
Qulog Reference Manual

Keith Clark and Peter J. Robinson

March 3, 2015

Abstract

QuLog is a higher-order logic/functional/string processing language with an im-
perative rule language sitting on top, defining actions. QuLog’s action rules are
used to program multi-threaded communicating agent behaviour. Its declara-
tive subset is used for the agent’s belief store. The language is flexibly typed
and allows a combination of compile time and run-time type checking.

Contents

0 Overview of QuLog 3

1 Getting Started 4

1.1 Environment Variables . 4

1.2 Data Areas . 5

1.3 Running the Interpreter . 5

2 Syntax 11

2.1 Data constants - the atomic term values 11

2.1.1 Atoms . 12

2.1.2 Numbers . 13

2.1.3 Strings . 14

2.2 Code names . 14

2.3 Variables . 15

2.4 Compound Terms . 15

2.5 Function calls . 16

2.6 Lists . 17

2.6.1 List compehension expressions 17

2.7 Sets . 18

2.7.1 Set compehension expressions 18

2.8 Programs . 18

2.8.1 Type Definitions . 19

2.8.2 Type Declarations . 22

2.8.3 Simple Conditions for Rules and Relation Queries 24

2.8.4 Relation Definitions . 26

2.8.5 Action Definitions . 26

2.8.6 Function Definitions . 27

2.8.7 TR Program Definitions 28

3 Built-Ins 31

3.1 Introduction . 31

1

3.2 Input / Output . 32

3.2.1 Term Input/Output Actions 32

3.3 Terms . 34

3.4 Comparison of Terms . 34

3.5 Testing of Terms . 35

3.6 List Processing . 36

3.7 Arithmetic . 37

3.8 Other Functions . 39

3.9 Other Relations . 41

3.10 Other Actions . 42

3.11 TeleoR Specific Actions . 45

4 Standard Operators 46

5 Index 48

Appendices 50

A EBNF Grammar for Qulog 50

2

0 Overview of QuLog

QuLog is a higher-order logic/functional/string processing language with an im-
perative rule language sitting on top, defining actions. QuLog’s action rules are
used to program multi-threaded communicating agent behaviour. Its declara-
tive subset is used for the agent’s belief store. The language is flexibly typed
and allows a combination of compile time and run-time type checking.

It is a fully integrated language in that function calls can appear as or inside
arguments to relation calls, and relational queries can be used as guards of
function rules. It has sets as a separate data type from lists with set ¡-¿ list
convertors. Both can be created using Trm::Query comprehension expressions.

Sets are manipulated using union, intersection and difference operators. Lists
are manipulated as in Prolog but also using non-deterministic pattern matching.
Similar pattern matching is used for string processing as a precursor to DCG
parsing. An ’in’ primitive can be used to access elements of sets, lists and
characters in strings.

QuLog supports type safe meta-level programming to complement its type safe
higher order programming. However there are no lambda expressions in QuLog.
All code has to be named and defined in the top level sequence of type defi-
nitions, type declarations and relation, function and action defining rules. At
this time QuLog has no module system, so each consulted file must use different
type and code names for its definitions.

As mentioned above, using its action rules and action primitives multi-threaded
message communicating agent applications can be created with the agents com-
municating using the companion Pedro publish/subscribe and destination ad-
dressed communications server. Such an agent application can also receive and
send MQTT notifications routed via an MQTT publish/subscribe server.

Debugging is done by putting a watch on any number of relations, functions
and actions. This invisibly transforms their code to display each call, the input
and output bindings of the unification or match of the call with each rule that
can be used, and optiionally the instantiated body of the rule before it is used.
An unwatch command reverses the code transformation.

This manual assumes familiarity with logic programming and with higher func-
tional programming in a typed language. A tutorial introduction to the QuLog
declarative subset is given in,

doc/tutorial/QuLog.pdf.

A formal systax using extended BNF grammar rules is given as an Appendix of
this manual. examples/introduction/qlexamples.qlg is an example QuLog
program that can be consulted and queried.

The teleor extension of the QuLog interpreter allows program files to be
consulted containing TeleoR procedures as well as QuLog rules. This exten-

3

sion includes a generic agent shell that can be launched to execute calls to
TeleoR procedures as tasks. It can be configured by including specially named
QuLog action procedures and relations in your program file, as explained in
doc/tutorial/toolsRM.pdf.

To support use of TeleoR robotic agent programs with robots and simulations
that use ROS, there is an example Python program in the ROS directory that
will act as an interface between our Pedro inter-agent and inter-process commu-
nications server and an invocation of ROS. This program and information on
how to modify it for a particular ROS architecture, are in the examples/ROS

directory of the QuLog distribution.

QuLog has some predefined constructor types. These usually have a name such
as write_type__ and their constructors and atom values often end with under-
score, for example the constructor q_ and the atom nl_ of the write_type__

system type. We recommend you do not use a trailing underscore in any of your
own type definitions. If you do use a system reserved name the compiler will
reject your definition giving an error message.

Every data type of QuLog has a place in a lattice of types. At the bottom of
the lattice is the system type bottom with one data value botton_, meaning
undefined. At the top is the system type top. There are no values that just
belong to top but it includes all data and code types. Just below top on
the data side of the lattice is the type term, which will be familiar to Prolog
programmers. All other data types are sub-types of term.

The type code is the other immediate sub-type of top. All relation, function,
action and TeleoR procedure types are sub-types of code.

For a particular program the lattice of system and program associated types is
finite.

1 Getting Started

This section describes how to set up the required environment variables and
briefly describes how to run the interpreter. At the moment it is not possible to
generate an executable QuLog application that can be launched independently
of the interpreter. This will be possible. However, the intepreter can be used to
launch a multi-threaded message communicating application that can be left to
its own devices.

1.1 Environment Variables

The root directory of the QuLog tree contains the files PROFILE_CMDS that can
be used to define the required environment variables.

4

1.2 Data Areas

Because Qulog is currently implemented in QuProlog it has the same data areas
as QuProlog and the sizes of these areas can be modified in the same way as for
QuProlog - see the QuProlog manual.

1.3 Running the Interpreter

qulog is the name of the Qulog interpreter. From a Unix shell, Qulog is started
by typing:

qulog

or

qulog -A name

where name is a name for this QuLog process that will be registered with a Pedro
server running on the same host. You need to use this option if you want to
be able to receive and/or send messages to other processes that have similarly
registered a different name with this Pedro server.

If the Pedro server is running on a different host identified by domain or IP
address Host, launch QuLog using

qulog -N Host -A name

For example

qulog -N leo.itee.uq.edu.au -A keith_agent

When the interpreter is ready it will prompt you with

| ??

At this point, an expression query, a relation query or an action command, fol-
lowed by a FULLSTOP NEWLINE, or NEWLINE NEWLINE, can be entered.
The interpreter will check that the query or command is syntactically and type
correct and that modes of use are correct. It will either display an error message
or print out a response to the query or command.

A CONTROL-D will exit the interpreter whenever you get the prompt.

CONTROL-C will interrupt an evaluation and allow you to abort the interpreter
(enter e in response to the interrupt prompt), or to terminate the current query
and any forked action threads (enter r in response to the interrupt prompt),
giving you the | ?? query prompt again. There are other response options,
displayed if you enter ? in response to the interrupt prompt.

If the query is an expression then the result of the expression evaluation will be
displayed followed by its minimal type.

Example:

5

| ?? 2+sin(pi_()/4).

2.70711 : num

| ?? cos.

cos : (num)->num

The second expression is just the name of a primitive function and the value is
that function. However its type is usefully displayed.

If you enter a relation query then either ’no’ will be displayed to indicate there
are no solutions to the query or bindings for variables of the query with their
minimal types will be displayed separated by lines of fullstops. If you entered a
command any output from the command will be displayed followed by ’success’
or ’fail’ depending upon whether the command ultimately succeeded or failed.

When there are multiple solutions to a relation query the first five (if there are
that many) are displayed separated by lines containing ...

Example:

| ?? X in [4,0,3,4].

X = 4 : nat

...

X = 0 : nat

...

X = 3 : nat

...

X = 4 : nat

| ?? % New prompt indicates all sols have been given

If there are five or more solutions the interpreter waits for input from the user
before displaying more. The two usual responses are:

NEWLINE - no more solutions are required; or

..NEWLINE - asking for up to 5 more solutions.

Example, showing a second use of ’in’:

| ?? S in "Apple".

S = "A" : string

6

...

S = "p" : string

...

S = "p" : string

...

S = "l" : string

...

S = "e" : string

.. % Request for more answers if there are any

no more solutions

% Above displayed only after .. input and there are no more answers

| ?? X in {6,2,3,0,3,7,4}.

% {6,2,3,0,3,7,4} is a set so second 3 ignored, third use of ’in’

X = 0 : nat % Answers displayed in value order

...

X = 2 : nat

...

X = 3 : nat

...

X = 4 : nat

...

X = 6 : nat

.. % Request to display up to 5 more answers

X = 7 : nat

| ?? % Prompt for next query indicating no more answers

If you feel that the interpreter is giving back too many, or too few answers for
a particular problem you can control this in two ways. The first is to prefix the
query by the number of solutions you would like displayed at a time, followed
by a ?, followed by the query. Also, instead of simply using a .. to ask for more
solutions you can change the number of solutions to be displayed for this query
to positive integer k by entering ..k.

Example:

| ?? 1 ? X in [1,2,1,4,2]. % Answers 1 at a time

X = 1 : nat

.. 2 % Switch to sols 2 at a time

X = 2 : nat

...

X = 1 : nat

.. % Request for the next 2 sols

7

X = 4 : nat

...

X = 2 : nat

.. % Request for the next 2 sols

no more solutions

| ??

You can also change the default number of solutions that are displayed for any
query to a positive number n, say 3, using the command:

| ?? set_num_answers 3.

success

Sometimes you might have a relation query that contains many variables but
you might only be interested in the bindings for some of the variables. This can
be accomplished by listing the variables for which you want to see the answer
bindings, separated from the query by a ?.

Example:

| ?? L1, L2 ? append(L1, L3, [1,2,3,4,5,6]) & append(L4, L2, L3)

& 2 = #L4.

