
TeleoR User Guide

Keith L. Clark and Peter J. Robinson

September 17, 2021

1

Contents

1 Introduction 3
1.1 TeleoR Robotic agents: Deductive Belief Store, robotic re-

source actions, sensor percepts, inter-agent communication . . 3
1.2 Agent communication and co-operation 4
1.3 A three thread agent architecture 5
1.4 Task goals and multi-tasking 6

2 Overview of the TeleoR language 7

3 Example TeleoR Agents 11
3.1 Introductory Example: Declarations, Logger, Robot Shell . . 11
3.2 Simple Bottle Collector: commit while and timed sequences . 21
3.3 Cooperating Bottle Collector: or while, messages, attached

QuLog actions, modified regression 24
3.3.1 Programming the message handler 25
3.3.2 Exception handling rules 27
3.3.3 The co-operating bottle collector main procedure . . 30

3.4 Nilsson’s Simple Block Tower Builder: Cognitive control and
Recursion . 33

3.5 Simple Multi-Task Tower Builders: Tasks, Resources 36
3.6 Multi-Task, Multi-Arm, Multi-Table Tower Builders: Resource

Declarations . 40
3.7 Atomic Procedure Behaviour 45
3.8 Initializing the Message Handler, Post Processing Percepts . . 48
3.9 Embedded Agents . 50
3.10 ROS and MQTT . 51

4 Thinking about TeleoR programming 52
4.1 Robot Side . 61

2

1 Introduction

In this guide we focus on the TeleoR extension of QuLog. TeleoR is a major
extension of Nilsson’s Teleo Reactive Procedures [2][3], a rule based language
for programming robotic agents. We shall refer to Nilsson’s language as T-R.
T-R evolved from the triangular program plans of Shakey [4], the first AI
robot developed by a team lead by Nilsson in the 1960s. Example exten-
sions of T-R in TeleoR are: use of the mode/type system of QuLog so that
the compiler can check that every rule determined robotic action will be
fully instantiated and correctly typed, extra rule forms for more nuanced
control of robot behaviour, high level control of multi-tasking with the fair
alternating shared use of robotic resources by the different tasks achieved
simply by declaring which TeleoR procedures may be invoked to start a
task, and which are atomic. The latter may only be entered by a task when
all the robotic resources they may need are available and no other task has
been waiting longer for any of these resources. Once entered, the task has
exclusive use of these resources whilst the procedure is active.

1.1 TeleoR Robotic agents: Deductive Belief Store, robotic re-
source actions, sensor percepts, inter-agent communica-
tion

A TeleoR robotic agent is a multi-threaded software process that controls
of one or more robotic resources, e.g. one mobile robot, two robotic arms,
possibly alternating their use between several concurrent tasks. It con-
trols the robotic resources using a repertoire of control actions, such as
turn(left,0.4), pickup(arm1, block2), in order to perform its tasks.
The devices exist in a real or simulated environment external to the agent.
The tasks have goals to bring about, or to maintan, or to prevent, certain
states of the agent’s environment. The agent does this by frequently sensing
the environment of the robotic resources, and by responding with appro-
priate resource actions, as the sense data changes. Other agents may be in
the same environment controlling different robotic resources. They could
be working on completely independent tasks, or co-operating on some or all
the tasks.

The sensors may be attached to the robotic resources, or be completely
independent. A camera mounted on a mobile robot, or at the end of a
moveable telescopic arm, is an attached sensor. A wall mounted temperature
sensor, or a camera that automatically pans using a fixed trajectory, sending
video images at frequent but fixed intervals, is an independent sensor.

3

The readings of the sensors are converted into percepts: facts such as
close(bottle,left) and on(block2,block4). This conversion is done by
software external to the TeleoR agent. Each percept is a logical interpreta-
tion of one or more sensor readings that is relevant to the agent’s tasks. The
facts are handled by a special percept handling thread within the agent. At
a frequency required by its tasks, this thread atomically updates the agent’s
Belief Store BS. During the update no other agent thread is active.

