SOFTWARE VERIFICATION RESEARCH CENTRE

THE UNIVERSITY OF QUEENSLAND

Queensland 4072
Australia

TECHNICAL REPORT
No. 00-25

Formal Modelling of an Air-Traffic
Control Simulator

David Leadbetter, Peter Lindsay and Andrew Hussey

December, 2000

Phone: 461 7 3365 1003
Fax: 461 7 3365 1533
http://svrc.it.uq.edu.au

Note: Most SVRC technical reports are available via
anonymous ftp, from svrc.it.uq.edu.au in the directory
/pub/techreports. Abstracts and compressed postscript
files are available via http://svrc.it.uq.edu.au

Formal Modelling of an Air-Traffic Control Simulator

David Leadbetter, Peter Lindsay and Andrew Hussey

Abstract

This technical report describes a simulator for a simple Air-Traffic Control system. The
simulator is being used in the SafeHCI project to study modelling of cognitive processes
and prediction of operator errors, particularly as they relate to Human Computer Interface
(HCI) design. The HCI and core functionality of the simulator are formally modelled here
in a combination of the Z and UAN notations. An appendix describes the models in more
detail for readers unfamiliar with the formal notations.

Keywords human computer interface, Z, UAN, air-traffic control.

Contents

1 Introduction 3

2 Overview of the ATC case study 3
2.1 Description of the ATC system 3
2.2 Simplifications oL 5
2.3 Conflicts e 6
2.4 Scenarios L. 6

3 The ATC system core model 6
3.1 Time e 6
3.2 Sectordata 7
3.3 Aircraft and air trafficdatao oL 7
3.4 Separation violation. oL L 8
3.5 Aircraft specificationso Lo 9
3.6 The ATC core system e 9

4 The ATC simulator HCI model 9
4.1 'The underlying interface stateo 10
4.2 Attaching the HCI to the functional core 12
4.3 The User Action Notation 12
4.4 Displaying the system state 0oL 13
4.5 Theuser actions. L 14

5 Conclusions
References

A Details of the ATC System Core Model
A1 Time o
A2 Sectordata e e
A.3 Aircraft and air trafficdatao
A.4 Separation violation. L

A5 Aircraft specifications oL Lo
A6 The ATC core system i

B Details of the ATC simulator HCI model
B.1 The underlying interface state L oL
B.2 Attaching the HCI to the functional core
B.3 Displaying the system state oo 0oL

B.4 The user actionsS o,

15

16

17
17
17
19
21
21
22

1 Introduction

Growing use of computers in safety-critical systems increases the need for Human Computer
Interfaces (HCIs) to be both smarter — to detect human errors — and better designed — to reduce
likelihood of errors. The SafeHCI project aims to develop a method for analysing hazards and
error rates related to operator activities within interactive systems. The approach taken in
the project builds on combining improved understanding of the psychological causes of human
errors, with formal methods for modelling the operator’s cognitive process and the human-
computer interaction in which they engage.

The SafeHCI method is being developed on a highly simplified Air-Traffic Control (ATC)
case study. Colleagues in the University of Queensland’s Key Centre for Human Factors and
Applied Cognitive Psychology are using a combination of psychological theories and simulator-
based experiments to develop models of the cognitive processes underlying the ATC task for
the case study. We are formalising these models and relating them to models of the simulator’s
functionality and HCI. The combined models are then being used to predict how errors might
occur and the part played by the HCI in detecting and/or preventing operator errors.

This report describes the simulator and models it formally in a combination of Z [4] and the User
Action Notation (UAN) [1]. Z is a widely used formal notation for describing data structures
and state-based systems; the latter are modelled by describing the different (abstract) states
of the system and transitions between states. UAN is a simple notation for describing “the
behaviour of the user and the interface as they perform a task together” [1].

The report is structured as follows: Section 2 describes the ATC simulator and the operator
task being used in the case study. Section 3 models the simulator’s core functionality in Z.
Section 4 models the simulator’s HCI in a combination of Z and UAN; it includes an outline of
UAN notation and the extensions we have introduced to improve its integration with Z and to
model certain aspects of the case study. An appendix describes the models in more detail for
readers unfamiliar with the formal notations.

The reader is referred to other SafeHCI reports [2, 3] for more details of the cognitive models
for the case study and how they are being used to analyse the possibility of operator errors.

2 Overview of the ATC case study

This section describes the ATC simulator and the ATC task which is the subject of the SafeHCI
case study.

2.1 Description of the ATC system

The ATC simulator has a display which depicts a simulated sector of airspace — consisting
of airports, waypoints and flight paths — together with the location and details of aircraft
currently flying within the sector. A screendump of the simulator is shown in Figure 1. As
seen in this figure, each aircraft in the sector is represented by a circle appropriately positioned
on the displayed flight paths. Airports are shown as squares and the waypoints are displayed
as triangles. The details of each aircraft (the call sign, aircraft type, speed, and flight route)
are shown near the aircraft. in the top left hand corner of the screen is a table of incoming
aircraft. Included in this list are both those planes entering the sector from the outside and

those entering from airports. For simplicity the waypoints in an aircraft’s flight route are
represented as codes. Some experimental data is shown in the top right hand corner, but is not
described further.

Figure 1: A screen shot of the ATC simulator

The display is updated at short intervals to give the impression that the aircraft are moving.
The primary task of the “air-traffic controller” is to ensure that the aircraft moving through
the sector remain separated by no less than the defined minimum separation distance.

The HCI provides the air-traffic controller with two main operations:

1. selecting an aircraft, and

2. changing the speed of the selected aircraft.
An aircraft is selected by clicking the left button when the cursor is positioned over an aircraft.
The selected aircraft is indicated using a solid dot within the circle that represents the aircraft.

Only one aircraft can be selected at a time - when an aircraft is selected the previously selected
aircraft becomes unselected (and so no longer has the selection highlight).

An aircraft must be selected to enable display of the speed menu (shown in Figure 2). This

MTS
/FEF
210 kméh
@ QuT KIWE
v 310

873

Figure 2: A screen shot of the Speed Menu and a selected aircraft

operation involves three steps:

1. Opening the speed menu (by clicking the right button);
2. Navigating the speed menu (by moving amongst the menu entries);

3. Selecting a speed (by left clicking on the desired speed).

The speed menu appears at the position of the cursor. The entries in the speed menu depend
on the type of aircraft that is selected. Additionally, a tick (v) within the menu indicates
the aircraft’s current speed (as shown in Figure 2). The air-traffic controller may abort this
operation by clicking the left button when the cursor is positioned outside the speed menu.

