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Abstract. Growing use of computers in safety-critical systems increases the need
for Human Computer Interfaces (HCIs) to be both smarter - to detect human er-
rors - and better designed - to reduce likelihood of errors. We are developing
methods for determining the likelihood of operator errors which combine cur-
rent theory on the psychological causes of human errors with formal methods for
modelling human-computer interaction. This paper outlines an approach to devel-
oping formal methods for evaluating safety of interactive systems, andillustrates
the approach on a simplified problem from Air Traffic Control. We outline for-
mal models for three components of an ATC simulator: the underlying computer
system, the HCI and the operator.

1 Introduction

1.1 Motivation

Computers are increasingly being used in safety-critical systems. Examples include in-
teractive control systems for transport (road, rail and air), medical equipment, power
stations and process plants. As society increasingly relies on computerised systems for
safety, this is an area that will continue to grow in importance. One of the key factors
influencing the safety of computerised systems is the design of the Human-Computer
Interface (HCI). A human-computer interface is safety-critical when the potential arises
for injury or loss of life from defects in the design of the HCI. Safety has frequently
been compromised and lives have been lost because of operator errors caused by HCI
design deficiencies (e.g., see [11]). Current system safety standards - such as in de-
fence [3], railways [5], and process industries [10] - mandate or highly recommend
formal (mathematical) modelling for safety aspects of hardware and software function-
ality because such models promote methodical, reproducible and auditable software
development, but the techniques used for evaluating and enhancing the safety of HCI
designs are informal at best. This is largely attributable to:

– difficulty formally modelling interaction between operators and the system;
– lack of understanding of psychological processes leading to operator error;



– inability to formally specify the antecedent conditions that trigger those processes,
and to estimate the resulting likelihood of errors; and

– lack of precise methods for mapping operator errors to design solutions.

We are conducting a project that will develop formal methods for evaluating the
safety of interactive systems. Our ultimate goal is to develop probabilistic models of
HCI use error suitable for use in risk estimation. In particular, the aim is to be able
to compare the effectiveness of different HCI designs with respect to system risk and
likelihood of use error.

Existing models of human error do not provide a precise specification of the con-
ditions leading to error, or the mechanisms responsible for error. The complexity of
modelling human behaviour in complex real world systems compounds this problem.
We are developing a formal model of cognition in the simplified ATC simulation based
on psychological theories of human error. The formal operator model is integrated with
models of the ATC core system and HCI to enable tracing of operator errors to system
hazards and to enable identification of HCI features that contribute to or diminish oper-
ator error. The ATC task being modelled is highly simplified, and is being proposed as a
means for validating the approach. Experiments involving human subjects will be used
to validate the cognitive models and, eventually, to calibrate the probabilistic models.

1.2 Approach

In this paper we model the ATC system in three parts: the core system functions, the
human-computer interface, and the operator. Space limitations permit only parts of
these models to be presented here.

The ATC core system: We model a simple sector of airspace such as that depicted in
Figure 1. Our model only considers movement of aircraft in a two dimensional plane;
vertical separation of aircraft is not considered.

The ATC Human-Computer Interface: The HCI visualises the state of the underly-
ing simulation and provides a basic range of operations for acting on it - for simplicity
operations are only provided to allow the aircraft speeds to be changed; more advanced
operations, such as changing the flight plan are not provided. Figure 1 illustrates what
the visualisation provided by the HCI may look like: aircraft are represented as dots
over a graphical representation of the layout of the waypoints and flight routes in the
sector; basic aircraft details (callsign, speed, etc) are displayed in boxes attached to the
aircraft dots.

The ATC Operator: The primary task of the operator is to ensure that the aircraft mov-
ing through the sector remain separated by a defined “minimum separation” distance.
The operator must use the operations provided by the HCI to avoid future violations
of minimum separation that appear likely to occur. Real ATC controllers are also con-
cerned with other objectives such as ensuring that aircraft move efficiently through the
sector with minimal delay and disruption. Such concerns are not considered here.