The BS facts are what the agent believes about the current (and perhaps
past) state of its environment, about other robotic agents controlling robotic
resources in the same environment, and the robotic resources that it and
the other agents control. Non-percept belief facts may have been distilled
from messages it has received from other agents, or may be facts encoding
memories of past perceptions and actions.

Reasoning agents also have a separate knowledge layer KL of fixed knowl-
edge rules and facts. The KL facts encode fixed properties of the environment
and other agents relevant to the agent’s tasks , e.g. that a red door connects
two named rooms. They are fixed in that they will not change during the
agent’s lifetime. The KL rules are used to draw inferences from BS and the
KL facts. They encode information about the semantics of the predicates
used in these facts and define new task relevant fusions of the facts. Facts
about the environment that might change as a result of exogenous events,
such as which doors are open or closed or blocked, are dynamic beliefs.
The dynamic beliefs and the knowledge rules and facts comprise the agent’s
deductive belief store, which we shall henceforth call its DBS.

Often all the robotic resources and sensors are on one robot, e.g. a small
mobile robot with a forward facing camera, bump sensors and a gripper with
touch sensors, and the agent is a process on a computer inside the robot.
Alternatively, the robotic resources and sensors could be distributed around
the rooms of a house with the agent being a process on a laptop using WIFI.

1.2 Agent communication and co-operation

Agents may communicate with other agents and non-agent processes di-
rectly via asynchronous message communication. This may be addressed
communication with the identity of the receiver and sender attached to the
message, or indirect communication using a publish/subscribe server. Addi-
tionally, agents might communicate indirectly by querying and updating an
external shared memory, such as a data base or Linda tuple store[1]. They
may even communicate by making certain changes to the environment state,
e.g. the analogue of the pheromone trails left by ants.

4

BeliefStore (BS)
Updateable Belief Facts

Optional Knowledge Layer (KL)
Fixed Facts and Rules

?
Percepts
Handler

Message
Handler
ag@host

Sensor
Readings
as Percept
Terms

Effector
Commands
as Action
Terms

Two way communication

TeleoR
Evaluator

for the
current

tasks

?

Atomic re-consideration of
rule firings for each task on
each update of BS

 Atomic
BS Updates

Outgoing messages only

1
pedro

Other
Agents

Pub/Sub and Addressed Message Router

Queries to DBS?

Deductive BeliefStore (DBS)

Figure 1: Three Thread TeleoR Agent Architecture

A robotic agent RA queries its DBS to determine which device action
A to use next for a particular task, T. If a group of agents are co-operating
on T, this might be an action of a device controlled by another agent RA′.
RA may need to explicitly request that RA′ initiate the action, or RA′ may
automatically do the action when it determines what needs to be done next
for shared task T. Either way, A will be sent to the simulation, or to a ROS[6]
or MQTT[5] node that has direct non-agent control of the robotic device in
question. A is being done to try to bring about a change in the common
external environment of RA and RA′ that will progress the task T.

1.3 A three thread agent architecture

Figure 1 depicts our three thread TeleoR agent architecture using an inter-
agent communication server, Pedro. Pedro supports both addressed com-
munication to an identified agent as well as publish/subscribe unaddressed
communication. The TeleoR evaluator thread effectively re-evaluates the

5

initial TeleoR procedure call of each active task and dispatches the actions
for all the robotic resources for which each task has exclusive control at that
point in time.