% Expressions such as #L4, length of L4, can be used in = tests

L1 = [] : [Ty1]

% A type variable Ty1 as [] is empty list of any type

L2 = [3, 4, 5, 6] : [nat]

% [nat] is type expression for a list of nats (non-neg ints)

...

L1 = [1] : [nat]

L2 = [4, 5, 6] : [nat]

...

L1 = [1, 2] : [nat]

L2 = [5, 6] : [nat]

...

L1 = [1, 2, 3] : [nat]

L2 = [6] : [nat]

...

L1 = [1, 2, 3, 4] : [nat]

L2 = [] : [Ty1]

The two ideas above can be combined as in the following example.

8

| ?? 2 L1, L2 ? append(L1, L3, [1,2,3,4,5,6]) & append(L4, L2, L3)

& 2 = #L4.

L1 = [] : [Ty1]

L2 = [3, 4, 5, 6] : [nat]

...

L1 = [1] : [nat]

L2 = [4, 5, 6] : [nat]

Equivalently you can express the above query using an existential quantification
on L3, L3.

| ?? 2 ? exists L3, L4 append(L1, L3, [1,2,3,4,5,6]) &

append(L4, L2, L3) & 2 = #L4.

The existential quantification is needed if you want all the answers as a list.

| ?? [(L1,L2) :: exists L3, L4 append(L1, L3, [1,2,3,4,5,6]) &

append(L4, L2, L3) & 2 = #L4].

[([],[3,4,5,6]), ([1],[4,5,6]), ([1,2],[5,6]), ([1,2,3],[6]),

([1,2,3,4],[])]:[([nat],[nat])]

% Value type is a list of pairs of lists of nats

We can re-express the last list expression query more succinctly using the
list concatenation operator <> for splitting of a list using the special non-
determinsitic match operator =? that requires its left hand side to be, or to
evlaluate to a ground term. <> may also be used for concatenating complete
lists or ground or non-ground terms.

| ?? [(L1,L2) :: exists L4 [1,2,3,4,5,6] =? L1 <> L4?2=#L4 <> L2]

Using this non-deterministic list pattern matching we do not need the L3 vari-
able, and the constraint that L4 must contain two elements becomes a constraint

2=#L4

expressed inside the <> pattern expression attached to the variable L4, preceded
by a ?.

If you have constructed a program file prog1.qlg of QuLog type definitions,
type declarations for relations, function and actions and their rules, you can
bring all those into the interpreter using the command

9

| ?? consult prog1.

success

You may get syntax and mode errors signalled in which case none of the program
file is consulted. There will be at least one QuLog examples file with the QuLog
distribution that you installed. You can consult and query one of these files. For
example, there may be a file qlexamples.qlg in qulog/examples/introduction.
If you launch QuLog from inside this directory you can load all its definitions
using:

| ?? consult qlexamples.

You can see all the relation and function rules you currently have in the inter-
preter using:

| ?? show.

or specific ones using:

| ?? show child_of, person, fact, new_child.

Notice the variable names of the consulted file will be used.

You can see all the type definitions and declarations using:

| ?? types.

You can see all the system type definitions and the type declarations for the
primitive relations, functions and actions using:

| ?? stypes.

A displayed type declaration may be accompanied by a brief description of the
primitive. You can also show the type declarations for specific relations by
giving their names, separated by commas, after either the types or stypes

command.

10

2 Syntax

This section informally describes the concrete syntax of Qulog. There is a
formal extended BNF syntax in the HTML file ¡a href=”grammar.html”¿EBNF
Grammar for Qulog¡/a¿ and as an Appendx of this Manual.

The basic building block is an expression. An expression is a: data constant
(aka atomic value), variable, compound term, list, set, code name, function call,
list comprehension, set comprehension.

We define each of these categories below.

A reader unfamiliar with logic programming might find it odd that a variable is
considered a data value. However in both QuLog and Prolog variables are first
class values and can be passed between calls and embedded in lists and other
compound terms, but not in sets. An answer to a query that contains a variable
denotes the set of instantiates of that answer where the variable is replaced by
any value of its type. The ability to pass around terms that are or which contain
variables is a powerful programming feature of QuLog and Prolog. It is not a
feature of Datalog or Answer Set Logic Programming.

The last three are evaluable expressions that denote a ground term.

A term is a: data constant, code name, a simple compound term (see below) all
arguments of which are terms, a list of terms, a set of ground terms.

A ground term is a term containing no variables. QuLog function call evalua-
tion is strict. A function call argument is completely evaluated just before the
function call in which it appears is evaluated.

A code name is a value of system type code. For example append and *

Both term and code are sub-types of system type top

A ground expression is an expression that contains no variables, or is such
that all its variables are bound to ground values at the point that the expression
is evaluated.

2.1 Data constants - the atomic term values

These are atoms (atom type), natural numbers (nat type), integers (int type),
floating point numbers (num type) and strings (string type).

QuLog strings are not lists of byte codes as in Prolog. They are packed sequences
of byte codes as in Python an are stored on the heap and are garbage collected
when no longer referenced. Identity of strings is determined by character by
character matching if they have the same length. Manipulation of strings -
concatenation and sub-string extraction involves copying but is quite fast.

As in Prolog, QuLog atoms are stored in an atom table and are replaced by

11

a pointer to its entry in the atom table. Identity of atoms is then identity of
atoms table address, there is no character by character matching at runtime.
Atoms are a suitable alternative to strings for character sequence values that
will not be manipulated and are not transient values. For example use them for
names of things in facts. The atom table entries are not garbage collected.

All data contants are sub-types of the system type atomic.

nat is a sub-type of int, which is a sub-type of num

2.1.1 Atoms

There are four syntactic forms for atoms.

1. A lower case letter followed by any sequence consisting of ”_” and al-
phanumeric characters.
For example:

percy_smith_2

semester_1

2. Any combination of the following set of graphic characters.

|-/+*<=>#@$\^&∼:.?

For example:

@<=

3. An atom of the above two forms preceded by the back quote charater ”‘”.
This form of atom is used when the sequence of characters without the
back-quote has been used as the name of a relation, function or action.
Such a name cannot be used as an atom unless preceded by a backquote.
For example:

‘<>

‘append

4. Any sequence of characters enclosed by ”’” (single quote). Single quote
can be included in the sequence by writing the quote twice. ”\” indicates
an escape sequence, where the escape characters are case insensitive. The
possible escape characters are:

12

newline Meaning: Continuation.
^ Meaning: Same as d.
^character Meaning: Control character.
dd Meaning: A two digit octal number.
a Meaning: Alarm (ASCII = 7).
b Meaning: Backspace (ASCII = 8).
c Meaning: Continuation.
d Meaning: Delete (ASCII = 127).
e Meaning: Escape (ASCII = 27).
f Meaning: Formfeed (ASCII = 12).
n Meaning: Newline (ASCII = 10).
odd Meaning: A two digits octal number.
r Meaning: Return (ASCII = 13)
s Meaning: Space (ASCII = 32).
t Meaning: Horizontal tab (ASCII = 9).
v Meaning: Vertical tab (ASCII = 11).
xdd Meaning: A two digit hexadecimal number.

Here are a few examples of quoted atoms.
’hi!’

’they’’re’

’\n’

2.1.2 Numbers

The available range of integers is -(2^31-1) to 2^31-1 on a 32 bit machine and
-(2^63-1) to 2^63-1 on a 64 bit machine. Integers can be represented in any
of the following ways.

1. Any sequence of numeric characters. This method denotes the number in
decimal, or base 10.
For example:

123

2. Base’Number, where Base ranges from 2 to 36 and Number can have any se-
quence of alphanumeric characters. Both upper and lower case alphabetic
characters in Number are used to represent the appropriate digit when
Base is greater than 10.
For example, integer value 10 can be written as:

2’1010

16’A

16’a

3. Binary numbers can also be represented in the form 0b followed by binary
digits. Similarly octal and hexadecimal numbers can be represented by 0o

13

or 0x followed by digits.
For example

0b1011

0o3170

0x3afd

4. 0’Character gives the character code of Character.
For example,

0’A

gives the ASCII character code 65.

A natural number is a non-negative integer. num type numbers include double
precision floating point numbers. They are represented using either a decimal
point or scientific e notation. Examples:

27.8

1.896e4

2.1.3 Strings

Any sequence of characters enclosed by ’"’ is considered as a string.

Note: Strings in Qulog are the same as Python strings and NOT Prolog strings.

Example:

| ?? "Hello"++"there".

"Hello there" : string

2.2 Code names

Syntactically these are the same as the first two forms of atom - alphanumeric
and graphic - but they are the names of primitive or program defined relations,
functions or actions.
For example:

<>

append

These were names we have to precede with a back-quote if we want to use them
as atoms. Without a preceding back-quote they denote code values.

14

2.3 Variables

Variables are available in three syntactic forms.

1. An upper case letter followed by any sequence consisting of ”_” and al-
phanumeric characters.
For example:

List_nums Head

2. ”_”, followed by an upper case letter, and then any sequence consisting of
”_” and alphanumeric characters.
For example:

_Dictionary _X_1

3. ”_” alone denotes an anonymous variable. Repeated occurences of under-
score in a query or rule denote different unnamed variables.

Variables beginning with an underscore should be used when there is just a
single occurence of a variable in a rule. It suppresses the ”single occurrence
of variable” warning which is given otherwise, which is useful for picking up
mis-typed variable names.

2.4 Compound Terms

A simple compound term is composed of an atom of the first two forms (an
alphanumeric or graphic atom), called the functor, immediately followed (no
spaces) by a sequence of zero or more expressions separated by commas, en-
closed in a pair of ”(”..”)” parenthesis. For example:

data(jack, 35)

tr(emp(),X/9,tr(L,7,R))

$$(5)

Simple compound terms are typically instances of a structured data type de-
clared in the program where the functor is a constructor for the type. If not, the
compound term has default type term, and a warning that it is not a constructor
of a defined type is issued in case there has been a spelling error.

A compound term is a simple compound term, or a compound term immedi-
ately followed by a sequence of zero or more expressions separated by commas,
enclosed in a pair of ”(”..”)” parenthesis. For example:

curry(*)(4)

curryR(child_of)(mary)(P)

15

Compound terms that are not simple determine the functor of the compound
term by a function call which is itself a compound term.