The coupling between the three parts of the ATC system is illustrated in Figure 2.
The models of the ATC core, HCI and operator presented in this paper represent the



Fig. 1. A sector of controlled airspace

results of the first cycle in an iterative modelling process. As such, the models include
many simplifications, primarily through the use of abstraction so that details of the sys-
tem parts can be ignored at this stage. Such details will be added during later iterations
of the modelling process.
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Fig. 2. Relationship between system, HCI, and operator models

1.3 Background and overview

Although considerable progress has been made in understanding the task conditions
that are likely to lead to human error [16], these traditional approaches do not allow
us to develop precise formulations of error. Our approach is based on a number of
recent advances in cognitive psychology, including the development of connectionist
models of memory [12], and mathematical specifications describing the input-output
functions required to model different tasks [8]. These advances allow us to develop
precise specifications of the conditions and processes that lead to a wide range of human
memory errors.



A substantial body of related work deals with the integrated modelling of the opera-
tor with the computer aspects of a system. A range of integrated modelling approaches
are summarised by Blandford and Duke [1]. As in Duke et al. [4], we advocate the in-
tegration of a cognitive model of the operator. The cognitive models presented in this
paper differ from the work of Duke et al. because they describe the controller’s abstract
cognitive functions (rather than constructions of explicit cognitive subsystems) based on
new psychological theories. Butterworth et al. [2] describe Programmable User Models
(PUMs) using a state-based notation. PUMs focus on the users model of the system,
with formalisation of the information needed and actually acquired by a user and the UI
operations available to the user. PUMs are similar to the HCI model constructed in this
paper but do not incorporate elements of the physical user actions and system presenta-
tion. Patern`o et al. [15] have produced similar models of ATC operator tasks. However
they do not explicitly model the ATC HCI, or the cognitive state and processes of the
operator. Palanque et al. [13] have used Petri-nets to model tasks, systems and the user’s
view of the system. Their approach uses an object-oriented extension of the Petri-net
notation and enables analysis of incompatibilities between the models. However their is
no modelling of either the HCI presentation or the cognitive processes of the user. The
method has been applied to analysis of an air-traffic control system [14].

In Section 2, we give a formal Z [17] model of the core state and operations of
the ATC system simulation. Hussey and Carrington [9] have previously used an object-
oriented extension of Z for modelling interactive systems. Section 3 provides a model
of the HCI for the ATC system simulation which combines the UAN [7] and Z nota-
tions and Section 4 gives a model of the operator using Statecharts [6] and DFDs. The
notations used enable a useful level of abstraction to be achieved for each of the models
and are easily understood. In Section 5 we consider the significance of the work, and
our future plans for the project.

2 The ATC System Core Model

The ATC system core model includes various subsystems that make up the functional
core of the ATC system. This model does not define the HCI system through which
the operator uses this functionality. The ATC system core models: Sector data; Aircraft
specifications; Static aircraft details; Aircraft telemetry updates; and Warning systems
for identifying separation violations.

2.1 Sector Data

A sector contains a variety of objects: waypoints, airports, routes, etc. All of these has
an associated position in the sector (Position). The distance (Distance) between two
positions is calculated using the functiondistanceBetween. For simplicity we consider
airports to be waypoints (Waypoints).

distanceBetween: Position� Position! Distance

A sector is modelled by defining the objects it contains: thewaypointsand their
positions in the sector; theairports in the sector; and theroutes through the sector



(where each pair of waypoints in theroutesrelation defines the single, straight route
segment between the two waypoints).

Sector
waypoints: Waypoint 7! Position
airports : PWaypoint
routes: Waypoint$ Waypoint

airports� domwaypoints
domroutes[ ranroutes= domwaypoints

2.2 Aircraft and Air Traffic Data

We model aircraft callsigns (Callsign), types (AircraftType), and speed (Speed).
The air traffic in a sector consists of a set ofaircraft (identified by callsigns). Each

aircraft is of a specifictype, has a currenttelemetry(position and speed) and aflightPlan
(a sequence of waypoints). Lastly, the ATC operator’s last instruction toeach aircraft is
recorded ininstructions.