1.4 Task goals and multi-tasking

At any time, a robotic agent has one of more tasks, each of which has a
goal to bring about or to maintain some state of the environment using the
robotic devices that the agent controls. As an example, an agent able to
control a robotic arm at the end of which is a gripper so that the arm may
be used to pick up and put down small objects on a table, might be given
a task to build a tower of labelled wooden blocks. The task goal would be
something like tower([block3,block2,block7]). If an agent has several
tasks it can interleave the attempts to achieve a compatible subset of its
task goals, alternating the use of its robotic resources between the tasks.
Tasks waiting for the use of robotic resources are queued and become active
only when the robotic resources they need have been released by another
task or tasks. Tasks release robotic resources only when they have completed
some atomic sub-task, a task that should only be interrupted if its execution
pre-condition no longer holds. If two tasks at some stage will use different
robotic resources, and their respective action uses will not interfere with
each other, the robotic resources may be used in parallel, e.g. two robotic
arms may be moved concurrently providing they will not clash.

The percept construction is usually done by a process external to the
robotic agent, and is often programmed in an imperative language. Each
new batch of percept facts is used to update the percept facts in the agent’s
BS that record sensed properties of the robot’s current environment state,
properties relevant to its controlling agent’s tasks. On each update, percepts
that no longer hold are removed and new percepts are added. Percepts that
persist from the previous snapshot of the environment state are left in the
BS.

Keeping only the lastest percepts is sufficient for many applications.
However, each time T the BS is updated as well as remembering each new
percept as a fact such as open(room1,door2), we can also remember a
time stamped meta fact remembered at(open(room1,door2),T). If in some
subsequent percepts update at time T′ open(room1,door2) is no longer
included, the meta fact forgotten at(open(room1,door2),T′) is added
and open(room1,door2) is removed. This way the different time intervals
in which these key perceptions were once believed is rememberd.

After each such percept update the agent’s control program for each

6

active task will determine the appropriate next action to make progress
towards, or to maintain the task goal. It may also communicate certain
percept updates to other agents, e.g. a mobile robot observing that a door
is now closed could broadcast this new belief via a publish/subscribe server.

If the environment is the real world, changes may be brought about by
people and acts of nature - such as wind. To an individual agent, these
other changes to the environment are exogenous events. They may help
or hinder the agent in achieving a task goal. Ideally a task action selection
program should be robust to such exogenous events. That is, when the effect
of the event has been sensed and reported in a percepts update, the control
program should take advantage of any help and recover from any hindrance.
This robustness is a key feature of teleo-reactive control.

2 Overview of the TeleoR language

A TeleoR program comprises sequences of guard ∼>action rules clustered
into parameterised procedures of the form:

tel p(t1,..,tk) % declaration of the argument types of p
p(X1,..,Xk){

G1 ∼> A1
.

.

Gn ∼> An
}

The ti are the types of the procedure’s k arguments named by the k dif-
ferent parameter variables X1,..,Xk. Each ti may be a primitive QuLog type
such as num, list, or a QuLog program defined type, or a QuLog type ex-
pression for a relation, function or TeleoR procedure. The typing of TeleoR
procedures and the allowing of code arguments is a major difference between
TeleoR and T-R.

The parameters X1,..,Xk are global variables of the action rule sequence.
They must be given fully instantiated values of the required type (or sub-
type) when the procedure is called. Other variables appearing in a rule are
local variables of that rule. Unless explicitly quantified, they are implicitly
universally quantified over the rule in which they appear.

Each guard Gi is a QuLog query to the agent’s BS. This is an & conjunc-
tion of conditions, negated conditions, and universally quantified condition
implications. Disjunction is not allowed in a guard, just as it is not allowed

7

in a QuLog rule body. (A disjunctive condition can always be captured by
having a call to an auxiliary QuLog relation with two or more defining rules.)
The action is one of:

• a tuple of actions for robotic resources, to be executed in parallel,

• a call to a TeleoR procedure, including a recursive call on the proce-
dure p,

• a type correct call Expj(....) where Expj is an expression with value
a TeleoR procedure named and defined in the program,

• a timed sequence of k > 1 of the above actions of the form;
[RA1:T1, ...,RAk:Tk]

where the time limit Tk on the last action is optional

together with a communication action.
Below are two example TeleoR procedures for a search and grasp task

for a mobile robot.