2.5 Function calls

A function call is a either simple compound term where the functor is the name
of a primitive or program defined function, or it is a non-simple compound
term where the compound term that denotes the functor is a function call that
returns a function value.

For certain binary primitive functions the functor name may be used as an
infix operator and placed between the two arguments. This holds for the usual
binary arithmetic operators +, * etc. for which function applications are written
as expressions such as 6+9*X.

The special zero argument functions e_ and pi_, invoked as in expressions e_()
and pi_(), evaluate to the numbers ’e’ and ’pi’. More details are given in
Section 3.7

In the QuLog interpreter a function call, indeed any expression, can be given as
an entry to be evaluated.

Examples:

| ?? 67.7/2.3.

29.4348 : num

| ?? curryR(child_of)(peter).

curryR(child_of)(peter) : (atom)<=

% The denoted value is a relation over atom names

Function calls denote expressions that contain no function calls. That is they
denote non-variable terms: atomic values, code names, simple compound terms
all the arguments of which are non-variable terms, lists or sets of non-variable
terms. The exceptions are certain code returning function calls which are
only evaluated when the code value they denote is itself called. The above
curryR(child_of)(peter) is an example. It denotes an unary relation but
that relation is only used when the unary relation is called in a query such as:

| ?? P ? Rel=curryR(child_of)(peter) & Rel(P).

P = harry : atom

P = mary : atom

16

2.6 Lists

A list is a comma separated sequence of expressions enclosed in ”[”..”]” brackets.
This is a complete list. Or it is a comma separated sequence of terms ending
with ,.. optionally followed by a variable, or ending with |) always followed
by a variable, enclosed in ”[”..”]” brackets.

Example:

[3,2.7,X*Y,"hello"]

[3,4,..Tail]

[Head,..Tail]

[Head,..] % shorthand for [Head,.. _] with _ the anonymous variable

[Head|Tail]

The first example is a complete enumeration and the remaining examples are
list patterns in which both ,.. and | can be read as ”followed by”. The fourth
example is equivalent to [Head,.. _]. The last example is using the Prolog
syntax for a list.

2.6.1 List compehension expressions

Lists of ground terms can also be denoted by a list compehension expression.
Examples are:

[X**2::X in L & not X in [0,1]]

% Squares of numbers other than 0,1 in nums list L

[C :: exists A child_of(C,peter) & age_of(C,A) & A<18]

% Non-adult children of peter in order found

The general form of a list comprehension is:

[Expression :: exists VarSequence SimpleConjunction]

where the exists VarSequence is optional.

There are constraints on the variables that can be used in such a comprehension.
Each variable in Expression must either appear in SimpleConjunction and be
such that it will be given a ground value by some call in the conjunction, or it
must appear before the comprehension expression in a query or rule and will
have been given a ground value. Every variable in SimpleConjunction must
either be underscore, appear in Expression or in VarSequence, or must appear
before the comprehension expression in a query or rule and will have been given
a ground value. This ensures that the value of a list comprehension is always a
list of ground terms.

17

VarSequence is a single variable or a comma separated sequence of variables
such as X,Y,Z

The syntax for SimpleConjunction is given below.

2.7 Sets

A set is a comma separated sequence of ground expressions surrounded with {

and } braces. If there are any duplcate ground terms when all the expressions
have been evaluated all but one of the duplicates will be removed. If returned as
the value of a expression entry to the interpreter, or as a binding of a variable in
a relation query, it will be diplayed with its elements in term order as determined
by the @ primitive.

Example set expression entry:

| ?? {4,3,1,5-2,1}.

{1, 3, 4} : {nat}

2.7.1 Set compehension expressions

Sets can also be denoted by a set compehension expression. Examples are:

{X**2::X in L & not X in [0,1]

% Squares of numbers other than 0,1 in L, duplicates removed.

{A :: exists C, P child_of(C,P) & age_of(C,A) & A<18}

% Set of all the ages of recorded children

The general form of a set comprehension is:

{Expression :: exists VarSequence SimpleConjunction}

where the exists VarSequence is optional.

The constraints on the variables that can be used in a set comprehension are
the same as those for a list comprehnesion expression.

VarSequence and SimpleConjunction are as for list comprehensions.

2.8 Programs

A Qulog program comprises a sequence of:

type definitions,

18

type declarations,
relation rules (aka clauses),
action rules,
function rules.

A QuLog/TeleoR program also includes:

TeleoR procedures.

They may appear in any order except that all the rules for a particular relation,
action or function must be contiguous. A type declaration for a relation, action,
function or procedure does not need to be given immediately before its code.
The rules of a TeleoR procedure are all included inside {...} braces following
the procedure head.

An important constraint is that each type definition, type declaration, relation,
action and function rule must begin at the left end of a new line. If one needs
to be continued over more than one line all but the first line must be indented
from the left end by at least one space or tab. Fullstop terminators may be
given at the end of each definition, declaration or rule but is not needed. It is
the text starting at the extreme left end of a line after one or more newlines
that terminates the previous program statement. TeleoR procedures must also
begin at the left end of a line but inside the {...} there are more relaxed layout
constraints. Each TeleoR rule can start anywhere on a new line. The parser
can use the rule syntax to determine that it is the start of a new rule. Again
fullstop terminators may be given at the end of each rule but are ignored.

2.8.1 Type Definitions

A type definition is of the form

type-name ::= type-expression

type-name is either an alphanumeric atom or a single argument compound term
whose only argument is a variable (representing any type). A type definition
with such a type name defines a parameterised type where the type variable
stands for any type. That type variable then appears in one or more of a dis-
junction of compound terms with other arguments that are type names. We
give examples below.

type-expression is another user or system defined type, in which case the type
definition is essentially a type alias, for example

speed ::= num

More usually it is one of the following type expressions defining a new data type.

19

Integer range type expression

This is an expression of the form M..N where M < N and both are integers.

Examples:

digit::= 0..9

small_int::= -10..10

As in the examples different range types may overlap but only when one is
completely contained inside the other. To have overlapping sets of integers
corresponding to different types, type union must be used (see below).

Disjunction of constants type expression

This is an expression of the form C1 | C2 | ... | Ck where each Ci is the
same kind of constant, except that we can mix different types of numbers.

Examples:

gender::= male | female

threeNums::= 20 | 6.7 | -50

article::= "a" | "an" | "one" | "the" | "that" | "those"

Different type definitions using overlapping disjunctions of constants are al-
lowed providing one is completely contained inside the other. So, as well as the
article type we could define

indef_article::= "a" | "an" | "one"

A disjunction of integers can also overlap with a range type providing it ei-
ther comprises a subset or a superset of the integers of the range type. These
constraints ensure that each constant belongs to a unique minimal type. For ex-
ample "a" would belong to the types indef_artcle, article, string, atomic,
term, top.

To have partially overlapping disjunctions of constants corresponding to differ-
ent types, type union expressions must be used to define each partially overlap-
ping type (see below).

Parameterised type expression

This is an expression of the form CT1 | CT2 | ... | CTk where each CTi is a
compound term with arguments that are type names, or a single type variable
T, or a parameterised type name with argument the same type variable T. Such
a type expression can only appear as the right hand side of a parameterised
type definition with left hand side a unary compound term containing the type
variable T.

Examples:

20

tree(T) ::= empty() | tr(tree(T),T,tree(T))

an_indexed(T)::= rec(int,T)

Type union expression

This is an expression of the form Ty1 || Ty2 || ... || Tyk where each Tyi

a simple type name or a ground parameterised type name or a code type ex-
pression.

Examples:

int_atom ::= int || atom

int2intOrstring::= int -> int || int -> string

Code type expressions

The last example above was the union of two function type expressions. There
are four code type expressions in Qulog/TeleoR. These are: a function type, a
relation type, and action type and a TeleoR procedure type.

Function type expression

This has the form (TE1,TE2,...,TEk) -> TE where each TEi and TE is any
simple, or compound type name, or type union expression, or a code type ex-
pression.

Relation type expression

This has the form (MTE1,MTE2,...,MTEk) <= where each MTEi is a moded type
where the type is any simple, or compound type name, or type union expression,
or a code type expression.

The possible modes of a moded type are the prefixes !, ? and ?? and the postfix
?.

The moded type !Type used as an argument of a relation means, when called,
the supplied argument must be ground and of type Type.

The moded type ?Type used as an argument of a relation means, when called,
the supplied argument must either be ground and of type Type or will be ground
to a term of type Type by the call.

The moded type Type? used as an argument of a relation means, when called,
the supplied argument must either be ground and of type Type or, if ground by
the call, will be ground to a term of type Type.

The moded type ??Type used as an argument of a relation means, when called,
the supplied argument, if ground, must be of type Type and the call will not
further instantiate the argument.

Modes can be used multiple times in structured types as long as inner modes
are more liberal than outer modes. For example, the moded type
![?int]

21

means that the top-level list structure must be given (i.e. the number or el-
ements are known at call time) but the elements of the list can be a mixture
of integers and variables with the variables instantiated to integers by the call.
Action type expression

This has the form (MTE1,MTE2,...,MTEk) ∼>> where each MTEi is a moded
type where the type is any simple, or compound type name, or type union
expression, or a code type expression.

The modes are as described above. TeleoR type expression This has the
form (TE1,TE2,...,TEk) ∼> where each TEi is any simple, or compound type
name, or type union expression, or a code type expression.

2.8.2 Type Declarations

All functions, relations, actions and teleoR programs have type declarations of
the form

Name : Type

Examples of declarations are given below where definitions are described.

If multiple functions, relations, actions or teleoR programs have the same type
their names can all be listed on the left hand side of a declaration as follows.

Name1, ..., NameN : Type

As an example, below is the type declaration for the builtin append relation
(with the same semantics as the standard Prolog append relation).

append : (![T], ![T], ?[T]) <= |

(?[T], ?[T], ![T]) <= |

(![T?], ![T?], ?[T?]) <= |

(?[T?], ?[T?], ![T?]) <= |

([T]?, [T]?, [T]?) <=

The first type of append says that, if the first two arguments of the call on
append are ground lists of a given type, then the third argument will be a
ground list of the same type on exit from the call.