Traffic
aircraft : PCallsign
type: Callsign 7! AircraftType
telemetry: Callsign 7! Position� Speed
flightPlan: Callsign 7! seq

1
Waypoint

instructions: Callsign 7! Speed

aircraft = domtype= domtelemetry= domflightPlan
dominstructions� aircraft

The air traffic telemetry information is updated using theupdateTelemetryopera-
tion. New telemetry for all of the aircraft in the sector is received andupdated with this
operation.

updateTelemetry
�Traffic
newTelemetry? : Callsign 7! Position� Speed

telemetry0 = newTelemetry?
type0 = type^ flightPlan0 = flightPlan^ instructions0 = instructions

The operator’s instructions to individualaircraft are recorded using thechangeSpeed
operation. This is the only instruction included in the simulation with only the latest
instruction to each aircraft recorded.

changeSpeed
�Traffic
aircraft? : Callsign
speed? : Speed

instructions0 = instructions� faircraft? 7! speed?g
type0 = type^ telemetry0 = telemetrŷ flightPlan0 = flightPlan



2.3 Separation Violation

The minimum separation between aircraft is defined by a regulatory authority and is
modelled as a constant.

minimumSeparation: Distance

The separation between aircraft is calculated using the telemetry data. Semantically
meaningful functions are defined to extract information from the telemetry data.

position: Position� Speed! Position

8 p : Position; s : Speed� position(p; s) = p

The detectSeparationViolationfunction identifies (and outputs) the callsign of all
aircraft that are currently within the minimum separation distance of another aircraft,
and hence in violation of the separation regulations.

detectSeparationViolation
�Traffic
violations! : PCallsign

violations! = fac1; ac2 : aircraft j ac1 6= ac2 ^
distanceBetween(position(telemetry(ac1));

position(telemetry(ac2))) � minimumSeparation� ac1g

2.4 Aircraft specifications

Aircraft of the same aircraft type have some common characteristics. These ‘specifica-
tions’ detail the minimum and maximum speeds of the aircraft.

AircraftSpecification
minimumSpeed;maximumSpeed: AircraftType 7! Speed

domminimumSpeed= dommaximumSpeed
8 acType: domminimumSpeed�

minimumSpeed(acType) < maximumSpeed(acType)

2.5 The ATC core system

The ATC core system consists of the sector data, the air traffic data, and the aircraft
specification data.

ATCCore
Sector^ Traffic^ AircraftSpecification

rantype� domminimumSpeed



3 The ATC HCI model

The ATC HCI is modelled using an integrated approach, blending a formal Z model
of the interface state with the User-Action notation for describing the user actions. In
these models low level details of the HCI are ignored so as not to obscure the high level
functionality of the HCI and the actions of the user.

3.1 The Underlying Interface State

The underlying interface state defines the functional model of the ATC interface. The
primary part of this is the mapping from the ATC system to the visual representation
maintained on the interface devices.

The central aspect of this mapping is of the air traffic in the sector to the views that
represent that traffic on the interface. The view of each aircraft is abstractly defined
using the given typeAircraftView. The functionmakeViewcreates the view from the
telemetry and flight path information of an aircraft.

makeView: Callsign� (Position� Speed� Time)�
seq

1
(Waypoint� Time)! AircraftView

The aircraft specifications also appear in the interface in the form of the speed selec-
tion menu used when instructing an aircraft to change speed. These menus are abstractly
defined using the given typeSpeedMenu. The list of speeds that may be selected from
the menu is derived from the minimum and maximum speeds of the aircraft, and is
created using the functionspeedList. The functionmakeMenucreates the menu object
from this list of speeds.

speedList: Speed� Speed 7! seqSpeed
makeMenu: seqSpeed! SpeedMenu

Whenever there is a separation violation in the ATC system, an audible alarm sounds
in the interface. The status of this alarm is modelled using a free type.

AlarmStatus::= on j off

The ATC interface consists of the aircraft views (modelled in theviewsfunction that
maps each view to the callsign of the aircraft it represents, providing the coupling from
the HCI to the core system), theselectedaircraft view (modelled as a set allowing either
no aircraft or a single aircraft to be selected), thespeedMenuused by the operator to
instruct the selected aircraft to change speed, the set of aircraft that are currently in a
separation violation (warnings), and the status of thealarm.

Two basic actions on the HCI correspond to clicking the left mouse button (on an
aircraft view) and right mouse button. These are selecting an aircraft (selectAircraft)
and opening the speed menu (openSpeedMenu) respectively.



