intervene to ensure system safety. Failure to intervene, or an incorrect intervention, may be
the initial event in an accident sequence that results in aircraft collision.

Figure 2: Convergence hazard

Figure 3: Overtaking hazard

The specification of the ATC system follows, then the formal definition of the convergence and
overtaking hazards. Our model of the ATC system and hazards is given in Z. Because the
hazards are formally defined in terms of the formal ATC specification, it would be possible to
automate detection of the hazard conditions for a given ATC system configuration.

3 ATC System Formal Specification

The ATC system is a real-time system which includes various temporal aspects (specifically
the estimated times of arrival of an aircraft at the waypoints in it’s flight route). We define a
discrete abstraction of time and provide a function for calculating the difference between two

times.
Time == N
‘ abs : Z — N

‘ timeDifference : Time X Time — Time

Vitl,t2: Time o
timeDifference(t1,t2) = abs(tl — t2)

For simplicity we assume that there is a one-to-one correspondence between the ATC coordinate
system and the pixel grid utilised by the system HCI. We define types for describing positions
in this coordinate system.

Latitude ==
Longitude == N
Position == Latitude x Longitude
For the ATC system HCI aircraft movement is assumed to follow a continuous, connected path

between two positions, moving only horizontally or vertically in each step along that path. This
movement of an aircraft on the system HCI is illustrated in Figure 4.

..

Figure 4: The movement of an aircraft across the pixel grid of the ATC system HCI.

The total distance travelled in this way by an aircraft is the Manhattan distance between the
positions. The distanceBetween calculates this distance between two points.

‘ distanceBetween : Position X Position — N

V posl, pos2 : Position e distanceBetween(posl, pos2) =
abs(first(posl) — first(pos2)) + abs(second(posl) — second(pos2))

Aircraft in the ATC system move between waypoints, along defined routes.

[WaypointID]

Waypoint
|7identity : WaypointID

position : Position

Route == seq, Waypoint

The function subRoute extracts the sub-route between the two numbered waypoints from a
route.

‘ subRoute : Route X N X N -» Route

YV route : Route; start, end : N | {start, end} C dom route o
subRoute(route, start, end) = (start .. end) | route

The function routeLength determines the distance between the first and last waypoint on the
route according to the Manhattan distance method as described above.

routeLength : Route — N

routeLength(()) =0

Ywpl, wp2 : Waypoint; route : Route o
routeLength((wpl)) = 0 A
routeLength((wpl, wp2) ™ route) =

distance Between(wpl.position, wp2.position)+
routeLength((wp2) ™ route)

The ATC system deals primarily with aircraft and the operations available on them. Some
additional types are provided to model the state of an aircraft.

Aircraft each have a unique identity (a call sign), and are of a particular type (in this case three
types are included in the model: Boeing 747, Boeing 767, and Cessna).

[Callsign]
Atreraft Type ::= BT47 | B767 | Cessna

We assume that (in flight) no aircraft can travel slower than some defined minimum speed, and
similarly no aircraft can travel faster than some defined maximum speed.

‘ mintmumSpeed, mazimumSpeed : N

Aircraft speed must be between this minimum and maximum speed.

Speed == minimumSpeed . . mazimumSpeed

The state of an aircraft in the ATC system i1s modelled by the following schema.

__ Aircraft
callsign : Callsign

type : Aircraft Type
position : Position

speed : Speed
instructedSpeed : F Speed
route : Route

eta : seq, Time

nert : N

#instructedSpeed < 1

H#route > 2

H#route = #eta

Voum :1..#eta—1e
eta(num) < eta(num + 1)

next € 2 .. #route

Each aircraft has a call sign (callsign), type (type), current position (position), current speed
(speed), the speed that the aircraft must change its current speed to match (instructedSpeed),
flight route (route), estimated times of arrival for the waypoints in the flight route (eta), and
the next waypoint in the flight route to which the aircraft is heading (nezt). The estimated

times or arrival are assumed to be derived internally by the ATC system (and are not detailed

in this model of the HCI).

An aircraft can be instructed to change its speed by storing the target speed in the set
instructedSpeed. The following operation schema changeSpeed provides this means for instruct-
ing an aircraft to change 1ts speed.