The second type says that, if the third argument is a ground list of a given type,
then the first and second arguments will be ground lists of the same type on
exit from the call.

The third type of append says that, if the first two arguments are lists of a
known length (i.e. do not have a variable tail) but possibly containing non-
ground elements, then the third argument will have a known length on exit
from the call but that variables occurring in any of the arguments need not be
ground.

22

The fourth type is the ”append driven backwards” version of the third type.

The fourth type is the most general allowing variable length lists in all argu-
ments. In this situation, nothing can be said about the modes on exit from the
call.

Note that when we say, for example, the first two arguments are of the same
type we mean that the type inference system can find a suitable type as in the
example interpreter query below.

| ?? append([1,2], [a,b], X).

X = [1, 2, a, b] : [atom || nat]

Here, the suitable (minimal) type for T is the union of two types.

Beliefs are dymanic relations and are declared as follows.

belief Name1 : ArgTypes1 , ..., NameN : ArgTypesN

Where each ArgTypesI is of the form

(TE1,TE2,...,TEk) in which each TEi is any simple, or compound type name,
or type union expression, or a code type expression.

The declaration
belief age_of: (human,age)

is esentially the declaration
age_of : (?human, ?age) <=

together with the declaration that age_of is dynamic.

Percepts are similar to beliefs in that they are dynamic but are specifically
used for storing percepts in teleoR programs. They are declared as follows.

percept Name1 : ArgTypes1 , ..., NameN : ArgTypesN

Global variables are used to store either integer or number values and are
declared as follows.

int Name := IntValue
or
num Name := NumValue

The declaration
int count := 0

is like a combination of the declaration
belief count : (int)

and the definition count(0)

with the restriction that the count belief always contains exactly one fact.

23

2.8.3 Simple Conditions for Rules and Relation Queries

These comprise predications, negated predications and meta-calls.

Predications

These are atoms that are names of no argument defined relations or compound
terms with functors that are the names of primitive or program defined relations
with argument types consistent with the relation’s declared type. A compound
term with a functor that is an expression of relation type consistent with the
argument types of the compound term is also a predication, this includes the
case where the functor is a variable. The compiler will also check that all varibles
of any argument term of the predication that must be ground will have have
been given ground values by the time the predication needs to be evaluated.

Negated Predications

These have the form not Cond where Cond is a predication. The compiler will
check that any arguments of the predication Cond that need to be ground will
have ground bindings for all their variables before the not is evaluated. All other
arguments must also be ground values by the time the condition is evaluated,
or they must be anonymous underscore variables.

not Cond is deemed to have been inferred if, and only if, a complete search
of the tree of alternatve possible inferences of Cond fails to find a proof. It
is the so-called negation-as-failure. It is a sound rule of inference on certain
assumptions regarding the completeness of the relation definitions used in the
exploration of the possible proofs of Cond and on the assumption that different
data terms (after being normalised in the case os sets) denote different values.

Meta-calls

These have the form call Var where Var is of type relcall. relcall is the
system type comprising all terms that denote type correct calls to primitive
or program defined relations. The meta call call Var succeeds providing the
relation call denoted by the relcall value of Var at the time of evaluation has
all its input arguments ground and will succeed.

Complex Conditions

not Predication

Negation. If Predication is inferable then fail else succeed. At the
time of call all variables appearing in Goal must be ground or underscore
variables.
mode/type not : (??relcall) <=

relcall is the system type comprising all terms that are type correct
calls to primitive or program defined relations. The functor of the predi-
cation must either be given or be a variable with known moded type so
that the compiler can check that the call is type correct and that any
arguments that need to be ground will have ground bindings before the

24

not is evaluated. The only variables that need not already have ground
bindings are underscore variables. None of these can be in ! argument
positions of the called relation.

once (SimpleConj)

Find first solution to SimpleConj and discard any alternative choices. If
SimpleConj is just a predication the brackets are not needed.

once cannot be used inside a SimpleConj. It may only be used in an
interpreter query or in the conjunctive body of a relation rule.

call Predication

call Call
mode/type call : (relcall?) <=

relcall is the system type comprising all terms that are type correct calls
to primitive or program defined relations. The functor of the predication
must either be given or be a variable with known moded type so that the
compiler can check that the call is type correct and that any arguments
that need to be ground will have ground bindings before the call is
evaluated.

forall UVars (SimpleConj1 => exists EVars SimpleConj2)

If, for all bindings of variables in UVars that make SimpleConj1 infer-
able, exists EVars SimpleConj2) is also inferable, then the forall

succeeds, otherwise it fails.

UVars must be a collection of new variables and all variables occurring in
SimpleConj1 must be in UVars, have a ground value before the forall

is evaluated, or be an underscore variable.

EVars must also be a collection of new variables and all variables occur-
ring in SimpleConj2 must be in UVars or EVars, have a ground value be-
fore the forall is evaluated, or be an underscore variable. exists EVars

is optional.

forall cannot be used inside a SimpleConj. It may only be used in an
interpreter query or in the conjunctive body of a relation rule.

Assuming we have a collection of child_of(C, P) beliefs that associate a
child C with a parent P, and a collection of person(Name, Gender, Age)

beliefs, giving the gender and age of people. The following query will
return as an answer each parent who has at least one adult child.

child_of(_, P) &

forall C (child_of(C,P) => exists A person(C,_,A) & A>20)

25

Note that P will be given a value before the call on forall and so there are
no free variables in the body of forall other than C and the underscore
variable.

Also note that each quantified variable is not allowed to appear outside
the quantification or in other quantifications.

2.8.4 Relation Definitions

A relation definition consists of a sequence of rules (clauses) of the form

Head :: Commit <= Body

where Head is an atom or simple compound term, Commit is a conjunct of
goals, and Body is a conjunct of goals. Conjuncts are separated by &. Both the
:: Commit and <= Body parts of the rule are optional. The heads of each

rule of a relation have the same functor and arity.

When a goal Goal with the same functor and arity as Head is called, the rules
of the relation are tried in order. If Goal unifies with the head of the rule then
the Commit part is called. If that succeeds then this rule is committed to (i.e.
no subsequent rules are tried on backtracking) and Goal succeeds if and only if
Body succeeds. If Body is not present it is treated as being the goal true.

If Commit is not present then Goal succeeds if Body succeeds but, on backtrack-
ing, subsequent rules will be tried.

The rule has the same semantics as the Prolog rule

Head :- Commit, !, Body

Note, however, that cut (!) is not part of Qulog.

As examples, the definitions of the relations greater and sum_list are given
below.

greater: (!num, !num, ?num) <=

greater(A, B, C) :: A > B <= C = A

greater(A, B, C) :: B > A <= C = B

sum_list : (![num], ?num) <=

sum_list([], 0)

sum_list([H,..T], N) <= sum_list(T, M) & N = H+M

Note that in N = H+M, H+M is evaluated before unification and that the second
rule of greater could have been written as

greater(A, B, C) <= B > A & C = B

2.8.5 Action Definitions

An action definition consists of a sequence of rules of the form

26

Head :: Commit ∼>> Body

where Head is an atom or simple compound term, Commit is a conjunct of goals,
and Body is a sequence of goals and actions. The elements of the sequence are
separated by ;. Both the :: Commit and <= Body parts of the rule are
optional. The heads of each rule of an action have the same functor and arity.
The semantics of action definitions is the same as for relation definitions. The
difference is that at least one of the elements of the Body sequence is an action
which typically has a side effect such as writing, reading, sending a message or
updating the database. As examples, the definitions of the actions ask_query

and handle_response are given below.

ask_query: (atom, term?, [term ?], handle)

ask_query(QId,Ans,QList,Ag) ~>>

ask(QId,Ans,QList) to Ag; Reply from Ag;

handle_response(QId,Ag,Reply,Ans)

handle_response: (atom,handle, term?, term?)

handle_response(QId,_,tell(QId,ans(Ans)),Ans) :: true

handle_response(QId,Ag,tell(QId,Reply),_) ~>>

writeLine([’Agent ’,Ag,’ responded ’,Reply,’ to query ’,QId]); fail

2.8.6 Function Definitions

A function definition consists of a sequence of rules of the form

Head :: Commit -> Expression

where Head is an atom or simple compound term, Commit is a conjunct of goals,
and Expression is a term. The :: Commit part of the rule is optional. The
heads of each rule of a relation have the same functor and arity.

When the function is called, the rules are tried and the first rule whose Head
unifies with the function call and where Commit is true then the result returned
is the evaluation of Expression. Note that rules without an explicit Commit
have an implicit true commit and so no backtracking occurs.

As examples, the definitions of the functions factorial and tree2list are
given below (using the tree type given above).

factorial : nat->nat

factorial(0)->1

factorial(N) :: N1 = N-1 & type(N1,nat) -> N*factorial(N1)

tree2list : tree(T) -> [T]

tree2list(empty()) -> []

tree2list(tr(LT, V, RT)) -> tree2list(LT) <> [V] <> tree2list(RT)

Note that type(N1,nat) is necessary above in order that the type checker can
type check the recursive call on factorial.

27

2.8.7 TR Program Definitions

A TR-program definition has the form

Head {

TR Rule
...
TR Rule

}

where Head is an atom or simple compound term and each TR Rule has one of
the forms given below.

The most simple TR rule has the form

Guard ∼> TR Action

where Guard is a conjunct of goals and TR Action is of the form given below.

At the other extreme, the most complete form of a TR rule is

Guard while While min Duration until Until min Duration ∼> TR Action

where While and Until are conjuncts of goals and Duration is a number.

The most simple rule above is a particular form of the full rule where both While
and Until are false and both durations are 0.

Other variations of the general form are:

Guard min Duration ∼> TR Action
which is the same as
Guard while false min Duration until false min Duration ∼> TR Ac-
tion

Guard while_until Goal min Duration ∼> TR Action
which is the same as
Guard while not {\em Goal} min Duration until {\em Goal} min Dura-
tion ∼> TR Action

Guard while_until Goal ∼> TR Action
which is the same as
Guard while not Goal min 0 until Goal min 0 ∼> TR Action

Semantically, when a TR program is executed, the guards are checked in order
until a guard is found that is true (with a given instantiation of variables). The
corresponding TR Action is then executed.