ATCInterface
views: AircraftView 7� Callsign
selected: PAircraftView
speedMenu: SpeedMenu
warnings: PAircraftView
alarm : AlarmStatus

selected� domviews
#selected� 1
warnings� domviews
alarm= if warnings= ?

then off else on

selectAircraft
�ATCInterface
aircraft? : AircraftView

aircraft? 2 domviews
selected0 = faircraft?g
views0 = views
speedMenu0 = speedMenu
warnings0 = warnings
alarm0 = alarm

ThespeedMenuin theATCInterfaceis only displayed when requested by the oper-
ator. Consequently a lazy approach to maintaining the consistency betweenspeedMenu
andselectedis used: the menu is only updated when the speed menu is opened. Dis-
playing of the menu is described using UAN in Section 3.4.

openSpeedMenu
�ATCInterface
�Traffic
�AircraftSpecification

selected6= ?
9
1

acView: selected� speedMenu0 =
makeMenu(speedList(minimumSpeed(type(views(acView)));

maximumSpeed(type(views(acView)))))
selected0 = selected̂ views0 = views
warnings0 = warnings^ alarm0 = alarm

Once the speed menu is opened, the operator may select one of the speeds in the
menu. The following operationselectSpeed1 occurs when this happens. The index of
the selected menu item is used to look up the corresponding speed.

selectSpeed1
�ATCInterface
�Traffic
�AircraftSpecification
menuIndex? :Z
aircraft! : Callsign
speed! : Speed

selected6= ?
9
1

acView: selected� aircraft! = views(acView)
let speeds== speedList(minimumSpeed(type(aircraft!));

maximumSpeed(type(aircraft!))) �
menuIndex? 2 domspeedŝ
speed! = speeds(menuIndex?)



3.2 Attaching the HCI to the Functional Core

The operationselectSpeed1 represents the interface portion of the speed selection oper-
ation. Associated with this, the selected speed must be recorded as the instructed speed
of the aircraft in the ATC core system. The wholeselectSpeedoperation consists of the
operationselectSpeed1 being piped to the operationchangeSpeed(from Section 2.2).
That is, the speed output fromselectSpeed1 is input intochangeSpeed.

selectSpeedb= selectSpeed1>> changeSpeed

Some changes to the ATC system occur independently of the operator, such as the
updateTelemetryoperation defined in the ATC system model. These changes in the ATC
system must also be reflected in the HCI by updating the underlying interface state.
TherefreshHCIoperation refreshes the interface state (using a brute force approach) –
the aircraft views are re-created from the air traffic (and the selected view is updated
accordingly), the warnings areupdated, and the alarm status is setaccordingly.

refreshHCI
�ATCInterface
�Traffic
violations? : PCallsign

views0 = fac : aircraft �
makeView(ac; telemetry(ac); flightPlan(ac)) 7! acg

selected0 = (views0)�(j views(j selectedj) j)
speedMenu0 = speedMenu
warnings0 = views�(j violations? j)
alarm0 = if violations? = ? then off else on

When the interface is refreshed usingrefreshHCI, the violations input into the oper-
ation (used to update the warnings) need to be calculated. This calculation is performed
and output by the operationdetectSeparationViolationdefined in the ATC core sys-
tem. A complete update of the HCI thus involves piping thedetectSeparationViolation
operation torefreshHCI.

updateHCIb= detectSeparationViolation>> refreshHCI

The entire ATC system includes both theATCInterfacedefined above and theATCCore
system defined in Section 2.

ATC
ATCInterfacê ATCCore

ranviews= aircraft

3.3 The User Action Notation

The remainder of the HCI model integrates the Z notation with the User Action Notation
(UAN) - a simple notation for describing “the behaviour of the user and the interface as
they perform a task together” [7].



The symbols specific to UAN used in the HCI model are summarised in Figure 3
(taken from [7]). Some additional feedback symbols for the various forms of highlight-
ing the aircraft views in the ATC HCI are defined in Figure 4. The two forms of highlight
provided by these symbols are not exclusive: they can be applied simultaneously.