def thing ::= bottle | glass

def robotic_action ::=

move(num) | turn(dir) | grasp() | release()

def dir ::= left | centre | right

percept see(thing, num, dir), holding(thing)

tel get_hold_of(thing)

get_hold_of(Th) {
holding(Th) ∼> ()

not exists AnyTh holding(AnyTh) & see(Th, 0, centre) ∼>
grasp()

not holding() ∼> get_to(Th)

% The guard is equivalent to not exists X holding(X)

true ∼> release()

}

tel get_to(thing)

get_to(Th) {
see(Th, 0, centre) ∼> ()

see(Th, 0, Dir) ∼> turn(Dir)

see(Th, centre) ∼> move(6)

8

see(Th, Dir) ∼> move(4), turn(Dir)

% The concurrent move and turn actions will cause the robot
% to swerve towards Th, hopefully bringing it into centre view
true ∼> turn(left)

}

The two uses of Dir in the second and fourth rules of the get to pro-
cedure are both implicitly universally quantified over their respective rules.
The use of AnyTh in the second rule of get hold of is inside an existential
quantification. Local variables in different rules with the same name are
different variables. Any local variable appearing in the rule action must also
appear in the rule guard, and be such that it will be have a fully instantiated
value by the end of the guard evaluation. These conditions are checked at
compile time.

An agent task is started by a single call p(v1,..,vk) to some program
procedure p, e.g. get hold of(glass) or get to(bottle). The fully in-
stantiated arguments given in the call typically partially or completely in-
stantiate each guard of p’s rules, e.g. the first rule of get hold of proce-
dure for the call get hold of(glass) is fully instantiated, and all the rules
of get to for call get to(bottle) become fully instantiated. Suppose the
guard of the first rule becomes G′1. This is the task goal. That is, by sending
a sequence a1,..,an of n actions to the robotic resources, eventually some
instance G′′1 of G′1 should become inferable from the agent’s updated BS.
From the time that the task was started, the BS will have been updated as
a result of a percepts update or a received message, at least as many times
as different actions have been sent to the robot.

A task call evaluation involves finding the first partially instantiated
guard G′j which has an instance G′′j inferable from the current BS. The j’th

rule of the call is then fired. The corresponding ground instance1 A′′j of the
rule’s action is either a robotic device action, or it is a call to a TeleoR

procedure. If it is a procedure call, again the first rule of this call with an
instance of its guard inferable from the current BS is found, and that rule
fired. Eventually a rule with a tuple of robotic actions will be fired and this
tuple will be dispatched to the robotic devices interface, or to the simulator.
As mentioned in the final section, it is up to the robot side to deal with
these tuples by, for example, stopping actions that are no longer active and
modifying actions whose arguments have changed.

1Compile time analysis ensures that the action of every TeleoR rule will be ground if
its guard is inferable.

9

The robotic action of the first rule of each TeleoR start procedure is
generally the empty action (). When () is received by the robotic device
interface it will cause the last dispatched action an to be terminated. If the
first rule does not have the empty device action, it should have an action that
will normally preserve the task goal. After the first goal achieved rule has
been fired, an exogenous action may ’interfere’ and after a percept update
of the BS the guard of the first rule may no longer be inferable. In that
case, the TeleoR task evaluator will start testing the other guards of the
procedure, starting with the second guard. In effect, the call p(v1,..,vk)
is re-evaluated to try to re-achieve the task goal.

Actually, a TeleoR task programmed agent responds to each update of
its BS by effectively re-evaluating the task call p(v1,..,vk)

2.
The environment in which the robot is situated may contain other sep-

arately controlled robotic devices, as well as humans, all of which may have
their own goals. Their actions may sometimes hinder agent RA or help it.
No matter what, the TeleoR control program will determine an appropriate
response. It will skip actions if helped and redo actions if hindered. Proce-
dure p, and all the other TeleoR procedures that may be called as part of
the evaluation of call C, are a universal conditional action plan for achieving
any goal which is a call instantiation of the guard of p’s first rule. TeleoR

programs recover from setbacks and take advantage of good fortune. This
makes TeleoR programs rather different from traditional programs.