While Guard (with the same instantiation of variables) is true or While is true
or the duration of the while part hasn’t expired (since the time this rule was
chosen) then this rule will continue to be the chosen rule until Until becomes
true and the until duration has expired.

At that point, the guards will be checked again from the beginning. If no earlier

28

rule guards are true, the same rule will refire if the guard is true with a different
instantiation of variables (and execute the corresponding actions using the new
instantiation of variables) or will continue as long as the guard remains true
with the same instantiation of variables or While is true or the while duration
hasn’t expired. Otherwise, the guards of the rules below this rule are checked.

Note that executing TR Action will typically mean stopping durative actions
from previous rule firings and starting new actions (both discreet and durative).
As an optimization, instead of stopping a durative action with given arguments
and starting the same action with different arguments, the system will generate
a ’modify action’.

The forms of TR Action for each TR rule are given below.

TR Program

A TR Action can be a call on a TR program (possibly a recursive call on the
same program). When such a rule is fired this TR program is executed.

Sequence of discreet and durative actions

A TR Action can be a comma separated sequence of discreet and durative
actions. The special sequence () is the ’do nothing’ action.

Timed sequence

A TR Action can be a comma separated sequence of the form
Action for Duration , ... , Action for Duration.
where the last duration can be elided.

Each action above can be either a call on a TR program or a sequence of discreet
or durative actions.

When called, the first action is called and then after that duration is up, the
second action is called and so on until the last action in the sequence is called.
After its duration has expired then the sequence is repeated from the start. This
will repeat until a different rule is fired. If the last duration is missing, it as
treated as infinity.

Wait repeat

A TR Action can be of the form
Action Sequence wait Duration ^ Repeats

When called, the actions will be executed, and after Duration seconds the actions
will be executed again. This will be repeated Repeats times unless another rule
is chosen. If another rule is not chosen then an error will be generated.

Attached Qulog actions

TR Actions can have Qulog actions attached as below.
TRAction ++ Action

When called, both TRAction and Action will be executed. The Qulog action is

29

typically a modification to the belief store or a message send action.

Example TR program

As an example of TR Programs, consider the following TR program (from the
examples/introduction directory of the release) controlling a robot whose
objective is to find, approach, and pick up an object using grippers.

%% We assume that if the program receives a dead_centre percept

%% it will also receive a centre percept

dir::= left | right | centre | dead_centre

percept

see : (num, dir),

holding : ()

durative

move : (num),

turn : (dir)

discrete

grab : (),

release : ()

%% We interpret holding true and see(0, centre) not true to mean that

%% the grippers are closed but not actually holding an object

get_object : () ~>

get_object {

holding & see(0, centre) ~> ()

not holding & see(0, centre) ~> grab wait 10^2

not holding ~> get_to

true ~> release wait 10^2

}

get_to : () ~>

get_to {

see(0, centre) ~> ()

see(0, Dir) ~> turn(Dir)

see(_, centre) ~> move(6)

see(_, Dir) while see(_, centre) until see(_, dead_centre)

~> move(4) , turn(Dir)

true ~> turn(left) for 10 ; move(4) for 10

}

Consider an initial state where no objects are seen and holding is false. When
get_object is executed then the third rule is fired causing get_to to be exe-
cuted. The last of rules of get_to will be chosen (a timed interval). This will

30

first cause the robot to start turning for 10 seconds and then start moving for
10 seconds. This will be repeated until an object is spotted.

At some point, say see(10, left) becomes true. This causes the fourth rule
of get_to to fire (with Dir instantiated to 10). Assuming this object is not
moved by the environment, then eventually, say see(8, centre) becomes true.
It might seem that the third rule should now fire because its guard becomes
true. However, the until condition prevents higher rules from firing. Once, say,
see(8, dead_centre) becomes true then rule three will fire. By over-achieving
the guard of the third rule the ”fluttering” between the third and fourth rule
(without the until condition) is eliminated.

The while condition is necessary because it takes over from the guard and man-
tains rule four as the active rule when seeing to the left is no longer true but
seeing to the centre becomes true.

On the other hand, if, before see(8, dead_centre) becomes true the environ-
ment moves the object so that see(8, right) becomes true then there would
be a refiring of rule four and the robot will start turning to the right.

Note that, if before the object is seen dead centre, see(0, centre) becomes
true then rule two of get_object will fire. The until only has a local effect -
affecting rule choices within its own TR program.

Eventually, without interference from the environment, see(0, centre) will
become true. The second rule of get_object will now fire (stopping the exe-
cution of get_to), causing the robot to grip the object. Under normal circum-
stances holding will become true and then the first rule will fire causing the
robot to stop.

If, however, there was a mechnical problem with the gripper, the robot will wait
for 10 seconds and try to close the gripper again in the hope that the problem
will disappear. If the problem doesn’t clear up after two attemps (with a 10
second wait for each) then an error will be produced.

It may seem that the robot’s job is done now that it has achieved its goal.
However, the TR program is still monitoring the state and say the environment
now removes the object from the robot’s grip. Rule four will fire, opening the
grippers, and then, once holding is no longer true, rule three will fire and the
robot will go back to searching for an object.

3 Built-Ins

3.1 Introduction

This section contains descriptions of the functions, relations and actions of the
Qulog library. In the interpreter you can see all their names and types by
entering the command

31

| ?? stypes.

Many of these are Qu-Prolog primitive relations ’lifted’ to QuLog by giving them
appropriate type/mode declarations. Other Qu-Prolog relations and actions can
be ’lifted’ to the Qulog level be giving them a QuLog type declaration in your
QuLog program file.

For example, if the primitives described on Section Section 3.6 had not already
been made available for use in QuLog, all you would have needed to do was
include their type declarations as given in that section.

As another example, there is a Qu-Prolog primitive

between(From,To,N)

for generating or testing an integer value N between given integer values From

and To.

To use this in a QuLog program, add the moded type declaration

between: (integer,integer,?integer) <=

to your program file. It tells the QuLog mode/type checker that the relation
is a Qu-Prolog primitive (that will be checked), and that in every use the first
two arguments should be given as integers but the third integer argument may
be given or may be returned as value of an unbound variable.

3.2 Input / Output

3.2.1 Term Input/Output Actions

Actions:

writeL(List)

Write the elements of List. If the atom nl_ appears in List it is written
as a newline.

You can also use sp_(N) where N is a positive integer to insert N spaces.
Strings in List are displayed without the string quotes ”..” unless you
write them with q_("..."). The quotes are then put around the string.

mode/type writeL(![??term])

Example:

| ?? writeL(["List of atoms ",[a,b], nl_,

"Set of nats ", {2,1,4,1}]).

List of atoms [a, b]

Set of nats {1, 2, 4}

32

with the next output on the next line. nl_ causes a new line to be output
as would the string "\n". In fact any of the C string control characters,
such as "\t", "\s" for tab and space respectively, can be put into a string
and will have the intended effect unless the string is wrapped inside a q_

term. So we could have written the above query as:

| ?? writeL(["List of atoms ",[a,b],

"\nSet of nats ", {2,1,4,1}]).

Other control term we can put in the list argument of writeL are:
sp_(n), n positive integer. It will display n spaces.
uq_(Atom), where Atom is an atom that normally needs to be quoted. It
will be displayed without the single quotes.
wr_(Var), will not display Var as an underscore followed by a sequence of
digits, as is normal, but will give it a name such as A, B, C when displayed
and will give subsequent occurence of Var in the list to be output using
the given name for Var.

The following query illustrates the the use of uq_ and wr_.

| ?? writeL([uq_(’Hello’)," there\n",wr_(_895),sp_(2),

895,sp(2),wr_(_678),nl_]).

Hello there

A A B

_895 = A : Ty1

_678 = B : Ty2

success

writeLine(List)

The same as writeL but with a trailing newline.

Example:

| ??writeLine([s("A list "), [a, b], sp_(2), {2, 1, 4, 1},

s(" followed by a set.")]).

A list [a, b] {1, 2, 4} followed by a set.

with the next output being at the beginning of the next line.

readT(Term)

Unifies Term with the next term denoted by the next sequence of charac-
ters typed at the terminal followed by fullstop, return.

Example:

33

| ?? readT(X).

f(A).

X = f(A) : term

Note that this read remembers the names of variables (the A above). A
consequence of this, given the occurs check in unification, is that the
following query fails.

| ?? readT(A).

f(A).

no

3.3 Terms

3.4 Comparison of Terms

Two terms are compared according to the standard ordering, which is defined
below. Items listed at the beginning come before the items listed at the end.
For example, numbers are less than atoms in the standard ordering.

1. Variables, in age ordering (older variables come before younger variables).

2. Numbers, in numerical ordering.

3. Atoms, in character code (ASCII) ordering.

4. String, in standard string odering.

5. Compound terms are compared in the following order:

(a) Arity, in numerical ordering.

(b) Functor, in standard ordering.

(c) Arguments, in standard ordering, from left to right.

6. Sets, in dictionary order on elements.

7. Lists, in dictionary order on elements.

The above ordering is used when constructing sets.

The following relations use the above ordering to test terms.

Term1 @> Term2

Succeeds if Term1 is greater thanTerm1 in the above ordering.

Term1 @>= Term2

Succeeds if Term1 is greater than or equal to Term2 in the above ordering.

34

Term1 @< Term2

Succeeds if Term1 is less thanTerm1 in the above ordering.

Term1 @=< Term2

Succeeds if Term1 is less than or equal to Term2 in the above ordering.

3.5 Testing of Terms

These testing predicates are used to determine various properties of the data
objects, or apply constraints to the data objects.

Relations:

type(Term, Type)

Succeed if Term is a non-variable of type Type.
mode/type type : (??top, !typeE(_)) <=

Example:

| ?? type(a, atomic).

yes

| ?? type(a, int).

no

| ?? type([a,2], [int || atom]).

yes

ground(Term)

Succeed if Term is ground.
mode/type ground : (??top) <=

isa(Term, Type)

Succeed if Term is of type Type and Type is a finite type.
mode/type isa : (?Term, !typeE(_)) <=

Example: For this example we assume the following type declarations.

name ::= "Alice" | "Bob" | "Carol"

status ::= good(name) | bad(name)

| ?? isa(X, status).

X = good("Alice")

...