Action Meaning
�[X] Move the cursor into the context of object X
�[x,y] Move the cursor to point x,y outside any object
�[X in Y ] Move the cursor to object X within object Y
[X]� Move the cursor out of context of object X
ML_^ Click (depress & release) the left mouse button
MR_^ Click the right mouse button

task is performed zero or more times
o

9
task interrupt symbol - indicates the user may interrupt current task at this point

: separator between condition and action or feedback
Feedback Meaning
! highlight object
�! dehighlight object
@x,y at point x,y
display(X) display object X
erase(X) erase object X

Fig. 3. User Action Notation symbols used in the ATC HCI model

Feedback Meaning
!S highlight object using the selection highlight (a circle is drawn around the air-

craft dot in the aircraft view)
!W highlight object using the warning highlight (a different colour is used for the

aircraft view)
�!S turn off selection highlight on object
�!W turn off warning highlight on object

Fig. 4.Additional feedback symbols for highlighting aircraft views

3.4 Displaying the System State

The underlying interface state (Section 3.1) defines those interface objects that are used
to visualise the core system state, but does not define how those objects are composed
on the HCI. Here we describe (using a blending of Z with UAN) this aspect of the
HCI associated with therefreshHCIoperation. Identical names indicate a coupling be-
tween these definitions and the definition ofrefreshHCI. In particular note that un-
primed names (e.g.selected) refer to old interface objects before the update and primed
names (e.g.selected0) refer to the new interface objects after the update.



Visualisation of the ATC system state consists of displaying the aircraft views at the
appropriate positions on the screen. In UAN, screen positions are described as points, so
theconvertPositionfunction is provided to convert between sector positions and screen
positions.

convertPosition: Position!Z�Z

We describe the effects ofrefreshHCIusing the feedback symbols of UAN.

Erase the old aircraft views: BecauserefreshHCIdefines a brute force update (each
aircraft view on the HCI is replaced with a new view), all of the old aircraft views
must be erased.

8 oldView: domviews� erase(oldView)

Display the new aircraft views: The old aircraft views are replaced by the new air-
craft views in the appropriate positions.

8 newView: domviews0 �

@convertPosition(position(telemetry(views(newView))))

display(newView)

Apply the selection highlight: The selection highlight is applied to the new aircraft
views.

8 acView: selected0 � acView!S
8 acView: domviews0 n selected0 � acView�!S

Apply the warning highlight: The warning highlight is applied to the new aircraft
views.

8 acView: warnings0 � acView!W
8 acView: domviews0 n warnings0 � acView�!W

3.5 The User Actions

In the following definitions of the user actions the coupling between the user actions
and the underlying interface state is implicit in the usage of common attribute and op-
eration names. For example, the first user task defined below,selectAircraft, defines the
behaviour of the user and the interface that accompanies theselectAircraftoperation
defined in the underlying interface state.

Task: selectAircraft
The operator selects an aircraft by moving the mouse over the appropriate aircraft

view and clicking the left mouse button:

User Action Interface Feedback Operation input
�[aircraft view]
ML_^ 8 acView: selected� aircraft? = aircraft view

acView�!S
aircraft view !S



Task: changeAircraftSpeed
The operator instructs the selected aircraft to change speed by opening the speed

menu, navigating the menu to the desired speed, then selecting it:
openSpeedMenuo

9
navigateSpeedMenuo

9
selectSpeed

Note that the ‘o
9

’ symbol used above is the task interrupt symbol. If the user interrupts
changeAircraftSpeedthe effect is:erase(speedMenu)

Subtask: openSpeedMenu
If an aircraft view is selected, the operator can open the speed menu by clicking the

right mouse button:

User Action Interface Feedback Interface State
selected6= ? :
( �[x,y] MR_^) @ x,y speedMenu0 = makeMenu(: : :)

display(speedMenu0)

Subtask: navigateSpeedMenu
The operator navigates within the speed menu by moving the mouse in and out of

the lines in the menu:

User Action Interface Feedback
�[line m in speedMenu] line m !
( o

9 [line m in speedMenu]� o

9 line m �!
�[line n in speedMenu])* line n !

If the user interruptsnavigateSpeedMenuthe effect is:erase(speedMenu).
In the above, ‘linem’ refers to themth line in the menu.

Subtask: selectSpeed
The operator selects a speed from the speed menu when the mouse is over the ap-

propriate speed line by clicking the left mouse button:

User Action Interface Feedback Operation input
�[line m in speedMenu] :
ML_^ erase(speedMenu) menuIndex? = m

4 The ATC Operator Model

The operator model details the high level cognitive processes of the ATC operator, and
avoids details of the low level mechanics of human memory. The model follows a basic
Scanning-Decision-Action cycle depicted in Figure 5.