If, at any time, the minimum separation distance is violated between two aircraft, this violation
is alerted to the air-traffic controller using two mechanisms. Firstly, the involved aircraft are
highlighted with a different colour (yellow in the case study), and secondly, an audible alarm
sounds. This alert continues until the minimum separation between the two aircraft is restored.

2.2 Simplifications

For the purposes of developing the methodology, the case study has a number of obvious
simplifications compared with a real ATC system. These simplifications include the following:

e Aircraft altitude is ignored. Consequently the sector is two dimensional and not three
dimensional.

e Aircraft run on rails: the flight routes. The flight dynamics of the aircraft in the sector
are of aircraft running on rails. This has various implications:

— aircraft flight paths are restricted to the provided flight routes: they cannot fly freely
about the sector;
— aircraft change heading instantaneously when flying through waypoints;
e No other operation are provided in the air-traffic control system other than selecting an

aircraft and changing the aircraft speed. For example, aircraft flight routes cannot be
modified;

e Aircraft respond to instructions instantly, thus there is no acceleration or deceleration
involved when an aircraft changes speed;

e The simulation does not include collisions, thus two aircraft in conflict will eventually fly
right through each other without harm.

As a consequence of these simplifications the actions taken by the air-traffic controller to resolve
potential conflicts are limited to changing the speeds of the aircraft involved. This will involve
either changing the speed of one or both of the aircraft involved in a potential conflict.

2.3 Conflicts

Given the details of the air-traffic control system described above, there are two distinct types
of conflict considered within our case study: overtaking conflicts and convergence conflicts.

An overtaking conflict is one in which a faster aircraft approaches a slower aircraft flying ahead
of it along the same flight route. In such a situation a violation of the minimum separation
distance will result if the faster aircraft catches up to the slower aircraft.

A convergence conflict in one in which two aircraft on different flight routes are both converging
on a common point in the sector (and, more specifically, both aircraft are approximately the
same time away from that common point). This conflict typically involves aircraft whose flight
routes are converging on a common waypoint, but also includes those situations where the two
flight routes cross over each other.

2.4 Scenarios

The air-traffic control simulation is run using scripted scenarios. A scenario script describes
the starting positions, times, speeds, routes, etc of the aircraft involved in the scenario.

The simulator animates (in real-time) the flight of the aircraft according to their scripted
details, and according to any instructions given by the air-traffic controller using the interface
operations.

Each script typically presents the air-traffic controller with a number of conflicts to be resolved
at different times throughout the scenario and includes both the aircraft involved in those
conflicts and numerous ‘filler’ aircraft to populate the sector.

3 The ATC system core model

The ATC simulator core functionality can be decomposed into the following subsystems: Sector
data; Aircraft specifications; Static aircraft details; Aircraft telemetry updates; and Warning
systems for identifying separation violations. The HCI is modeled in Section 4.

More detailed descriptions of these models (aimed at readers not fluent in Z) are provided in
Appendices A and B.

3.1 Time

Time is used throughout the ATC system, so we begin by abstractly modelling time in two
forms — absolute time (7T%ime), and time durations (Duration). The timeDifference function is

provided to calculate the duration between two absolute times. We define a simple clock that
keeps track of the current time.

timeDifference : Clock
Time x Time — Duration linow : Time

3.2 Sector data

A sector contains a variety of objects: waypoints, airports, routes, etc, all based on the model
of waypoints (Waypoints: for simplicity airports are considered to be waypoints, routes are
made from waypoints, etc). Each waypoint has an associated position in the sector (Position).

A sector is modelled by defining the objects it contains: the waypoints and their positions in
the sector; the airports in the sector; and the routes through the sector (where each pair of
waypoints in the routes relation defines the single, straight route segment between the two
waypoints).

—Sector
waypoints : P Waypoint
position : Waypoint -+ Position
airports : P Waypoint
routes : Waypoint <+ Waypoint

airports C waypoints
waypoints = dom position
dom routes U ran routes = waypoints

3.3 Aircraft and air traffic data

We model aircraft callsigns (Callsign), types (Aircraft Type), and speed (Speed).

The air traffic in a sector consists of the set of aircraft in the sector (identified by callsigns).
Each aircraft is of a specific type, and has a last known telemetry (modelled as a function from
the callsign to the telemetry data: the position, speed, and time). Each aircraft has a flight
plan (in the flightPlan function from the callsign to a sequence of waypoints with associated
estimated times of arrival). Lastly, the ATC operator’s last instruction to each aircraft is
recorded (in the instructions function from the callsign to the instructed speed and time of
instruction).

__ Traffic
aircraft : P Callsign
type : Callsign + Aircraft Type
telemetry : Callsign + Position X Speed x Time
flightPlan : Callsign - seq,(Waypoint x Time)
instructions : Callsign -+ (Speed x Time)

aircraft = dom type = dom telemetry = dom flightPlan
dom instructions C aircraft

The air traffic telemetry information is updated using the update Telemetry operation. The new
telemetry for multiple aircraft is also received and updated.

__updateTelemetry
ATraffic
newTelemetry? : Callsign - Position x Speed x Time

telemetry’ = telemetry ® newTelemetry?
type’' = type

flightPlan' = flightPlan

instructions’ = instructions

This allows both frequent, regular telemetry updates of aircraft to be mixed in with infrequent,
irregular telemetry updates of other aircraft. However, we shall assume for simplicity that
aircraft telemetry data is updated regularly, and ignore that no means has been provided for
removing information about air traffic as it leaves the sector. Given these assumptions, the
information recorded in Traffic represents the current information on air traffic in the sector.

The operator’s instructions to individual aircraft are recorded using the changeSpeed operation.
This is the only instruction included in the simulation with only the latest instruction to each
aircraft recorded.

—changeSpeed
ATraffic
ZClock
aircraft? : Callsign
speed? : Speed

instructions’ = instructions @ {aircraft? — (speed?, now)}
type’' = type

telemetry’ = telemetry

flightPlan' = flightPlan

3.4 Separation violation

The minimum separation between aircraft is defined by a regulatory authority and is modelled
as a constant distance (Distance).

‘ mintmumSeparation : Distance

The separation between aircraft is calculated using the telemetry data. Functions are provided
to extract information from the telemetry data.

position : Position x Speed X Time — Position
time : Position X Speed X Time — Time

V p : Position; s : Speed; t : Time o
position(p, s, t) = p A speed(p, s,t) = s A time(p, s, t) =t

The distance between two positions is calculated using the function distanceBetween.

‘ distanceBetween : Position x Position — Distance

The detectSeparation Violation function identifies (and outputs) the callsign of all aircraft that
are currently within the minimum separation distance of another aircraft, and hence in violation
of the separation regulations.