__changeSpeed
AAircraft
target? : Speed

instructedSpeed’ = {target?}
callsign’ = callsign

type’ = type

position’ = position

speed’ = speed

route’ = route

eta’ = eta

next’ = next

Aircraft can move one position unit on each clock tick (but may not appear to move on every
clock tick). When an aircraft moves, its actual speed may also change by one speed unit (to
become either faster or slower). The change in both the aircraft position and speed is defined
non-deterministically to reflect that these aspects are outside the control of the ATC system
(they are input to the ATC system, for example by a radar device). In this sense an aircraft
need not have an obedient pilot, in which case hazardous situations resulting from failure to
obey the controllers instructions (or from other causes such as aircraft failure) are captured
within the model.

——move

AAircraft

callsign’ = callsign

type’ = type

route’ = route

(1..next — 1)1 eta’ = (1.. nest — 1)1 eta

next’ = if (position’ = (route(next)).position A next £ #route)
then next + 1
else next

distance Between(position, position’) € {0,1}

speed — speed’ € {—1,0,1}

Aircraft can be rerouted by changing the sub-sequence of waypoints in its flight route after the
next waypoint (it is not possible to change where an aircraft has already been). The estimated
times of arrival for the new route must be calculated by the system internally (these calculations
are not specified).

__reroute
AAircraft
newRoute? : seq Waypoint

subRoute(route, 1, next) = subRoute(newRoute?, 1, next)
route’ = newRoute?

callsign’ = callsign

type’ = type

position’ = position

speed’ = speed

instructedSpeed’ = instructedSpeed

next’ = next

We define a function that determines whether the destination of an aircraft has been reached,
and therefore whether it should be removed from the sector.

destinationReached : Aircraft — B

Vac : Aircraft o destinationReached(ac) &
ac.next = #(ac.route) A
ac.position = (last(ac.route)).position

Similarly we define a function that determines the distance from the aircraft to a particular
waypoint in its flight route.

distance ToWaypoint : Aircraft X N + N

Vac : Aircraft; wpnum : N | ac.next < wpnum < #ac.route o
distance To Waypoint(ac, wpnum) =
distance Between(ac.position, ((ac.route)(ac.next)).position)+
routeLength(subRoute(ac.route, ac.next, wpnum))

The schema Sector defines the static structure of an en-route air sector as depicted for example
in Figure 1. Such a sector consists of a set flight paths through the waypoints in the sector,
and encompasses the rectangular airspace bounded by the defined latitudes and longitudes.

__Sector
flightPaths : Waypoint <+ Waypoint
waypoints : F Waypoint
north, south : Latitude
east, west : Longitude
handQuverPoints : F Waypoint

id(Waypoint) N flightPaths = &

V posn : {wp : waypoints & wp.position} e
south < first posn < north A
west < second posn < east

handQuverPoints = {wp : waypoints |
first(wp.position) € {north, south} Vv
second(wp.position) € {east, west}}
#handOverPoints > 1

The ATC systemn HCI screen and associated operations are defined next. The ATC screen
captures the detailed state modelled by the Sector schema and the set of aircraft within that
sector.

__Screen

sector : Sector
aircraft . F Avrcraft

Yacl, ac2 : aircraft acl.callsign = ac2.callsign = acl = ac2
Yac: aircraft e

sector.south < first(ac.position) < sector.north A

sector.west < second(ac.position) < sector.east A

(VY wpnum : 1..#ac.route — 1 o

((ac.route)(wpnum), (ac.route)(wpnum + 1)) €
sector. flightPaths) A
head(ac.route) € sector.handQuverPoints N\
last(ac.route) € sector.handOverPoints

Initially the sector has no aircraft — other details of the sector, such as its layout, are not

described.

__ ScreenInit
Screen

aircraft = &

We define internal operations to enable aircraft to enter the screen and exit the screen. As this
is an en-route sector aircraft may only enter and exit the screen at the hand over waypoints.

___atrcraftEnterScreen
AScreen
craft? . F Aircraft

{ac : craft? & ac.callsign} N {ac : aircraft o ac.callsign} = @
Yac: craft? e

ran(ac.route) C sector.waypoints A

ac.position = (head(ac.route)).position A

ac.nert = 2
aireraft’ = aircraft U craft?

sector’ = sector

__aircraftExitScreen
ASecreen
craft! : F Aircraft
craft! C aircraft
Vac : craft! o destinationReached(ac)
aircraft’ = aircraft \ craft!

sector’ = sector

10

Similarly we define the internal operation that allows all of the aircraft in the sector to move
according to the move operation schema.