Scanning ActionDecision

Fig. 5.The basic Scanning-Decision-Action cycle of the Operator model



The detailed model is presented in two parts. Section 4.2 describes the control flow
through the cognitive processes of the ATC operator. Section 4.3 clarifies the flow of
information created and used by these cognitive processes.

The cognitive model is a memory-based model, and involves a number of differ-
ent memories. The most important of these memories are the operator’s episodic and
short-term memories. These memories are intended to capture the functionality of hu-
man memory (its dependence on cues, number of rehearsals, recency of occurrence and
capacity) in a parsimonious manner and are not intended as psychological or physio-
logical hypotheses about the fundamental structure of human memory.

Episodic memory The operator’s episodic memory is used for recording the simulation
episodes experienced by the operator. It contains a sequence of event relations (defined
in more detail below) each describing a previous simulation experience. The memory
for a particular event relation is cued by the information presented on the screen such
as the aircraft, call sign, location, position in relation to other aircraft, etc. This mem-
ory has a long term or semantic component (it is affected by the memory for similar
episodes which occurred on previous days), an intermediate term component (it is af-
fected by the number of times the current event relation has been retrieved and stored
during the scanning process), and a short-term component (it is affected by the recency
of the last storage). The episodic memory has a large capacity.

Short-term memory The operator’s short-term memory is used to temporarily record
information of recent relevancy. This includes event relations for events recently ex-
perienced and either their associated priorities or a record that action has been taken.
There is no specific cue for these event relations so recall is determined by recency. The
short-term memory has a very limited capacity.

4.1 The Event Relation

The event relation is the main form of information stored in each of the above two
memories in the cognitive model. An event relation is modelled as a tuple of the form:

event type(aircraft attributes; context; classification; time; action)

The various elements of an event relation are as follows:

event typeThe relationship type of the event. This includes the following values:
nonevent not an event at all;
converge an event in which two aircraft are on converging flight paths;
overtake an event in which two aircraft on the same flight path are in an over-

taking situation.
aircraft attributesThe attributes of the aircraft involved in the event including, for

example, call signs, aircraft types, speeds, etc.
contextThe context of the event. This may be one or more of: the time of day, the

position of the event in the sector, etc.



classificationThe classification of the event. The value is one of the following:
conflict the event is expected to end in a conflict – corrective action is

needed;
nonconflict the event is expected to end without conflict;
? it is unknown/uncertain whether the event will result in a conflict or

not.
timeThe latest time at which corrective action can safely be taken to avoid a conflict.

Time is described as the time delay from some time of day (usually the time of
projection) and may involve a period of uncertainty. ‘?’ indicates that the time is
unknown.
When checking the event time the following three abstract times are used:

now the current time of day;
later any time of day afternow (i.e. in the future);
passed any time of day beforenow (i.e. in the past).

actionThe corrective action to resolve the event and avoid the conflict. The corrective
action is something like: ‘slow the trailing aircraft down and speed the leading
aircraft up’. ‘?’ indicates that the action is unknown.

Consider, for example, the following event relation that describes one of the events
in the sector shown in Figure 1:

converge((fQF053;H; 42g; fCZT; L;26g);

“Approaching Borrow Island en-route to Exmouth airport”;

conflict; 11:23+10�1; ?)

This describes a convergence event involving the two aircraft – QF053 (a heavy
aircraft travelling at 420knots) and CZT (a light aircraft travelling at 260knots) – as
they approach the waypoint ‘Borrow Island’ en-route to ‘Exmouth airport’. The event
has been classified as a conflict, so a separation violation is anticipated as these aircraft
converge on Borrow Island. In order to avoid this violation corrective action needs to
be taken before sometime between 11:32am and 11:34am (10 minutes after 11:23am
give or take 1 minute). The event relation does not provide any action from previous
experiences.

4.2 Control Flow model

The control flow in the cognitive model is modelled using the statechart diagram pre-
sented in Figure 6. The basic Scanning-Decision-Action cycle is evident in this model,
however substantial amounts of finer details are also included. The details of the com-
plete model are now described.