__detectSeparation Violation
ZClock

=Traffic

violations! : P Callsign

violations! = {acl, ac2 : aircraft | acl # ac2 A
distance Between(position(telemetry(acl)),
position(telemetry(ac2))) < minimumSeparation e acl}

3.5 Aircraft specifications

Aircraft of the same aircraft type have some common characteristics. These ‘specifications’
detail the minimum and maximum speeds of the aircraft.

— AurcraftSpecification
acTypes : P Aircraft Type
minimumSpeed , mazimumSpeed : Aircraft Type + Speed

dom minimumSpeed = dom mazimumSpeed = acTypes
YV acType : acTypes @
minimumSpeed (acType) < mazimumSpeed (acType)

3.6 The ATC core system

The ATC system consists of the sector data, the air traffic data, the aircraft specification data,
and the clock with the current time.

__ATCCore
Sector N\ Traffic N AircraftSpecification N\ Clock

ran type C acTypes

4 The ATC simulator HCI model

The ATC simulator HCI (shown in Figure 1) is modelled using an integrated approach, blending
a formal Z model of the interface state with the User-Action notation for describing the user
actions. In these models low level details of the HCI are ignored so as not to obscure the high
level functionality of the HCI and the actions of the user.

The ATC HCI model includes modelling of the HCI elements relating to the air traffic, oper-
ator instructions, and violation warnings. The HCI elements relating to the sector data (the
‘background’ of the HCI as, for example shown in Figure 1) are not modelled.

A more detailed description of these models (aimed at readers not fluent in Z and UAN) is
provided in Appendix B.

4.1 The underlying interface state

The underlying interface state defines the functional model of the ATC interface. The primary
part of this is the mapping from the ATC system to the visual representation maintained on
the interface devices.

The central aspect of this mapping is of the air traffic in the sector to the views that represent
that traffic on the interface. The view of each aircraft is abstractly defined using the given
type AircraftView. The function makeView creates the view from the telemetry and flight path
information of an aircraft.

makeView : Callsign X (Position X Speed X Time) X
seq, (Waypoint x Time) — Aircraft View

The aircraft specifications appear in the interface in the form of the speed selection menu used
when instructing an aircraft to change speed. This menu is abstractly defined using the given
type SpeedMenu. The list of speeds that may be selected from the menu is derived from the
minimum and maximum speeds of the aircraft, and is created using the function speedList. The
function makeMenu creates the menu object from this list of speeds.

speedList : Speed x Speed -+ seq Speed
makeMenu : seq Speed — SpeedMenu

Whenever there is a separation violation in the ATC system, an audible alarm sounds in the
interface. The status of this alarm is modelled using a free type.

AlarmStatus = on | off

The ATC interface consists of the aircraft views (views; the shows function maps each view
to the callsign of the aircraft it represents, providing the coupling from the HCI to the core
system), the selected aircraft view (modelled as a set allowing either no aircraft or a single
aircraft to be selected), the speedMenu used by the operator to instruct the selected aircraft to
change speed, the set of aircraft that are currently in a separation violation (warnings), and
the status of the alarm.

Two basic actions on the HCI correspond to clicking the left mouse button (on an aircraft view)
and right mouse button. These are selecting an aircraft (selectAircraft) and opening the speed
menu (openSpeedMenu) respectively.

10

_ATClInterface

views : P Aircraft View

shows : AwrcraftView = Callsign
selected : P Aircraft View
speedMenu : SpeedMenu
warnings : P Aircraft View

alarm : AlarmStatus

dom shows = views
selected C views
F#selected < 1
warnings C views
alarm = if warnings = &
then off else on

_ selectAircraft
AATClInterface
aircraft? . Aircraft View

selected’ = {aircraft?}
views' = views
speedMenu' = speedMenu
warnings' = warnings
alarm’ = alarm

shows' = shows

The speedMenu in the ATCInterface is only displayed when requested by the operator. Con-
sequently a lazy approach to maintaining the consistency between speedMenu and selected is
used: the menu is updated to correspond to the currently selected aircraft view when the speed
menu is opened. Displaying of the menu is described using UAN in Section 4.4.

___openSpeedMenu

AATClInterface
=Traffic
= AircraftSpecification

selected # &

shows' = shows

3, acView : selected o speedMenu' =
makeMenu(speedList(minimumSpeed (type(shows(acView))),
mazimumSpeed (type(shows(acView)))))
selected’ = selected N views' = views
warnings’ = warnings A alarm’ = alarm

Once the speed menu is opened, the operator may select one of the speeds in the menu. The
following operation selectSpeedl occurs when this happens. The index of the selected menu
item is used to look up the corresponding speed.

___selectSpeedl

ZATClInterface
=Traffic

= AircraftSpecification
menulndex? : Z
aircraft! @ Callsign
speed! : Speed

selected # @

3, acView : selected o aircraft! = shows(acView)
speed! = speedList(minimumSpeed (type(aircraft!)),
mazimumSpeed (type(aircraft!)))(menulndez?)

11

4.2 Attaching the HCI to the functional core

The operation selectSpeed! represents the interface portion of the speed selection operation.
Associated with this, the selected speed must be recorded as the instructed speed of the aircraft
in the ATC core system. The whole selectSpeed operation consists of the operation selectSpeed1
being piped to the operation changeSpeed (from Section 3.3). That is, the speed output from
selectSpeed1 is input into changeSpeed.

selectSpeed = selectSpeed1 > changeSpeed

Some changes to the ATC system occur independently of the operator, such as the update Teleme-
try operation defined in the ATC system model. These changes in the ATC system must also
be reflected in the HCI by updating the underlying interface state. The refreshScreen operation
refreshes the interface state (using a brute force approach) — the aircraft views are re-created
from the air traffic (and the selected view is updated accordingly), the warnings are updated
(via an input to the operation), and the alarm status is set accordingly.

—_refreshHCI
AATClInterface
=Traffic
violations? : P Callsign

shows' = {ac : aircraft o
make View(ac, telemetry(ac), flightPlan(ac)) — ac}
views' = dom shows'
selected’ = (shows')™(| shows(| selected |) |)
speedMenu' = speedMenu
warnings' = views™ (| violations? |)
alarm' = if violations? = @ then off else on

When the interface is refreshed using refresh HCI, the warnings input into the operation need to
be calculated. This calculation is provided by the operation detectSeparationViolation defined
in the ATC core system. A complete update of the HCI thus involves piping the detectSepara-
tion Violation operation to refreshHCI.

update HCI = detectSeparation Violation => refreshHCI

The entire ATC system includes both the AT CInterface defined above and the ATCCore system
defined in Section 3.