__awrcraftMove

AScreen
aircraft’ = {move | @ Aircraft € aircraft 8 Aircraft'}

All controller interactions with the screen involve selection of the aircraft which is to be acted
on (either by rerouting or by instructing a change in speed).

__selectAireraft
A Aircraft
AScreen
craft? : Aircraft

craft? € aircraft
craft? = 0 Aircraft
dcraft . Aircraft o
craft = 0 Aircraft’ A
aircraft’ = aireraft \ {craft?} U {craft}

The selectAircraft operation is an auxiliary operation used in conjunction with either the reroute
or changeSpeed operation to interactively reroute or instruct a speed change for an aircraft
on the screen respectively. These are the operations actually available to the controller for
interacting with the ATC system via its graphical user-interface.

ChangeAircraftRoute = selectAircraft N\ reroute
ChangeAircraftSpeed = selectAircraft /\ changeSpeed
The following is the periodical, non-interactive, internal screen action (acting on all aircraft on
the screen) which performs all of the internal operations on aircraft on each clock tick.
updateScreen = awrcraftEzitScreen § aircraftMove § aircraftEnterScreen

The real-time aspects of the ATC system are modelled in the environment of the ATC system.
This environment includes the ATC screen itself, and the real-time clock.

ATCEnuv

screen : Screen,

clock : Time
A clock tick moves time forward one time unit.

_clockTick
AATCEnv

clock’ = clock + 1

Each clock tick is associated with an update of the ATC system according to the updateScreen
schema.

tick = clockTick N\ [AATCEW); up(],a,teScreen|

screen = 0Screen A screen’ = 956’]"6677,/]

11

4 Formal Definition of Error Producing Conditions

As noted in the introduction, existing models of human error do not adequately describe con-
ditions leading to error or the mechanisms for error. Current psychological theories on human
error focus on the role of memory in the decision making process [13]. A central part of this
process with respect to the ATC domain is the identification of hazardous scenarios by the
controller. In this section we formally define simple models of the identification of the two
hazardous sequencing scenarios discussed in Section 2: convergence and overtaking.

Modelling the identification of these hazardous scenarios involves two aspects. First, each haz-
ardous scenario 1s characterised by some definable structure concerning the relative relationships
of the aircraft in the scenario to each other. Secondly, controllers only identify aircraft in these
scenarios as being a potentially hazardous scenario when certain cognitive conditions are also
satisfied in relation to that structure. Specifically, there is the requirement that the controller
foresees the participating aircraft reaching some culminating position at about the same time.

The inaccuracy in the controller capability to predict when the involved aircraft will arrive at
the culminating position is captured in the formal model using the constant separationTime

defined as follows.

‘ separationTime : Time

The controller is able to identify those hazardous scenarios in which the ETAs of the involved
aircraft at the culminating position are within the separationTime of each other. Practical
experimentation is required to calibrate the value of separationTime.

The definitions that follow attempt only to model the cognitive identification of potentially
hazardous scenarios in the ATC. Specifically, the definitions do not attempt to identify whether
the controller perceives the hazard as likely (in which case intervening action is required) or
unlikely (in which case intervening action is not required). Nor do the definitions attempt to
assign the cognitive priority that the controller gives to each identified scenario.

In the ATC system, a hazardous scenario is identified by the set of aircraft participating in
that scenario. Our formally defined functions for identifying hazardous scenarios are therefore
modelled using the following type.

Scenarioldentifier == (F Aircraft) — B

A convergence hazard is characterised by the following situation:

wpl acl wp2 wp3

® -, ®

G _________. wp7
wp4 wpb wp6

In this situation the following waypoints are identified:

e wpl/wpd - the previous waypoint passed by acl/ac2

12

e wp2/wpb - the next waypoint to be passed by acl/ac2
e wp3/wpb - the last waypoint before the routes of acl/ac2 converge
e wp7 - the waypoint on which the routes of acl/ac2 converge
This situation is identified as a convergence hazard if the following conditions hold:
1. the sub-route of acl from wpl to wp3 and the sub-route of ac2 from wph to wpb include
no common waypoints (that is wp7 is the nest convergence of the two routes);
2. wp3 is distinct from wpb;

3. the time difference in the ETAs of the two aircraft at wp7 is less than the separation time.

The first of these conditions explicitly focuses on the next convergence in the routes of the two
aircraft - previous convergences in the two routes (up to and including the waypoints wpl/wp4)
are irrelevant. The second of these conditions applies to the scenario in which both aircraft are
approaching the convergence waypoint wp7 - this specific scenario is otherwise not detected by
the first rule.