Scanning: The ATC simulation operator begins in theScanning state. This entails the
physical monitoring of the ATC interface (theMonitoring state) until the representation
on the interface matches some basic pattern. Such patterns are the basic geometric struc-
tures formed of planes and routes when involved in a potentially hazardous event. For
example, an overtaking hazard involves the simple geometry in which the two involved
aircraft are on the same route.



Perform Action

Store Priority

Check short-
term memory

Compare Priorities

Assign Priority

Prioritisation

Project
Time

Classify
Event

Store
Projection

[time ?]

Project Forward

Defer

Store Action

Memory
based

decision

Rule
based

decision

[action ?]

[not
confident]

Decide Action
[action =

 ? ]

[confident]

Decision

[class. =
 conflict or

[tim
e =

 later]

tim
e =

 now
 / passed]

[time now / passed]

[class
?]

? and tim
e

Monitoring

Lookup
Memory

Store Relation

Choose Strongest

Perceive
Relation

Scanning

patternMatched()

IdentifyEvent

[no action taken]

[class. = nonconflict]

[class. =
 conflict / ?]

[event = conv. / over. and
class. = conflict / ?]

[not highest] [highest]

[action taken]

[event = nonevent or

class. = nonconflict]

F
ig.6.T

h
e

co
n

tro
lflow

m
o

d
e

lo
fth

e
A

T
C

sim
u

la
tio

n
o

p
e

ra
to

r



Detailed identification of an event (theIdentifyEvent state) begins by simultane-
ously looking up the operator’s memory (theMemory Lookup state) for the previous
episode that best matches the current event (if there is any), and creating a new event
relation (thePerceiveRelation state). The relation retrieved from memory will include
the event type, aircraft attributes, and event context, but may also include additional
information, such as the corrective action. If the matching event relation is drawn from
short-term memory (rather than episodic memory), there may be an associated record
that the corrective action has been taken. The created relation (whose type –overtake
or converge – is derived from the geometry of the matched event) includes the aircraft
attributes and event context for the event. This is typically the only information provided
in the created relation. In specific situations, however,PerceiveRelation will provide
specific information for the event classification and event time. This occurs when the
event is immediately impending and action must be takennow!

Each of the two event relations has an associated strength. For the retrieved relation
this is related to the strength of the match. The strength of the created relation is low,
unless the event is immediately impending and the strength is high. Consequently the
operator has a tendency to reuse past experience unless differences with the current
event allow the created relation to take over. The weaker event relation is discarded
(in the ChooseStrongest state). If there is a record that the stronger event relation
has already been acted on, the operator returns toScanning, allowing additional time
for their actions to take effect. If there is no such record the event relation is stored in
memory (theStoreRelation state) and the event is considered further.

The Decision-Action portions of the basic cycle are not relevant to events where
the event type isnonevent, or where the event classification isnonconflict. For exam-
ple: two aircraft matching the basic overtaking geometry where the leading aircraft is
moving faster than the trailing aircraft would be anonevent; two aircraft matching the
basic convergence geometry on approach to the same airport and arriving a ‘safe’ time
apart would be aconverge event classified as anonconflict. All other events must be
considered further.

Project Forward: For those events where the event time is notnow or passed (such
events require immediate action!), the operator may project the event forward (thePro-
jectForward state) to estimate the event time (theProjectTime state), and to classify
the event (theClassifyEvent state). These projections are added into the event rela-
tion, and the updated event relation is recorded in memory (theStoreProjection state).
As the event classification may have changed, it is again checked. Events classified
asnonconflict require no further consideration. Events with other classifications are
considered further.

If both the event classification and event time are known, the operator can skipPro-
jectForward and proceed directly with prioritisation of the event. The operator may
choose to re-project the event forward and will proceed to prioritisation afterward (pro-
vided the classification is appropriate, as noted above).

Prioritisation: The operator uses event priorities to manage the order in which events
are dealt with (thePrioritisation state). The current event is assigned a priority (the



AssignPriority state) which is associated with that event relation in short-term mem-
ory (theStorePriority state). Short-term memory is checked for priorities associated
with other event relations currently recorded (theCheckShort-TermMemory state).
All priorities found (if any) are compared with the priority of the current event (the
ComparePriorities state). If higher priority events are found these must be dealt with
first, so the operator returns toScanning. If the current event is the highest priority, it
is dealt with immediately.