__ATC
ATClInterface
ATCCore

ran shows = aircraft

4.3 The User Action Notation

The remainder of the HCI model integrates the Z notation with the User Action Notation
(UAN) [1].

12

The symbols specific to UAN used in the HCI model are summarised in Figure 3 (taken from [1]).
Some additional feedback symbols for the various forms of highlighting the aircraft views in the
ATC HCI are defined in Figure 4. The two forms of highlight provided by these symbols are
not exclusive: they can be applied simultaneously.

Action Meaning

~[X] Move the cursor into the context of object X
~[x,y] Move the cursor to point x,y outside any object
~[X'in Y] Move the cursor to object X within object Y
[X]~ Move the cursor out of context of object X
MLVA Click (depress & release) the left mouse button
MgVA Click the right mouse button

task is performed zero or more times

task interrupt symbol - indicates the user may interrupt
current task at this point

: separator between condition and action or feedback
Feedback Meaning

! highlight object

—! dehighlight object

@x,y at point x,y

©o

display(X) display object X
erase(X) erase object X

Figure 3: User Action Notation symbols used in the ATC HCI model

Feedback Meaning

s highlight object using the selection highlight (a circle is
drawn around the aircraft dot in the aircraft view)

w highlight object using the warning highlight (a different
colour is used for the aircraft view)

—ls turn off selection highlight on object

—lw turn off warning highlight on object

Figure 4: Additional feedback symbols for highlighting aircraft views

4.4 Displaying the system state

The underlying interface state defines those interface objects that are used to visualise the
core system state, but does not define how those objects are composed on the HCI. Here we
describe (using a blending of Z with UAN) this aspect of the HCI associated with the refreshHCI
operation. Identical names to those in the Z model indicate a coupling between these definitions
and refreshHCI. In particular note that unprimed names (e.g. selected) refer to old interface
objects before the update, and primed names (e.g. selected’) refer to the new interface objects
after the update.

13

Visualisation of the ATC system state consists of displaying the aircraft views at the appropriate
positions on the screen. In UAN, screen positions are described as points, so the convertPosition
function is provided to convert between sector positions and screen positions (we assume that
screen positions are represented as a pair of integers).

‘ convertPosition : Position — 7 X Z

We describe the effects of refreshHCI using the feedback symbols of UAN.

Erase the old aircraft views Because refreshHCI defines a brute force update (each aircraft
view on the HCI is replaced with a new view), all of the old aircraft views must be erased.

Y oldView : views e erase(old View)

Display the new aircraft views These are replaced by the new aircraft views in the appro-
priate positions.

V newView : views' e
QconvertPosition(position(telemetry(shows'(newView))))

display (new View)
Apply the selection highlight The selection highlight is applied to the new aircraft views.

Y acView : selected’ e acView!s

V acView : views' \ selected’ @ acView—!g

Apply the warning highlight The warning highlight is applied to the new aircraft views.

Y acView : warnings' e acView!yw

Y acView : views' \ warnings’ e acView—!w

4.5 The user actions

In the following definitions of the user actions, the coupling between the user actions and the
underlying interface state is implicit in the usage of common attribute and operation names. For
example, the first user task defined below, selectAircraft, defines the behaviour of the user and
the interface that accompanies the selectAircraft operation defined in the underlying interface
state.

Task: selectAircraft

The operator selects an aircraft by moving the mouse over the appropriate aircraft view and
clicking the left mouse button:

User Action Interface Feedback Operation input

~[aircraft_view]

M VA Y acView : selected e aircraft? = aircraft_view
acView—!g

aircraft_view lg

14

Task: changeAircraftSpeed

The operator instructs the selected aircraft to change speed by opening the speed menu, navi-
gating the menu to the desired speed, then selecting it:

openSpeedMenu § navigateSpeedMenu § selectSpeed

Note that the ‘g symbol used above is the task interrupt symbol. If the user interrupts
changeAircraftSpeed the effect is: erase(speedMenu)

Subtask: openSpeedMenu

If an aircraft view is selected, the operator can open the speed menu by clicking the right mouse
button:

User Action Interface Feedback Interface State
selected #+ & -
(~[x,y] MgrVA) Q x,y speedMenu' = makeMenul(. . .)

display(speedMenu')

Subtask: navigateSpeedMenu

The operator navigates within the speed menu by moving the mouse in and out of the lines in
the menu:

User Action Interface Feedback
~|line m in speedMenu] line m !

(¢ [line m in speedMenu|~ g line m —!

~[line n in speedMenul)* line n !

If the user interrupts navigateSpeedMenu the effect is: erase(speedMenu).

In the above, ‘line m’ refers to the m* line in the menu.

Subtask: selectSpeed

The operator selects a speed from the speed menu when the mouse is over the appropriate
speed line by clicking the left mouse button:

User Action Interface Feedback Operation input
~[line m in speedMenu] :
MLVA erase(speedMenu,) menulndezr? = m

5 Conclusions

In summary, this technical report outlines the ATC simulator used for the case study within
the SafeHCI project. Formal models for both the HCI and core system of the simulator are
provided. This simulation will be used to formulate cognitive models of the cognitive processes
involved in the ATC task. Through the combination of the ATC simulator HCI and core system
models with the cognitive models we aim to predict how errors can occur within the ATC task
and how HCI design interventions affect these errors.

15

Acknowledgements

The ATC simulator was developed by the Key Centre for Human Factors and Applied Cognitive
Psychology at the University of Queensland. Andrew Neal and Mike Humphreys helped develop
and reviewed the descriptions of the ATC task and the models here. Finally, we gratefully
acknowledge the assistance of Simon Connelly in preparation of this technical report.

References

[1] H. R. Hartson. Temporal Aspects of Tasks in the User Action Notation. Human-Computer
Interaction, 7:1-45, 1992.

[2] D. Leadbetter, A. Hussey, P. Lindsay, A. Neal, and M. Humphreys. Towards Model Based
Prediction of Human Error Rates in Interactive Systems. In Proc Australasian User Inter-
face Conference 2001, volume 23 of Australian Computer Science Communications. IEEE
Press, 2001. See also http://svrc.it.uq.edu.au/Bibliography /svrc-tr.html?00-33.

[3] D. Leadbetter, P. Lindsay, A. Neal, and M. Humphreys. Integrating the operator into formal
models in the air-traffic control domain. Technical Report 00-34, Software Verification
Research Centre, November 2000. http://svrc.it.uq.edu.au/Bibliography /svrc-tr.html?00-
34.

[4] J.M. Spivey. The Z Notation: a Reference Manual. Prentice-Hall, New York, second edition,
1992. http://spivey.oriel.ox.ac.uk/~mike/zrm/index.html.