TeleoR agents typically reside on the robotic device hardware, especially
when this is a mobile robot, but one TeleoR agent could be controlling
several robotic devices. When discussing TeleoR agents and programs we
will use the term robot side to mean the part of the hardware for collecting
perceptual information (percepts) and for realising actions sent from the
agent: turning on/off motors, actuators etc.

TeleoR programs typically contain QuLog declarations of types and def-
initions of relations, functions and actions and so we assume the reader has
read the QuLog user guide.

The system comes with its own interpreter that extends the QuLog inter-
preter with extra functionality that is required to compile and run TeleoR

programs. Unless the TeleoR control agent directly communicates with the
external robotic devices and sensors using something like ROS [6], and has
no need to communicate with other agents using the Pedro communication
server, we start the TeleoR interpreter giving the agent process a name

2In practice the call stack is examined from the task call entry - the bottom entry - to
the entry for the last rule firing - the top entry.

10

which will be registered with Pedro.

teleor -AAgentName
Teleor Version 1.0

| ?∼>

The | ?∼> is the TeleoR command prompt.
The agent process can now communicate with other agents and processes

via Pedro, including the robot side process that handles action commands
from the agent and sends it sensor readings as percept facts. The actions and
the percept facts communicated between the agent and robot side can be
tailored to the tasks that the agent is programmed to perform. So program-
ming the robot side from scratch, or modifying and previously programmed
robot side, is usually needed in addition to the TeleoR+QuLog programming
of the agent. We assume the reader has the competence to do this robot
side programming.

The TeleoR language is introduced via a series of example programs. All
the programs discussed here can be found in sub-folders of the examples

folder.

3 Example TeleoR Agents

3.1 Introductory Example: Declarations, Logger, Robot Shell

In qulog/examples/introduction there is a very simple TeleoR program
tr eg.qlg. We shall use this to introduce the basic declarations and seman-
tics and describe how to use the logger and robot shell. The purpose of the
TeleoR agent programmed in this file is to search for an object, move to it
and grab it.

TeleoR procedures require type declarations similar to that of relations,
functions and actions. Like functions they only take ground arguments and
so mode are not included in the declaration. We have two declarations of
TeleoR procedures:

tel get_object()

tel get_to()

As well as declaring the types of the TeleoR procedures, the minimal
requirement is to declare the percepts and primitivie actions:

11

percept see(num, dir), holding()

def robotic_action ::=

move(num) | turn(dir) | grab() | release()

The percept declaration has a dual purpose: it declares the terms that
the robot side will send to the agents percept handling thread; and also
declares them as dyn terms. The percept handler processes percept messages
and updates the BS.

In response to percept changes the agents evaluator thread will typi-
cally send a collection of robotic actions to the robot side to execute. The
robotic_action declaration lists the allowed robotic actions.

These two declarations are therefore describing the interface between the
TeleoR agent and the robot side.

As we said above, the purpose of the TeleoR agent programmed in this
file is to search for an object, move to it and grab it. It contains the top-
level TeleoR procedure get_object and the TeleoR procedure get_to that
is called from the first:

tel get_object()

get_object() {
holding() & see(0, centre) ∼> ()

not holding() & see(0, centre) ∼> grab()

not holding() ∼> get_to()

true ∼> release()

}

tel get_to()

get_to() {
see(0, centre) ∼> ()

see(0, Dir) ∼> turn(Dir)

see(_, centre) ∼> move(6)

see(_, Dir) ∼> move(4) , turn(Dir)

true ∼> turn(left)

}

Each TeleoR procedure definition consists of an ordered sequence of rules
that are guarded actions. In simple TeleoR procedures the guard of the first
rule is the goal of the procedure and the action is typically the empty action
and, in particular, the guard of the first rule of the top-level procedure is the

12

overall goal of the program. In this case that goal is to be holding something
and to see an object immediately in front. In this example we take that to
mean the robot is holding the object. Later we will see procedures where
the goal of the procedure is not the guard of the first rule.