Decide Action: Next, the operator enters the decision making processes (theDecision
state). If the event time islater, the operator may defer deciding on the corrective action
until a later time (theDefer state). If so, the operator returns toScanning. If the event
is classified as a conflict the operator can immediately decide on the corrective action,
and if the event time isnow or passed the operator must immediately decide on the
corrective action (theDecideAction state).

The corrective action is decided between two simultaneous processes. The first (the
MemoryBasedDecision state) uses the event action recorded in the event relation. The
action value is not unknown only if the event relation originally came fromMemory-
Lookup – it is the action used to resolve the previous, matching event. A confidence
level is associated with this action – if it is high, the operator will reuse this action to
resolve the current event. When the event relation has an unknown action, or the confi-
dence in the recorded action is low, the operator uses a rule-based decision process to
deduce the action to take (theRuleBasedDecision state). The event relation is updated
with the decided action (decided using either of the above two processes) and stored in
memory (theStoreAction state).

Perform Action: Finally, the operator performs the decided action (thePerformAction
state) using the ATC simulation interface and returns toScanning.

4.3 Information Flow model

The cognitive process described above involves a continuous flow of information from
one state in the process to the next as shown by the data flow diagram in Figure 7. The
most significant component in this information flow is the event relation that is used
and updated by most of the states. The updated event relation is frequently stored in
the operator’s memories, and associated information is frequently retrieved from the
operator’s memories.

4.4 Connection to the ATC HCI

The connection between the operator’s cognitive model and the ATC HCI model is
through the flow of data between the operator and the HCI as shown in Figure 7 (the
data flows annotated ‘raw screen data’ and ‘HCI actions’).

Firstly, the visual (and audible) representation of the ATC system in the HCI pro-
vides the main external inputs to the cognitive model. These inputs are used in the
Scanning states and while the operator performs any corrective actions.
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Secondly, in executing any corrective actions the user must interact with the HCI.
These are the outputs of thePerformAction state. The actions involved are those mod-
elled in Section 3.5. Being modelled in UAN, the involvement of both the operator and
the HCI in these actions is implicit.

Clearly the design of the HCI has a significant impact on the cognitive process –
it determines the presentation of the information to the operator on which the cogni-
tive process is dependent, and defines the interaction with the operator for performing
actions. Differences in the HCI design can thus be expected to have potentially signif-
icant effects on the operator’s cognitive process, including impacting on the likelihood
of human error.

5 Conclusions

We have shown how appropriate formal models can be constructed of an air-traffic
control simulation system, and the corresponding HCI and operator. Z, as a proven
notation for modelling state-based system, has been used to model the core system
state and functions, and the underlying state of the HCI. UAN, as a simple notation
for describing the user and interface behaviour as a task is performed, has been used
to abstractly model the user actions provided by the ATC system. Lastly, Statecharts
and DFDs, as simple, diagrammatic notations, have been used to semi-formally model
the operators cognitive process, such that the models can be easily validated by the
psychologists.

The models are integrated in the sense that the communication between the com-
ponents is modelled. In addition the HCI model integrates the UAN and Z notations to
enable modelling of both the HCI actions engaged in by the operator, and the presenta-
tion of the underlying HCI state.

A unique feature of this work is that it incorporates a model of the operator’s cogni-
tive state and process. This model identifies the information focussed on, and the basic
psychological process employed by the operator.

In later steps of the project, the cognitive model will be validated by observation
of human subjects using the ATC simulator (on which our model of the core system
and HCI is based). Analysis of the cognitive model is planned to identify the various
sequences of errors in the cognitive process that can lead to hazards in the ATC system
through erroneous operator decisions and actions. The conditions that cause these er-
rors can then be used to quantify the likelihood of these errors occurring, and hence of
hazards arising. These results are to be validated with those observed in empirical stud-
ies, and will be used to motivate improvements and changes to the notation and method.
The contribution of HCI design decisions to the error producing conditions enables the
likelihoods of these errors to be tied to the HCI design. Ultimately one of our aims is to
utilise this to enable the effective comparison of different HCI designs with respect to
system risk and likelihood of use error.
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