16

A Details of the ATC System Core Model

This part of the report contains annotated versions of the specifications presented above, to
assist readers who are less familiar with Z and UAN to understand the specifications.

A.1 Time

Two forms of time are modelled: absolute time and durations.
The given type Time models absolute time. It represents time such as 8:35am.

The given type Duration models durations. It represents durations such as 1:26, or 1 hour and
26 minutes.

[Time, Duration]

The difference (duration) between two absolute times is calculated using the given function
called timeDifference. The definition of timeDifference given below defines the signature of the
function only. It does not define how the function result is calculated from the arguments.

‘ timeDifference : Time x Time — Duration

This function takes two absolute times as arguments and returns the duration between them.
For example:

timeDifference(8:35am, 2:14pm) = 5:39

The schema Clock models a real-time clock. It’s single attribute now represents the current
time.

Clock

Fnow : Time

For example, at 8:35am each day Clock.now = 8 : 3bam.

A.2 Sector data

Sector information is based on waypoints and positions.

Waypoints and airports are modelled using the given type Waypoint.

[Waypoint]

All waypoints and airports are members of this type. For example, the waypoint ‘Nickol Bay’
and the airport ‘Exmouth’ are both members of the Waypoint type: i.e.

{Nickol Bay, Exmouth} C Waypoint

The positions of waypoints in a sector are modelled using the given type Position.

17

[Position|

All positions are members of this type. For example, the position of Nickol Bay is latitude
20°39'S and longitude 116°52'E, and the position of Exmouth airport is latitude 21°56’S and
longitude 114°08’E, so:

{(20°39'S, 116°52'E), (21°56'S, 114°08'E) } C Position
Later on in the model the distance between positions will be important for defining the minimum

separation between aircraft (and detecting separation violations), so we define a given type to
represent distance (called Distance):

[Distance]

The distance between two positions is calculated using the given function called distanceBe-
tween. The definition of distanceBetween given below defines the signature of the function only.
It does not define how the function result is calculated from the arguments.

‘ distanceBetween : Position X Position — Distance

This function takes two positions as arguments and returns the distance between them.

For example the distance between Nickol Bay and Exmouth airport is:

distanceBetween((20°39'S,116°52'F), (21°56'S, 114°08'E')) = 317km

The details of a sector are defined by the Sector schema that follows. The contents of this
schema are described line by line.

__Sector
[1] waypoints : P Waypoint
[2] position : Waypoint + Position
[3] airports : P Waypoint
[4] routes : Waypoint <> Waypoint

[5] airports C waypoints
[6] dom position = waypoints
[7] dom routes U ran routes = waypoints

A sector consists of three things: waypoints, airports, and flight routes.

[1] The waypoints in a sector are modelled as a set of waypoints.

[2] The positions of these waypoints are modelled as a partial function from waypoints to
positions.

[3] The airports in a sector are identified using a set of waypoints.

[4] The flight routes in a sector are modelled as a relationship from the set of all waypoints to
itself. This relationship effectively consists of a set of pairs of waypoints, each pair of waypoints
indicating a route joining the two waypoints. Note that modelling flight routes in this way
requires that the entry/exit points of flight routes also occur at waypoints (in reality there
would not normally be waypoints at these entry/exit points).

[5] The airports in the sector is a subset of the waypoints in the sector.

[6] All of the waypoints in the sector (and only those waypoints) have a position.

[7] All of the waypoints in the sector (and only those waypoints) are part of some route in the
sector.

18

A.3 Aircraft and air traffic data

Information for an aircraft in the system consists of its call sign, aircraft type, speed, and
flight route. Given types are provided to represent call signs, aircraft types, and aircraft speeds
(everything needed to model flight routes is already provided). These types are Callsign,
Aircraft Type, and Speed respectively.

[Callsign, Aircraft Type, Speed)]

For example, for the aircraft QF053 Heavy travelling a 420knots to Borrow Island and then
onto Exmouth airport, the following elements of these given types exist:

QF053 € Callsign
Heavy € AircraftType
420knots € Speed

Information on all air traffic in the sector is defined by the Traffic schema that follows. The
contents of this schema are described line by line.

__ Traffic
[1] aircraft : P Callsign
(2] type : Callsign + Aircraft Type
[3] telemetry : Callsign + Position x Speed x Time
[4] flightPlan : Callsign + seq,(Waypoint x Time)
[5] instructions : Callsign + (Speed x Time)

[6] aircraft = dom type = dom telemetry = dom flightPlan
[7] dom instructions C aircraft

A sector consists of aircraft for which the following information is recorded: the aircraft type,
telemetry details, flight plan, and any current instruction from the ATC operator.

[1] The aircraft present in a sector is modelled using a set consisting of the aircraft callsigns.
[2] The types of those aircraft is modelled using a partial function from callsigns to aircraft
types — each pair in this function describes the type of a single aircraft.

[3] Telemetry information consists of the aircraft position and speed at a certain time. The
telemetry information for the aircraft in the sector is modelled using a partial function from
callsigns to triples consisting of the position, speed, and time. Each pair in the telemetry
function describes the telemetry of a single aircraft.

[4] An aircraft flight plan is modelled as a sequence of waypoints with corresponding ETAs
(estimated times of arrival). The flight plans of the aircraft in the sector are modelled using
a partial function from callsigns to such flight plan sequences. Each pair in this function
(consisting of a callsign and flight plan sequence) describes the flight plan of a single aircraft.
[5] An instruction to an aircraft is a command to change speed that occurs at a specific time.
An instruction is modelled as a pair consisting of the target speed and the time of issue. Aircraft
instructions are modelled as a partial function from callsigns to such instructions. Each pair
in this function describes the current instruction of a single aircraft (each aircraft may have at
most one instruction at a time).

[6] The aircraft type, telemetry, and flight plan must be recorded for all aircraft in the sector

19

(but not for any aircraft that are not in the sector).
[7] Aircraft instructions are only recorded for aircraft in the sector, however aircraft do not
have to have instructions.

The information about the traffic in the sector is updated via a number of operations.

Aircraft telemetry is updated by the update Telemetry operation defined by the following oper-
ation schema. The contents of this schema are described line by line.

__updateTelemetry
[1] A Traffic
[2] newTelemetry? : Callsign - Position X Speed x Time

[3] telemetry’ = telemetry @& newTelemetry?
[4] type' = type

[5] flightPlan’ = flightPlan

[6] instructions’ = instructions

[1] The air traffic information in the Traffic schema is modified by this operation.

[2] The input to this operation is the new telemetry data. This input is modelled as a function
from callsigns to telemetry tuples. Each pair in this functions represents one aircraft and its
new telemetry information.