X = good("Bob")

...

X = good("Carol")

35

...

X = bad("Alice")

...

X = bad("Bob")

..

X = bad("Carol")

| ?? isa(good("Bob"), status).

yes

| ?? isa(2, nat).

no

template(Term)

Succeed if Term is atomic or a compound term with a ground functor.
mode/type template :(??top) <=

ground_inputs(Term)

Succeed if Term is a relation or action term and that the modes of its
arguments are correct.
mode/type ground_inputs : ??(relcall || actcall)

3.6 List Processing

append(L1, L2, L3)

Succeed if L3 is the concatentation of L1 and L2

mode/type
append: ([T]?, [T]?, [T]?)<= | (![T], ![T], ?[T])<= |

(?[T], ?[T], ![T])<=

reverse(L1, L2)

Succeed if L2 is the reverse of L1.
mode/type
reverse : (![T?], ?[T?]) <=

sort(L1, L2)

Succeed if L2 is L1 sorted.
mode/type
sort : (![T?], ?[T?]) <=

member(X, L)

Succeed if X is in L.
mode/type
member : (T?, [T]?) <=

X in L

36

Succeed if X is in L.
mode/type
in: (?T,[T])<= | (T?,![T?])<= | (?string,[string])<= |

(?T,{T}) <=

Almost exactly the same uses as member except that it it must be given a
complete list of possibly non-ground terms.

As its type indicates, in can also be used to access single character substrings
of a string and ground elements of a set.

3.7 Arithmetic

The following arithemetic functions are available.

Num1 + Num2

Returns the sum of Num1 and Num2.
+ : (nat, nat) -> nat | (int, int) -> int | (num, num) -> num

Num1 - Num2

Returns the difference of Num1 and Num2.
- : (int, int) -> int | (num, num) -> num

-Num1

Returns the negation of Num.
- : int -> int | num -> num

Num1 * Num2

Returns the product of Num1 and Num2.
* : (nat, nat) -> nat | (int, int) -> int | (num, num) -> num

Num1 // Num2

Returns the integer division of Num1 and Num2.
// : (nat, nat) -> nat | (int, int) -> int

Num1 / Num2

Returns the division of Num1 and Num2.
/ : (num, num) -> num

Num1 mod Num2

Returns the mod of Num1 and Num2.
mod : (nat, int) -> nat | (int, int) -> int

37

Num1 ** Num2

Returns Num1 raised to the power Num2.
** : (nat, nat) -> nat | (int, nat) -> int | (num, num) -> num

Int >> Nat

Returns the bitwise right shift of Int with respect to Nat.
>>: (int, nat) -> int

Int << Nat

Returns the bitwise left shift of Int with respect to Nat.
<<: (int, nat) -> int

Int1 /\ Int2

Returns the bitwise AND of Int1 and Int2.
/\: (int, int) -> int

Int1 \/ Int2

Returns the bitwise OR of Int1 and Int2.
\/: (int, int) -> int

\ Int

Returns the bitwise complement of Int.
\: (int) -> int

abs(Num)

Returns the absolute value of Num.
abs: int -> nat | num -> num

sqrt(Num)

Returns the square root of Num.
sqrt: num -> num

round(Num)

Returns the round of Num.
round: num -> int

floor(Num)

Returns the floor of Num.
floor: num -> int

ceiling(Num)

Returns the ceiling of Num.
ceiling: num -> int

38

pi_()

Returns PI.
pi_: () -> num

e_()

Returns E.
e_: () -> num

sin(Num)

Returns the sin of Num.
sin: num -> num

cos(Num)

Returns the cos of Num.
cos: num -> num

tan(Num)

Returns the tan of Num.
tan: num -> num

asin(Num)

Returns the arcsin of Num.
asin: num -> num

acos(Num)

Returns the arccos of Num.
acos: num -> num

atan(Num)

Returns the arctan of Num.
atan: num -> num

atan2(Y, X)

Returns the atan2 of Y and X. This returns an angle in the range (-pi, pi].
atan2: (num,num) -> num

3.8 Other Functions

now()

Returns the current time.
now: () -> num

exec_time()

39

Returns the lapsed time in seconds since this qulog process was started
exec_time: () -> num

start_time()

Returns the time at which this qulog process was started
start_time: () -> num

random_num()

Returns a random number in [0,1).
random_num: () -> num

random_int(Lower, Upper)

Returns a random number in the interval [Lower, Upper].
random_int: (int, int) -> num

S1 union S2

Returns the union of sets S1 and S2.
union: ({T}, {T}) -> {T}

S1 inter S2

Returns the intersection of sets S1 and S2.
inter: ({T}, {T}) -> {T}

S1 diff S2

Returns the set difference of sets S1 and S2.
diff: ({T}, {T}) -> {T}

L1 <> L2

Returns the concatination of lists L1 and L2.
<> : ([T], [T]) -> [T]

S1 ++ S2

Returns the concatination of strings S1 and S2.
++ : (string, string) -> string

#L

Returns the length of the list, set, or string L.
: [T] -> nat | {T} -> nat | string -> nat

F@..Args

Returns the compound term obtained by applying F to Args.
@.. : (term, [term]) -> term

Example:

40

| ?? @..(a, [1,2]).

a(1, 2) : term

@.. can also be used to split up a compound term as in the following
example.

| ?? a(1,2) =? F@..Args.

F = a : atom

Args = [1, 2] : [nat]

$Name, where $ is a prefix operator.

Here Name is an atom that must have been initialised with a statement

int Name:=Integer, e.g. int count:=0 or

num Name:=Number, e.g. num savings:=678.50

in the program. It returns the current value associated with Name

which can be updated by primitive actions (see := (page 43)).

3.9 Other Relations

true

Always succeeds.
mode/type true : () <=

false

Always fails.
mode/type false : () <=

Term1 = Term2

Succeeds if Term1 and Term2 unify.
Any function calls in each argument term are evaluated first using strict
evaluation
- expression arguments evaluated first - as with every relation call.
mode/type = : (term?, term?) <=

N1 > N2

Succeeds if N1 is greater than N2.
mode/type > : (!num, !num) <=

N1 >= N2

Succeeds if N1 is greater than or equal to N2.
mode/type >= : (!num, !num) <=

41

N1 < N2

Succeeds if N1 is less than N2.
mode/type < : (!num, !num) <=

N1 =< N2

Succeeds if N1 is less than or equal to N2.
mode/type =< : (!num, !num) <=

X in T

Succeeds if X is a term and and T is a list or set of terms and X is an
element of T or if X and T are both strings and X is a single character
string occurring inT.
mode/type in: (T?,![T?]) <= | (?T,![T]) <= | (?T,!{T}) <= |

(?string, !string) <=

string2term(S, T)

Succeeds if T is the term obtained by parsing the string Sas a Qulog term.
mode/type string2term : (!string, term?) <=

current_thread(Name)

Succeeds if Name is the name of this thread
mode/type current_thread : (?atom) <=

get_active_resources(ResourceInfo)

Succeeds if ResourceInfo is the list of terms res(atom,[resource])

giving resources used by each running task in a multi-tasking agent. The
atom is task name.
mode/type get_active_resources : (?term) <=

get_waiting_resources(ResourceInfo)

Succeeds if ResourceInfo is the list of terms res(atom,[resource])

giving resources needed by each waiting task in a multi-tasking agent.
The atom is task name.
mode/type get_waiting_resources : (?term) <=

3.10 Other Actions

remember(Belief)

Adds its ground relcall argument (Belief) as a new last dynamic fact for
its functor relation name R. R must have been declared as a belief.
mode/type remember : (relcall) ∼>>

remember_for(Belief, Secs)

42

The same as remember except that Belief is forgotten after Secs seconds.
mode/type remember_for : (relcall, num) ∼>>
Alternative syntax: remember Belief for Secs

rememberA(Belief)

Adds its ground relcall argument (Belief) as a new first dynamic fact
for its functor relation name R. R must have been declared as a belief.
mode/type rememberA : (relcall) ∼>>

rememberA_for(Belief, Secs)

The same as rememberA except that Belief is forgotten after Secs sec-
onds.
mode/type remember_for : (relcall, num) ∼>>
Alternative syntax: rememberA Belief for Secs

forget(Belief)

Remove the first dynamic fact matching Belief. Note that Belief may
contain variables within the arguments. forget always succeeds even if
there are no matching facts.
mode/type forget : (relcall) ∼>>

forget_after(Belief, Secs)

The same as forget except that Belief is forgotten when Secs seconds
has elapsed and Belief must be ground at the time of call.
mode/type forget_after : (relcall, num) ∼>>
Alternative syntax: forget Belief after Secs

replace_by(Belief1, Belief2)

The same as forget(Belief1) ; remember(Belief2). Belief1 and
Belief2 may share variables.

Name := Expression

Here Name is an atom that must have been initialised with a statement

int Name:=Integer, e.g. int count:=0 or

num Name:=Number, e.g. num savings:=678.50

in the program. These statements are shorthand for belief declarations
and a definition using one fact of a unary relation called Name. They are
respectively expanded into:

belief Name: int <=

43

Name(Integer)

belief Name: num <=

Name(Number)

The action Name := Expression is the same as
forget(Name(_));remember(Name(Expression)).

mode/type := : (!(?int <=), !int) ∼>> |

(!(?num <=), !num) ∼>>
Name can be used as though it were a global variable. To access its value
the operator $ is applied. The expression $Name evaluates to the current
int or num value stored in Name, i.e. in the current Name belief.

Name +:= Expression

As above, Name is an atom that must have been initialised with a state-
ment

int Name:=Integer or num Name:=Number

in the program.

The action Name +:= Expression is the same as
forget(Name(Val));remember(Name(Val+Expression)).

mode/type := : (!(?int <=), !int) ∼>> |

(!(?num <=), !num) ∼>>
Example use count +:= 1 for increasing value held in count by 1.

Name -:= Expression

As above, Name is an atom that must have been initialised with a state-
ment

int Name:=Integer or num Name:=Number

in the program.

The action Name -:= Expression is the same as
forget(Name(Val));remember(Name(Val-Expression)).

mode/type := : (!(?int <=), !int) ∼>> |

(!(?num <=), !num) ∼>>
Example use savings -:= 67.90 for decreasing the value held in savings

by 67.90.