Identification of convergence hazards is specified for the general case in the convergence Hazard
function.

convergenceHazard : Scenarioldentifier

Vacl,ac2 : Aircraft | acl # ac2 o convergenceHazard({acl, ac2}) &

(I pointl : acl.nest .. #acl.route; point2 : ac2.next .. #ac2.route ®
(acl.route)(pointl) = (ac2.route)(point2) A
(acl.route)(pointl — 1) # (ac2.route)(point2 — 1) A
ran(subRoute(acl.route, acl.next — 1, pointl — 1))N

ran(subRoute(ac2.route, ac2.nest, point2 — 1)) =
timeDifference((acl.eta)(pointl), (ac2.eta)(point2)) <
separationTime)

A

A overtaking hazard is characterised by the following situation:

—_— e e — a1

In this situation the following waypoints are identified:

e wpl - the previous waypoint passed by acl
e wp2 - the previous waypoint passed by ac2

e wp3 - some later, common waypoint on the routes of acl and ac2

This situation is identified as an overtaking hazard if the following conditions hold:

13

1. the sub-route of acl from wpl to wp3 includes the sub-route of ac2 from wp2 to wp3
(that is, acl and ac2 travel a common route from wp2 to wp3);

2. acl is further away from wp3 than ac2 (thus aecl is initially following ac2 along the
common route);

3. the ETA of acl at wp3 is before the ETA of ac2 at wp3, or
the ETAs of acl and ac2 at wp3 are within the separation time of each other.

Identification of this situation is specified in the overtakingHazard function.

overtakingHazard : Scenarioldentifier

Vacl, ac2 : Aircraft | acl # ac2 o overtakingHazard({acl, ac2}) &
(I pointl : acl.next .. #acl.route; point2 : ac2.next .. #ac2.route ®
subRoute(ac2.route, ac2.next — 1, point2) suffix
subRoute(acl.route, acl.next — 1, pointl) A
distance ToWaypoint(acl, pointl) > distance ToWaypoint(ac2, point2) A
((acl.eta)(pointl) < (ac2.eta)(point2) V
timeDifference((acl.eta)(pointl), (ac2.eta)(point2)) < separationTime))

Where the controller does not take action in response to these first two hazards, a violation of
the minimum separation distance between aircraft (defined by a regulatory authority) is likely
to occur. Violation of minimum separation constitutes a mishap in the system. The minimum
separation distance between aircraft and the identification of separation mishaps are defined as
follows.

‘ minimumSeparation : N

separationMishap : Scenarioldentifier

Y participants : F Aircraft o
separationMishap(participants) < (V¥ acl, ac2 : participants |
acl # ac2 e
distance Between(acl.position, ac2.position) < minimumSeparation)

We have formally identified two situations in which a mishap may potentially arise if the con-
troller fails to intervene. The next phase of our project will investigate metrics for determining
the likelihood of such errors given knowledge of the system configuration (e.g., number of air-
craft on the screen, layout of the sector, etc.). Such metrics will be based on understanding of
measures of controller effectiveness such as workload.

5 Conclusions

We have shown how formal models of hazardous situations sensitive to operator error can
be produced using the Z specification language. The formally defined hazard identifiers
convergenceHazard and overtakingHazard identify system states where cognitive failures such
as contextual interference and prospective memory failures may result in an accident occurring.
They indicate situations in which the controller should act, and where inaction or the wrong

14

action may result in loss of aircraft separation and potentially loss of life. In this paper, the
particular domain for which the techniques have been demonstrated is air-traffic control, but
we believe the method can be generalised to other safety-critical domains.

An important feature of the SafeHCI project is that it incorporates a model of the operator’s
cognitive state. This model identifies the information that the controller focuses on. In psy-
chological terms, this model describes the information that may be represented in a controller’s
“working memory”.

The development of a model of how controllers represent air traffic situations in working memory
is an essential first step in the development of a model of human error within this task. The
next step involves modelling the way that information is stored in long term memory, and
the types of cues that are used to retrieve this information. We assume that each situation
that a controller is exposed to is stored in long term memory, together with the contextual
details associated with that situation. For example, if a controller sees an example of a conflict
between two aircraft occurring on the approach to a particular airport, then she is likely to
store information about the attributes of the aircraft involved (e.g., speed, position, altitude,
type), the context (e.g., the fact that it occurred on the northern approach to Sydney during
the morning rush hour), and the solution adopted (e.g., to slow aircraft A down when it passes
a specific point). When the controller sees another pair of aircraft converging at the same
location, then this may cue the retrieval of the earlier example from memory, together with
the solution. The ability to retrieve past examples from memory is an important aspect of
expertise, because it allows controllers recognise repeated conflict patterns, and draw upon
prior solutions.