[3] The new telemetry information is stored in the telemetry relation in Traffic, overriding the
existing telemetry information for the aircraft involved.

[4] The aircraft type information is unchanged.

[5] The flight plan information is unchanged.

[6] The aircraft instructions are unchanged.

Aircraft instructions are updated when the ATC operator issues a new instruction to an aircraft.
Instructions to change speed (which is the only instruction included in the example) are given
using the changeSpeed operation defined by the following operation schema. The contents of
this schema are described line by line.

__changeSpeed
[1] A Traffic
[2] ZClock
[3] aircraft? : Callsign
[4] speed? : Speed

[5] instructions’ = instructions @ {aircraft? — (speed?, now)}

[6] type’ = type
[7] telemetry’ = telemetry
(8] flightPlan’ = flightPlan

[1] The air traffic information in the Traffic schema is modified by this operation.

[2] The information in Clock is referenced by this operation.

[3] The first input to this operation is the callsign of the aircraft to which the instruction applies.
[4] The second input to this operation is the target speed that the aircraft is being instructed
to meet.

[5] The new instruction is stored in the instruction relation in Traffic, overriding the existing
instruction information for the aircraft involved.

20

[6] The aircraft type information is unchanged.
[7] The telemetry information of the aircraft in the sector is unchanged.
[8] The flight plan information is unchanged.

A.4 Separation violation

The minimum regulatory distance that must be maintained between aircraft is called the min-
imum separation distance. This distance is modelled as a constant instance of the given type
Distance and is defined as follows.

‘ minimumSeparation : Distance

This definition defines the constant value minimumSeparation. While the value of minimum-
Separation is not defined it always refers to the same value everywhere it is referenced, and
cannot be changed (ever!).

The telemetry information for an aircraft is modelled as a triple. The two functions position and
time take one such triple as an argument an extract the position and time from it respectively.

position : Position X Speed X Time — Position
time : Position X Speed x Time — Time

V p : Position; s : Speed; t : Time e
position(p, s,t) = p A speed(p, s,t) = s A time(p, s, t) =t

Violations of the minimum separation distance are detected using the detectSeparation Violation
operation that is defined by the following operation schema. The contents of this schema are
described line by line.

__detectSeparation Violation
[1] ZClock

[2] Z Traffic

[3] violations! : P Callsign

[4] violations! = {acl, ac2 : aircraft | acl # ac2 A
distanceBetween(position(telemetry(acl)),
position(telemetry(ac2))) < minimumSeparation e acl}

[1] The information in Clock is referenced by this operation.

[2] The air traffic information in Traffic is referenced by this operation.

[3] The output from this operation is the set of aircraft callsigns that are violating the minimum
separation distance.

[4] The set of violating aircraft callsigns are all those aircraft where the distance between them
and another different aircraft is less than the minimum separation distance.

A.5 Aircraft specifications

When issuing aircraft with instructions, the ATC system must offer the operator appropri-
ate options. For example, when instructing an aircraft to change speed, the speeds offered

21

should all be speeds which the particular aircraft is capable of safely achieving. Such details
are described by the aircraft specifications. The aircraft specifications are recorded by the
AircraftSpecification schema that follows. The contents of this schema are described line by
line.

__AurcraftSpecification
[1] ac Types : P Aircraft Type
[2] minimumSpeed, mazimumSpeed : Aircraft Type - Speed

[3] dom minimumSpeed = dom mazimumSpeed = acTypes
[4]V acType : acTypes @
minimumSpeed(acType) < mazimumSpeed (acType)

[1] The aircraft types for which specifications are recorded are modelled as a set of aircraft
types.

[2] The minimum speed and maximum speed of aircraft are each modelled by a partial function
from aircraft type to speed. Each pair in this function includes an aircraft type and the
minimum speed (or maximum speed in the respective function) for that aircraft type.

[3] All recorded aircraft types have both a minimum speed and a maximum speed.

[4] For all recorded aircraft types the minimum speed is less than the maximum speed.

A.6 The ATC core system

The ATC core system consists of the sector information, air traffic information, aircraft speci-
fication information, and clock that are modelled above. The ATC core system is modelled by
the ATCCore schema that follows.

__ATCCore
[1]Sector A Traffic A AircraftSpecification A Clock

[2] ran type C acTypes

[1] The ATC core system includes the sector information, air traffic information, aircraft spec-
ification information, and clock (as were previously defined) .

[2] All of the aircraft types recorded for the aircraft in the air traffic information are included
in the aircraft specification information.

B Details of the ATC simulator HCI model

The ATC HCI presents a view of the ATC core system and provides interface operations for
interacting with the ATC core system. The HCI model defines the dynamic aspects of the HCI
only — these are the display of the aircraft in the sector and the HCI operations; the static
aspects of the HCI are omitted from the HCI model — these are the display of the waypoints,
airports, routes, etc.

22

B.1 The underlying interface state

The ATC HCI consists essentially of two different things: the views of the aircraft in the sector,
and the menus used for giving instructions to aircraft.

The views of the aircraft in the sector are modelled using the given type AurcraftView. Each
aircraft view represents the graphic of the aircraft and its associated information (callsign, type,
speed, and route) that is shown on the screen.

[Aircraft View|

An aircraft view for a specific aircraft and telemetry is created using the given function make-
View (technically views are not created, rather an appropriate view is picked). The definition
of makeView given below defines the signature of the function only. The function takes three
arguments (an aircraft callsign, telemetry information, and flight plan), and returns a corre-
sponding aircraft view. The definition does not define how the function result is calculated
from the arguments.

makeView : Callsign x (Position x Speed x Time) X
seq, (Waypoint x Time) — AircraftView

A single type of instruction can be given to aircraft: to change speed. The menu used to select
the target speed of the aircraft is modelled by the given type SpeedMenu.

[SpeedMenu)

Each speed menu presents a list of speeds based on the minimum and maximum speeds of
an aircraft (recorded in the aircraft specification of that aircraft type). The given function
speedList is used to generate the list of speeds that appear in a speed menu given the minimum
and maximum speed. This list is used to generate the speed menu by the given function
makeMenu. The definitions of both of speedList and makeMenu given below define the signature
of the function only. The definitions do not define how the result of each function is calculated
from its arguments.

speedList : Speed X Speed -+ seq Speed
makeMenu : seq Speed — SpeedMenu

When a line is selected in a speed menu, the speed represented by that line must be looked
up. The lookup capability is provided by the given function lookupSpeed. The definition of
lookupSpeed given below defines the signature of the function only. The function takes a speed
menu and the selected line as arguments and returns the appropriate speed. The definition
does not define how the function result is calculated from the arguments.