44

fork_as(Action, Name)

Fork a new Qulog thread, give it the name Name, and start the thread
executing Action. If Name is a variable it will be instantiated to a name
given by the system. If Name is given it must not be the name of an
existing thread.
mode/type fork_as : (actcall, ?atom) ∼>>
Alternative syntax: fork Action as Name

from(Term, Handle)

This is the message receive action. It will succeed it there is a message
term in that threads message buffer whose message term unifies with
Term and whose message handle unifies with Handle. If not the call
will suspend and be repeatedly retried as new messages arrive until it
succeeds. When it does succeed, the matched message will be removed
from the message buffer.
mode/type from : (term?, ?handle) ∼>>
Alternative syntax: Term from Handle

to(Term, Handle)

This is the message send action. It sends Term as a message to the thread
(of possibly another process on another machine) whose message address
is Handle.
mode/type to : (??term, !handle) ∼>>
Alternative syntax: Term to Handle

thread_sleep(Secs)

Causes the executing thread to suspend for Secs seconds.
mode/type thread_sleep : (!num) ∼>>

3.11 TeleoR Specific Actions

The following actions are available when the system is running in TeleoR mode
(after the command teleor has been executed in the interpreter).

actions(Actions)

An interpreter command that can be used in teleor mode when an agent
has been started using start_agent. Actions is a list of actions that
agent wants the robotic interface to perform. The given actions must
have been declared as discrete or durative.
mode/type actions : ([discrete || durative]) ∼>>

kill_agent

Kill the current agent started using start_agent.
mode/type kill_agent : () ∼>>

45

kill_task(Task)

Kill the task with name Task started using start_task.
mode/type kill_task : (atom) ∼>>

start_agent(Name, Handle, Convention)

Start a new agent whose name is Name. Handle is the message address
of the robot interface or simulation with which the agent will inter-
act. Convention is the percepts update convention being used. This
is one of: all if the robot sends all the percepts each time it sends per-
cepts; updates if the robot only sends changes to percepts; or user if
the percept management is application specific in which case the action
handle_percepts_ needs to be defined in the program.
mode/type start_agent : (atom, handle, atom) ∼>>

start_task(Name, TRCall)

Start a new task (as a thread) whose name is Name. TRCall is the TeleoR
call to be executed in the thread.
mode/type start_task : (atom, trcall) ∼>>

4 Standard Operators

We use the Prolog notation for operator declarations even though, unlike Prolog,
QuLog’s syntax cannot be extended by adding application specific operators
and the QuLog parser is not an operator precedence parser. op is not a system
predicate of QuLog. Using Prolog op statements gives us a succint way of
summarising the precedence relationship between the operators that is implicit
in the formal syntax rules.

In each op statement the number is the ’binding’ power of the operator, called
the precedece of the operator. The higher the precedence, the higher up the parse
tree, so the less binding the operator. For example, + has higher precedence than
* , so X+Y*Z is really X+(Y*Z) and we have to use brackets if we want to have
the expression (X+Y)*Z.

fx means the operator is prefix and cannot be followed immediately by an
expression with top operator of the same precedence unless that expression is
bracketed.

xfx means that the operator is an infix non-associative operator and must have
expression arguments for which the top operator has lower precedence, or the
expressions arguments are bracketed. So, (X**Y)**Z needs the brackets.

xfy means that the operator is an infix right associative operator, and yfx

means that the operator is an infix left associative operator. More specically, a
xfy operator can have an expression to the right with a top operator of equal
or lower precedence and that expression being implicitly bracketed. For a yfx

46

this implicit bracketing applies to the expression on the left hand side. So,
X*5 mod 6 is implicitly (X*5) mod 6.

Note that ? has two precedences as an infix operator. One is for its use in an
interpreter query after the required initial number of solutions and/or variable
bindings have been given. For this use it must have higher precedence than &.
The second use is in <> and ++ patterns when giving a single condition constraint
on a sub-string or sub-list. For this use it must have lower precedence than <>

and ++.

The mode annotations are not in the table as prefix or infix operators as they
will always be inside a bracketed sequence of annotated types.

We have not included forall or exists as they are both prefix operators taking
two arguments, the sequence of variables that immediately follows and then
some operator expression. This is an => or ∼>> implication in the case of
forall and possibly an & conjunction in the case of exists.

start_task and start_agent are just reserved words and are never followed
by an operator expression.

In QuLog comma is not treated as an operator. It is just an expression separator.

op(1100, xfx, [<=, ~>>, ->, ~>, =>])

op(1050, xfx, [::=])

op(1030, xfx, [|, ||])

op(1030, xfx, [..])

op(1020, xfx, [::, ?])

<op(1020, xfy, [while, until])

op(1000, xfy, [&, ;])

op(900, fx, [not , once, watch , watchC, unwatch, show,

types, stypes, remember, forget, call, do, wait])

op(850, xfx, [for, after])

op(800, xfx, [?])

op(700, xfx, [= , \= , :=, +:=, -:=, =? , == , \== , @< ,

@=< , @> , @>= , @.. , in , =:= , =\= , < , =< , > , >=])

op(600, xfy, [++, <>])

op(550, xfx, [?])

op(500, yfx, [+ , - , /\ , \/, union, diff])

op(450, yfx, [to, from])

op(400, yfx, [* , / , // , rem , mod , inter, << , >>])

op(200, xfx, [**])

op(200, fy, [+ , - , \])

op(100, xfx, [@..])

op(50, xfx, [:])

op(50, fx, [$, #])

47

5 Index

* . 37
** . 38
+ . 37
++ . 40
$. 41
:= . 43
+:= . 44
-:= . 44
- . 37
/ . 37
// . 37
>> . 37
<< . 37
@.. 40
@> . 34
@>= . 34
@< . 35
@=< . 35
/\ . 38
\ . 38
\/ . 38
<> . 40
. 40
abs . 38
acos . 39
actions . 45
append . 36
asin . 39
atan . 39
atan2 . 39
call . 25
ceiling . 38
cos . 39
current_thread . 42
diff . 40
e_ . 39
exec_time . 39
false . 41
floor . 38
forall . 25
forget . 43
forget_after . 43
fork_as . 45

48

from . 45
get_active_resources . 42
get_waiting_resources . 42
isa . 35
kill_agent . 45
kill_task . 46
member . 36
ground_inputs . ??
not . 24
now . 39
once . 25
pi_ . 39
random_int . 40
random_num . 40
readT . 33
remember . 42
rememberA . 43
remember_for . 42
rememberA_for . 43
replace_by . 43
sin . 39
sqrt . 38
start_agent . 46
start_task . 46
start_time . 40
string2term . 42
tan . 39
template . 36
thread_sleep . 45
to . 45
true . 41
type . 35
union . 40
writeL . 32
writeLine . 33

49

Appendices

A EBNF Grammar for Qulog

(* The EBNF grammar for qulog *)

(*

We assume the following non-terminals that group tokens. All other

tokens in the grammar are given as strings.

atom: the allowed atoms of qulog

string: double-quoted strings

var: the variables of qulog

int: integers

num: floating point numbers

*)

any_number = int | num;

(* ------ program item ------ *)

(* Note: a program file is parsed one program item at a time *)

program_item =

type_definition |

declaration |

function_rule_definition |

relation_rule_definition |

action_rule_definition |

tr_program_definition;

(* ------ type definitions ------ *)

type_definition = definition_head, "::=", definition_type;

(* either atom type or polymorphic type with one arg *)

definition_head = atom | (atom, var) | (atom, "(", var, ")");

definition_type =

(int, "..", int) |

(atom, "|", atom, {"|", atom}) |

(string, "|", string, {"|", string}) |

50

(any_number, "|", any_number, {"|", any_number}) |

(compound, "|", compound, {"|", compound}) |

(atom_or_compound, "||",

atom_or_compound, {"||", atom_or_compound}) |

("(", definition_type, ")") |

atom | (* type macro *)

compound | (* type macro *)

type_expression;

atom_or_compound = atom | compound;

atom_or_simple_compound = atom | simple_compound;

(* ------ types ------ *)

simple_type_expression =

("(", ")") |

var |

atom |

compound |

("[", type_expression, "]") |

("{", type_expression, "}") |

("(", type_expression, ")") |

("(", type_expression, ",", type_expression,

{",", type_expression}, ")") (* tuple type_expression *);

type_expression =

simple_type_expression |

function_type_expression |

relation_type_expression |

action_type_expression |

tr_type_expression;

type_expression_seq = type_expression, {",", type_expression};

fun_rel_act_tr_type_expression_seq =

fun_rel_act_tr_type_expression |

fun_rel_act_tr_type_expression, {"|", fun_rel_act_tr_type_expression};

fun_rel_act_tr_type_expression =

annotated_type_expression;

declaration_type_expression =

("(", annotated_type_expression,

{",", annotated_type_expression}, ")") |

annotated_type_expression;

51

function_type_expression_seq =

function_type_expression, ["|", !, function_type_expression_seq];

function_type_expression =

("(", function_type_expression, ")") |

(domain_type_expression, "->", type_expression) |

(domain_type_expression, "->", function_type_expression);

domain_type_expression =

(basic_inner_annotated_type_expression | annotated_tuple_type_expression) |

relation_type_expression |

action_type_expression |

tr_type_expression;

relation_type_expression_seq =

relation_type_expression, ["|", !, relation_type_expression_seq];

relation_type_expression =

(basic_inner_annotated_type_expression | annotated_tuple_type_expression),

"<=", !;

action_type_expression_seq =

action_type_expression, {"|", action_type_expression};

action_type_expression =

(basic_inner_annotated_type_expression | annotated_tuple_type_expression),

"~>>", !;

tr_type_expression =

simple_type_expression, "~>", !;

pre_annotation = "!" | "?" | "??";

post_annotation = "?";

annotated_type_expression =

[pre_annotation], inner_annotated_type_expression, [post_annotation];

inner_annotated_type_expression =

basic_inner_annotated_type_expression |

function_type_expression |

relation_type_expression |

action_type_expression |

tr_type_expression;

basic_inner_annotated_type_expression =

basic_annotated_type_expression |

annotated_compound_type_expression |

52

annotated_list_type_expression |

"{", type_expression, "}";

basic_annotated_type_expression =

atom | var | annotated_tuple_type_expression | ("(", ")");

annotated_tuple_type_expression =

"(", annotated_type_expression, {",", annotated_type_expression}, ")";

annotated_compound_type_expression =

(atom, "(", annotated_type_expression,

{",", annotated_type_expression}, ")") |

(atom, annotated_type_expression);

annotated_list_type_expression =

"[", annotated_type_expression, "]";