By understanding the cognitive mechanisms involved, we can make predictions regarding the
conditions under which error is likely to occur. For example, errors can be caused by contextual
interference. If a controller sees a problem out of context, then their ability to recognise the
conflict and retrieve the correct solution will be impaired. Alternatively, if a controller sees a
new problem that is superficially similar to previous conflicts that she has seen in a particular
context, then she may retrieve the wrong solution memory.

Later steps in the project will produce formal models of the cognitive processes involved in
identifying and resolving ATC hazards and will validate the modelling notation and analysis
method through empirical studies. The results will show whether the mechanisms that have
been identified really do produce errors. The outcome of the experiments may motivate im-
provements and changes to the notation and method. Later in the project, an industrial case
study will be conducted, in which the notation and method will be used to analyse an industrial
systemn.

The project opens up several possibilities for further work:

1. Extension and generalisation of the method to enable modelling and analysis of a broad
range of safety-critical interactive systems with respect to a wide range of error types.

2. Extending the analysis method to provide support for identification of corrective measures
using pattern-based techniques, e.g., as described in work carried out by one of the chief
investigators [10].

3. Provision of tool support for the method, including tools for producing appropriate formal
specifications and for performing and recording analyses.

4. Further experimental validation of the method in collaboration with industrial partners.

15

5. Extension of the scope of the approach to include more detailed aspects of presentation.

References

[1] B. Hesketh A. Neal and S. Andrews. Instance-based categorisation: Intentional versus
automatic forms of retrieval. Memory and Cognition, 23:227-242, 1995.

[2] Commonwealth of Australia. Australian Defence Standard DEF(AUST) 5679: The Pro-
curement of Computer-based Safety Critical Systems. Department of Defence, 1998.

[3] R. Duke, G. Rose, and G. Smith. Object-Z: A Specification Language Advocated for the
Description of Standards. Computer Standards and Interfaces, 17:511-533, 1995.

[4] G. O. Einstein and M. A. McDanial. Normal aging and prospective memory. Journal of
Ezperimental Psychology: Learning, Memory, and Cognition, 16:717-726, 1990.

[5] European Committee for Electrotechnical Standardization. European Standard prEN
50128: Railway applications; Software for railway control and protection systems. CEN-
ELEC, 1995.

[6] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[7] A. Hussey. Safety Analysis of User-Interfaces at Multiple Levels of Interaction. In P. Lind-
say, editor, 3rd Australian Workshop on Industrial Ezperience with Safety Critical Systems
and Software, pages 41-57. ACS, 1998.

[8] A. Hussey and D. Carrington. Which widgets? Deriving Implementations from Formal
User-Interface Specifications. In P. Markopoulos and P. Johnson, editors, DSV-IS 98,
pages 239-257. Springer-Verlag, 1998.

[9] International Electrotechnical Commission. 61508: Functional safety of electri-
cal/electronic/programmable electronic safety-related systems. IEC, 1997.

[10] B. Kirwan, editor. A Guide to Practical Human Reliability Assessment. Taylor and Francis,
1994.

11] N. G. Leveson. Safeware, system safety and computers. Addison-Wesley, 1995.
; Y Yy 14 Y

[12] S. Hashtroudi M. K. Johnson and D. S. Lindsay. Source monitoring. Psychological Bulletin,
114:3-28, 1993.

[13] J. Wiles M. S. Humphreys and S. Dennis. Toward a theory of human memory: Data
structures and access processes. Behavioural and Brain Sciences, 17(4):655-692, 1994.

[14] J. L. McClelland and D. E. Rumelhart. Parallel Distributed Processing. MIT Press, 1986.

[15] F. Paterno. A Formal Approach to the Evaluation of Interactive Systems. SIGCHI Bul-
letin, 26(2):69-73, April 1994.

[16] J. W. Senders and N. P. Moray, editors. Human Error: Cause, Prediction and Reduction.

Lawrence Erlbaum Associates, 1991.

[17] J. M. Spivey. The Z notation: a Reference Manual. Prentice-Hall, 2nd edition, 1992.

16