‘ lookupSpeed : SpeedMenu x 7, + Speed

The ATC HCI includes an audible alarm that sounds continuously whenever a separation
violation is in effect. The status of such an alarm (whether it is on or off) is modelled by the
free type AlarmStatus defined below. There are two distinct status values for an alarm: on and

off

23

AlarmStatus ::= on | off

The details of the ATC HCI are defined by the AT CInterface schema that follows. The contents
of this schema are described line by line.

__ATClInterface
[1] views : P Aircraft View
[2] shows : Aircraft View - Callsign
[3] selected : P Aircraft View
[4] speedMenu : SpeedMenu
[5] warnings : P Aircraft View
[6] alarm : AlarmStatus

[7] dom shows = views

[8] selected C views

[9] #selected < 1

[10] warnings C views

[11] alarm = if warnings = &
then off else on

The ATC HCI consists of aircraft views, up to one of which may be selected at any one time,
a single speed menu. When separation violations occur warnings are indicated on the HCI for
each involved aircraft, and the alarm is turned on.

[1] The aircraft in the sector are presented on the HCI by a set of aircraft views.

[2] The association between the views and the aircraft (what views show which aircraft) is
modelled using a function from aircraft views to callsigns — each pair in the function describes
the aircraft view that represents the aircraft with the associated callsign.

[3] The selected aircraft is modelled using a set of aircraft views. When there is no selection
this set will be empty; when there is a selected aircraft this set will contain that single aircraft
view.

[4] The speed menu is simply an instance of the speed menu type. Note that the value of the
speed menu is only important while the menu is being displayed on the HCI; while it is not
being displayed its value is unimportant.

[5] The current warnings on the HCI is modelled as a set of aircraft views to be displayed using
a particular highlight. If there are no warnings (because there are no separation violations)
this set will be empty.

[6] The warning alarm is simply modelled using the alarm status.

[7] All of the aircraft views on the HCI must correspond to an aircraft in the core system
(recorded using the aircraft callsign).

[8] The selected aircraft view (if any) is one of the views on the HCI.

[9] There can be at most one selected aircraft view, but may be no selected aircraft views.
[10] All of the aircraft views in the current warnings must be aircraft views currently on the
HCL

[11] The alarm status is off if there are no warnings, and it is on if there are any warnings.

An aircraft (aircraft view) is selected on the HCI using the selectAircraft operation modelled
by the following operation schema. The contents of this schema are described line by line.

See Appendix B.4 for details of the user actions involved in this action.

24

__selectAircraft
[1] AATClInterface
[2] aircraft? . Aircraft View

[3] selected’ = {aircraft?}
[4] views' = views

[5] speedMenu' = speedMenu
[6] warnings’ = warnings

[7] alarm’ = alarm

[8] shows’ = shows

[1] The ATC interface information is modified by this operation.
[2] The input to this operation is the aircraft view that is to be selected.
[3] The aircraft selection is updated to be the singleton set containing the input aircraft view.
[4] The views on the HCI are unchanged.
[5] The speed menu is unchanged.

[6] The current warnings are unchanged.

[7] The alarm status is unchanged.

[8] The association between views and aircraft is unchanged.

The process of instructing an aircraft to change speed is begun by opening the speed menu. The
speed menu is opened using the openSpeedMenu operation defined by the following operation
schema. The contents of this schema are described line by line.

See Appendix B.4 for details of the user actions involved in this action.

—_openSpeedMenu
[1] AATClInterface

[2] ETraffic

[3] Z AircraftSpecification

[4] selected # &
[5] 3, acView : selected o speedMenu' =
makeMenu(speedList(minimumSpeed (type(views(acView))),
mazimumSpeed (type(views(acView)))))
[6] selected’ = selected N views' = views
[7] warnings’ = warnings A alarm’ = alarm
[8] shows' = shows

[1] The ATC interface information is modified by this operation.

[2] The air traffic information is referenced by this operation (this information is from the ATC
core system).

[3] The aircraft specification information is referenced by this operation (this information is
from the ATC core system).

[4] Pre-condition: there must be a selected aircraft view.

[5] The speed menu is updated to correspond to the aircraft type of the selected aircraft.

[6] The aircraft selection is unchanged, and the views on the HCI are unchanged.

[7] The current warnings are unchanged, and the alarm status is unchanged.

[8] The association between views and aircraft is unchanged.

While the speed menu is open, the operator selects the target speed for the aircraft using the

25

operation selectSpeed1 defined by the following operation schema. The contents of this schema
are described line by line.

See Appendix B.4 for details of the user actions involved in this action.

—_selectSpeed1
[1] EAT CInterface
[2] ETraffic
[3] ZEAircraftSpecification
[4] menulndez? : 7.
[5] aircraft! : Callsign
[6] speed! : Speed

[7] selected # &

[8] 3, acView : selected e aircraft! = shows(acView)

[9] speed! = speedList(minimumSpeed (type(aircraft!)),
mazimumSpeed (type(aircraft!)))(menulndex?)

[1] The ATC interface information is referenced by this operation.

[2] The air traffic information is referenced by this operation (this information is from the ATC
core system).

[3] The aircraft specification information is referenced by this operation (this information is
from the ATC core system).

[4] The input to this operation is the line in the menu that is selected (specifically, the index
of the line or line number).

[5] The first output from this operation is the callsign of the aircraft represented by the selected
view.

[6] The second output from this operation is the speed that was selected from the speed menu.
[7] Pre-condition: there must be a selected aircraft view.

[8] The output aircraft callsign is the callsign of the selected aircraft view.

[9] The output speed is the speed at the chosen line of the speed menu.

B.2 Attaching the HCI to the functional core

A number of the above operation schemes only describe the HCI part of an operation in the ATC
system. Specifically, selecting a speed from a speed menu in the HCI results in a corresponding
change being recorded in the appropriate aircraft’s instructions as described by the changeSpeed
operation. The complete operation is the composition of the HCI aspects and the core system
aspects of the operation. The complete operation is the selectSpeed operation defined as follows.

selectSpeed = selectSpeed1l => changeSpeed

In this composition the outputs from selectSpeed! are used as the inputs to changeSpeed, so
that the appropriate aircraft has its instructions updated with the appropriate target speed.

We have seen in the operation updateTelemetry that the telemetry information for air traffic
can be updated. The HCI needs to be refreshed so as to display an accurate air picture of
the traffic in the sector. The refreshHCI operation defined by the following operation schema
provides the mechanism for updating the views, warnings, etc shown on the HCI to maintain

26

accuracy with respect to the telemetry information. The contents of this schema are described
line by line.