(* ------ declarations ------ *)

declaration =

rule_declaration |

global_declaration |

percept_declaration |

belief_declaration |

durative_declaration |

discrete_declaration |

task_start_declaration |

task_atomic_declaration |

resources_declaration;

rule_declaration =

name_seq, ":",

(

fun_rel_act_tr_type_expression_seq |

function_type_expression_seq |

relation_type_expression_seq |

action_type_expression_seq |

tr_type_expression

);

name_seq = atom, {",", atom};

global_declaration = ("int" | "num"), atom, ":=", arith_term;

percept_declaration =

53

"percept", tr_decl_element, {",", tr_decl_element};

belief_declaration =

"belief", tr_decl_element, {",", tr_decl_element};

durative_declaration =

"durative", tr_decl_element, {",", tr_decl_element};

discrete_declaration =

"discrete", tr_decl_element, {",", tr_decl_element};

tr_decl_element =

atom, ":", "(", [type_expression_seq], ")";

task_start_declaration =

"task_start", atom, ":", type_expression_seq;

task_atomic_declaration =

"task_atomic", atom, ":", type_expression_seq;

resources_declaration =

"resources", type_expression_seq;

(* ------ function definitions ------ *)

function_rule_definition =

(atom_or_compound,"->", term) |

(atom_or_compound, "::", simple_condition_seq, "->", term);

(* ------ relation definitions ------ *)

relation_rule_definition =

atom_or_compound |

(atom_or_compound, "<=", condition_seq) |

(atom_or_compound, "::", simple_condition_seq, "<=", condition_seq) |

(atom_or_compound, "::", simple_condition_seq);

(* ------ action definitions ------ *)

action_rule_definition =

atom_or_compound |

(atom_or_compound, "~>>", action_seq) |

(atom_or_compound, "::", simple_condition_seq, "~>>", action_seq);

(* ------ TR program definitions ------ *)

tr_program_definition =

atom_or_simple_compound, "{", tr_rules, "}";

tr_rules = tr_rule, [tr_rules];

54

tr_rule = tr_rule_LHS, "~>", tr_rule_RHS;

tr_rule_LHS =

simple_condition_seq, [tr_rule_while_until];

tr_rule_while_until =

("min", arith_term) |

("while_until", simple_condition_seq) |

("while", while_until_part, "until", while_until_part) |

("while", while_until_part) |

("until", while_until_part);

while_until_part =

simple_condition_seq |

(simple_condition_seq, "min", arith_term) |

("min", arith_term);

tr_rule_RHS =

(tr_action, [wait_repeat], ["++", call_term]);

tr_action =

("(", ")") | tr_action_seq | tr_timed_seq;

tr_action_seq = (("(", ")") | call_term), [",", tr_action_seq];

tr_timed_seq =

(tr_timed_for, ";", call_term) |

(tr_timed_for , ";", tr_timed_for,

{ ";", tr_timed_for}, [";", call_term]);

tr_timed_for = tr_timed_seq_action, "for", arith_term;

tr_timed_seq_action = ("(", ")") | call_term | ("(", tr_action_seq, ")");

tr_action_seq = call_term, [",", tr_action_seq];

wait_repeat = "wait", arith_term, ["^", arith_term];

(* ------ terms ------ *)

term =

(predication | simple_action |

arith_term | append_term | concat_term |

set_term | apply_term | global_val | pedro_addr | compound | basic_term);

basic_term =

55

(

("(", term, ")") |

list_comprehension |

set_comprehension |

tuple_constructor |

list_constructor |

set_constructor |

size_term |

atom | string | var | int | num

), !;

arith_term =

mult_div_term,

[

("+", arith_term) |

("-", arith_term) |

("\\/", arith_term) |

("/\\", arith_term)

];

mult_div_term =

(

exp_term,

[

("*", mult_div_term) |

("/", mult_div_term) |

("//", mult_div_term) |

("rem", mult_div_term) |

("div", mult_div_term) |

("<<", mult_div_term) |

(">>", mult_div_term)

]

) |

("(", arith_term, ")");

exp_term =

basic_arith_term, [("**", exp_term)];

basic_arith_term =

int | num | var | compound | size_term | ("$", atom) |

("(", arith_term, ")") |

("+", basic_arith_term) |

("-", basic_arith_term);

size_term = "#", size_term_body;

56

size_term_body = (var | compound | list_constructor | string | set_constructor |

list_comprehension | set_comprehension) |

("(", append_term, ")") |

("(", concat_term, ")") |

("(", size_term_body, ")");

append_term = list_term, "<>", (list_term | append_term);

concat_term = string_term, "++", (string_term | concat_term);

list_term = var | compound | list_constructor | list_comprehension |

("(", list_term, ")") |

("(", append_term, ")");

string_term = (var | compound | string) |

("(", string_term, ")") |

("(", concat_term, ")");

list_comprehension =

"[", (var | ("(", var_list, ")")), "::",

simple_exists_condition, "]";

set_comprehension =

"{", (var | ("(", var_list, ")")), "::",

simple_exists_condition, "}";

var_list = var, {",", var};

tuple_constructor = "(", term, ",", term, {",", term}, ")";

%compound = basic_compound, { term | ("(", ")") };

%basic_compound = (atom | var), (term | ("(", ")"));

compound = (atom | var), compound_args;

compound_args = (basic_term | ("(", ")")), [compound_args].

simple_compound = atom, term;

arg_list = term, {",", term};

braketed_arg_list = ("(", ")") | ("(", arg_list, ")");

list_constructor = "[", list_constructor_args,

("]" | ("|", list_term, "]") |

(",", "..", "]") | (",", "..", list_term, "]")), !;

list_constructor_args = term, [",", list_constructor_args].

57

set_constructor = "{", arg_list, "}";

basic_set_term = var | compound | set_comprehension | set_constructor;

set_term = set_inter_expr |

(set_inter_expr, "union", set_term) |

(set_inter_expr, "diff", set_term);

set_inter_expr = basic_set_term |

(basic_set_term, "inter", set_inter_expr) |

("(", set_term, ")");

apply_term = basic_term, "@..", (list_term);

global_val = "$", atom;

pedro_addr = (atom | var), [":", (atom | var)], ["@", (atom | var)];

agent_handle = (atom | var), ["@", (atom | var)];

(* ------ conditions ------ *)

condition_seq = condition, {"&", condition};

simple_condition_seq =

simple_condition, ["&", simple_condition_seq];

simple_condition =

predication |

("not", predication) |

("not", "(", predication, ")");

forall_condition =

"forall", var_list, "(", simple_condition_seq, "=>",

simple_exists_condition, ")";

simple_exists_condition =

simple_condition_seq |

"exists", var_list, simple_condition_seq |

"exists", var_list, "(", simple_condition_seq, ")";

exists_condition =

condition_seq |

"exists", var_list, condition_seq ;

58

condition =

forall_condition |

simple_condition |

("once", predication) |

("once", "(", predication, ")");

predication =

compound | atom |

type_test |

("mode_correct", brac_call_term) |

("call", brac_call_term) |

(arith_term, ">", arith_term) |

(arith_term, ">=", arith_term) |

(arith_term, "<", arith_term) |

(arith_term, "=<", arith_term) |

(term, "=", term) |

(term, "\=", term) |

(term, "@>", term) |

(term, "@>=", term) |

(term, "@<", term) |

(term, "@=<", term) |

(term, "@=", term) |

(term, "in", (list_term | string_term | set_term)) |

(compound, "=?", simple_term, "@..", list_term) |

((list_term | append_term), "=?", append_term) |

((string_term | concat_term), "=?", eq_string_term);

type_test = "type", "(", term, ",", annotated_type_expression, ")";

call_term = var | atom | compound;

brac_call_term = ("(", call_term, ")") | call_term;

simple_call_term = var | atom | simple_compound;

brac_simple_call_term = ("(", simple_call_term, ")") | simple_call_term;

eq_string_term = string_q, "++", string_q, {"++", string_q};

string_q = string_term | (string_term, "?", condition);

(* ------ actions ------ *)

action_seq = action, {";", action};

action = simple_action | forall_action;

simple_action_seq =

59

simple_action, {";", simple_action};

forall_action =

"forall", var_list, "(", simple_condition_seq, "~>>",

simple_action_seq, ")";

simple_action =

compound | atom |

("do", brac_call_term) |

(atom, ":=", arith_term) |

(atom, "+:=", arith_term) |

(atom, "-:=", arith_term) |

("remember", brac_simple_call_term, ["for", arith_term]) |

("rememberA", brac_simple_call_term, ["for", arith_term]) |

("forget", brac_simple_call_term, ["after", arith_term]) |

("replace", brac_simple_call_term, "by", simple_call_term) |

("replaceA", brac_simple_call_term, "by", simple_call_term) |

("start_task", (atom | var), call_term) |

("kill_task", (atom | var)) |

("start_agent", (atom | var), agent_handle,

("all" | "updates" | "user")) |

("log", agent_handle) |

(term, "to", pedro_addr) |

(term, "from", pedro_addr) |

("fork", brac_call_term, "as", (atom | var));

(* ------ interpreter entry ------ *)

interpreter_entry =

exists_condition |

action_seq |

("watch", atom) |

("watchC", atom) |

("unwatch", atom) |

("set_num_answers", int) |

(int, var_list, "?", condition_seq) |

(var_list, "?", condition_seq) |

(int, "?", condition_seq) |

("prolog", prolog_calls) |

"prolog" |

"types" |

("types", atom) |

"stypes" |

("stypes", atom) |

"show" |

60

("show", atom) |

("consult", atom) |

("pconsult", atom) |

(term, "::", (condition_seq));

(* can use "&", and "," in prolog calls *)

prolog_calls =

(action | condition), [("&" | ","), prolog_calls];

61