__refreshHCI
[1] AATClInterface

(2] ZTraffic

[3] violations? : P Callsign

[4] shows' = {ac : aircraft o
make View(ac, telemetry(ac), flightPlan(ac)) — ac}
[5] views' = dom shows’
[6] selected’ = (shows')™(shows(selected | |
[7] speedMenu’ = speedMenu
[8] warnings’ = views™(violations? |)
[9] alarm' = if violations? = & then off else on

[1] The ATC interface information is updated by this operation.

[2] The air traffic information is referenced by this operation (this information is from the ATC
core system).

[3] The input to this operation is the set of callsigns of all aircraft that are currently in violation
of the minimum separation requirements.

[4] New aircraft views are associated with each of the aircraft in the sector.

[5] The new views in the HCI are those newly associated with the aircraft.

[6] The selected aircraft view has the same callsign as the previously selected aircraft view.

[7] The speed menu is unchanged.

[8] The current warnings are those aircraft views that relate to any of the aircraft callsigns that
are currently in violation of the minimum separation requirements.

[9] The alarm status is off if there are no violations, and it is on if there are any violations.

The refreshHCI operation requires the set of callsigns that are currently in violation of the
minimum separation requirements to be provided as input. This set of callsigns is output
by the detectSeparationViolation operation from the ATC core system. Consequently, when
the air traffic telemetry information is updated, the HCI is update by composing the detect-
Separation Violation operation with the refreshHCI operation in order to calculate the current
violations and refresh the HCI. The update HCI composes these two operations as required, and
is defined as follows.

updateHCI = detectSeparationViolation => refreshHCI

The complete ATC system consists of both the ATC core system and the ATC HCI. This is
modelled by the ATC schema that is defined as follows.

__ATC
[1] ATCInterface
ATCCore

[2] ran shows = aircraft

[1] The ATC system includes the ATC HCI and the ATC core system.
[2] The aircraft presented by the views on the HCI are those aircraft in the core system.

27

B.3 Displaying the system state

Displaying the aircraft views in the correct positions on the HCI requires a function for con-
verting an aircrafts position (as recorded in its current telemetry) to coordinates on the HCI.
The given function convertPosition performs this conversion. The signature of this function is
defined as follows.

‘ convertPosition : Position — 7 X Z

When the HCI is refreshed (as defined by refreshHCI) the following effects result:

[1] The old aircraft views are erased.

[1] VoldView : views e erase(old View)

[2] The new aircraft views are displayed in the appropriate positions in the HCI.

2] VnewView : views' e
QconvertPosition(position(telemetry(shows'(newView))))

display (new View)

The selection highlight is applied to the appropriate view such that:
[3] the selected view (if any) is highlighted, and [4] all non-selected views are not highlighted.

(3] VacView : selected’ o acView!s

[4] V acView : views'\ selected’ e acView—!s

The warning highlight is applied to the appropriate views such that:
[5] all warning views (if any) are highlighted, and
[6] all non-warning views are not highlighted.

[5] VacView : warnings' e acView!y

6] VacView : views' \ warnings' e acView—'yw

B.4 The user actions

The interface operations defined above (selectAircraft, openSpeedMenu, selectSpeed) are invoked
in connection with user actions on the HCI (involving mouse movement, button presses, etc).
The user actions and the related results of them for these operations are defined using the
UAN. The user task associated with invoking each operation is considered in turn.

Task: selectAircraft

The selectAircraft task is used to select an aircraft on the HCI and results in the selectAircraft
operation being invoked.

The following sequence of user actions is involved:
[1] The operator moves the mouse over the appropriate aircraft view and then
[2] The operator clicks the left mouse button to select it.

28

The outcome of these actions is:
[3] The aircraft view that was clicked on becomes selected (using the selection highlight) and
all other aircraft views are not selected.

[4] The input to the selectAircraft operation is the aircraft that was clicked on.

User Action Interface Feedback Operation input

[1] ~[aircraft_view]

[2] MLVA [3] V acView : selected o [4] aircraft? = aircraft_view
acView—!g

aircraft_view !g

Task: changeAircraftSpeed
The changeAircraftSpeed task is used to instruct and aircraft to change speed.

[1] The following sequence of user actions is involved:
Open the speed menu;
Navigate the menu to the desired speed;
Select the desired speed.

The outcome of these actions is:
The aircraft is instructed to change speed as described in the operation changeAircraftSpeed.

[1] openSpeedMenu § navigateSpeedMenu g selectSpeed

If, however, the above sequence of actions is interrupted, the menu is erased: erase(speedMenu)

Subtask: openSpeedMenu
The openSpeedMenu task is used to open the speed menu.

The following sequence of user actions is involved:
[1] If there is a selected aircraft view then the speed menu is opened by
[2] Moving the mouse to an arbitrary position on the HCI and clicking the right mouse button.

The outcome of these actions is:
[3] The speed menu is displayed at the mouse position.

[4] The speed menu displayed is the menu corresponding to the selected aircraft view, as defined
in the openSpeedMenu operation.

User Action Interface Feedback Interface State

[1] selected # & :

[2] (~[x,y] MRVA) [3] @ x,y [4] speedMenu’ = makeMenu(...)
display(speedMenu')

Subtask: navigateSpeedMenu

The operator navigates within the speed menu by moving the mouse in and out of the lines in
the menu:

The navigateSpeedMenu task is used to navigate within the speed menu. This is done with the
mouse.

The following sequence of user actions is involved:
[1] Move the mouse into the m-th line of the menu (the outcome of this being that the line is

29

highlighted [2]);

An arbitrary number of times:

[3] move the mouse out of the m-th line of the menu (the outcome of this being that the line
is un-highlighted [4]), and

[5] into the n-th line of the menu (the outcome of this being that the line is highlighted [6]).

User Action Interface Feedback
[1] ~[line m in speedMenu] [2] line m !

[3] (g [line m in speedMenu]~ § [4] line m —!

[5] ~[line n in speedMenul)* [6] line n !

If, however, the above sequence of actions is interrupted, the menu is erased: erase(speedMenu)

Subtask: selectSpeed

The operator selects a speed from the speed menu when the mouse is over the appropriate
speed line by clicking the left mouse button:

The selectSpeed task is used to select a speed from the speed menu.

The following sequence of user actions is involved:
[1] If the mouse is in the m-th line of the speed menu, then
[2] Click the left mouse button.

The outcome of these actions is:
[3] The speed menu is erased from the HCI.

[4] The input to the selectSpeed operation is the line number of the menu that was clicked on.

User Action Interface Feedback Operation input
[1] ~[line m in speedMenu] :
[2] MLVA [3] erase(speedMenu) [4] menulndezr? = m

30