The guards of the procedures typically query directly, or indirectly, the
BS. In this example the guards directly access the percept part of the belief
store. This means that, as the percepts change, different rules will be chosen
and different actions will be enacted. Later we will see examples where the
belief store contains facts that come from sources other than the percept
handler.

To start the program running we first have to start the TeleoR agent:

| ?∼> start_agent(robo@localhost, all)

The first argument is the address of an external process which is the interface
to the robotic devices and the sensors. It could be a simulation process. The
second argument gives the percept update convension. When this argument
is all, the agent will expect the external process to send it a list of percept
facts representing the lastest readings of every sensor whenever any sensor
reading changes. When this argument is updates, the agent will expect
only to be told the percept facts that must be deleted, added, or changed
to record just the changed sensor readings.

The start_agent call does the following:

• start the message handling thread - it will receive agent messages

• start the task evaluation thread that is responsible for starting and
ending tasks and to (re)evaluate each task’s call stack (a sequence of
information about the procedure calls which is discussed below) when
the BS changes

• start the percept handling thread and carry out a handshake with the
robot side (using the address in the first argument)

The percept handler sends the message initialise_ to the robot side to
let the robot side know the address of the percept handler and that it should
send back an initial list of percepts. If the robot side does not respond it will
resend the message every five seconds until the robot side responds with an
initial list of percepts. The percept handler will update the BS with these
percepts and then enter a loop where it will wait for, and then process,
percept messages.

13

The next step is to start a task that that starts with an initial TeleoR
procedure call:

| ?∼> start_named_task(get_object(), collector)

The first argument is the initial procedure call and the second argument
is the name given to this task. You will see this task name in the logger and
will become more important in later multi-task agents.

This call will cause the evaluator thread to wake up, add this task to the
list of tasks the evaluator manages, and evaluate its call stack and possibly
send actions to the robot side.

The typical sequence of events that now happens as the program runs
is that the actions that are sent to the robot side cause the robot to either
change the environment or change its view of the environment which in turn
changes the robots perceptions which in turn causes the robot side to send
new percepts to the percept handler thread. This causes the percept handler
thread to update the BS which in turn causes the evaluator thread to wake
up and re-evaluate the call stack of the task, sending new actions to the
robot side. This process continues for as long as the task is running even if
it has achieved its goal.

How the robot side responds to action messages and when and what
percepts are sent to the agent is determined by its programming. We will
discuss that later.

We will shortly explain the semantics of this TeleoR program but first
we show you how to set things up so that you can experiment with the
program. This will involve running the program, running a tool so you can
act as the robot side and running the logger so that you can see what the
program is doing.

In order to do this you will need three terminal windows.
In terminal 1, you should start the Pedro inter-process communication

server (if it is not already running) and the logger process, naming it logger
(or another name of your choice), with the two OS commands:

pedro

logger.py logger

The name logger will be registered with pedro as the name of the Python
process allowing messages to be sent from the TeleoR agent.

In terminal 2, you should start the robot shell giving it a name robo (or
some other name) using:

robot_shell.py robo

14

The name robo will be registered with pedro for this process. There is an
optional -w flag that can be given in the command line. Its role is explained
later.

In terminal 3, in the qulog/examples/introduction directory, you
should execute the following five commands:

teleor -Aagent % Start the teleor interpreter and name the process
| ?∼> [tr_eg]. % Consult the example program
success % System response
| ?∼> logging logger. % Turn logging of task behaviour on
success

| ?∼> go(). % start the agent and task
success

In the program there is the following definition for the go action.

go : act()

go() ∼>
start_agent(robo@localhost, all) ;

start_named_task(get_object(), collector)

This starts the agent and the task that runs the program, giving an
architecture as depicted in Figure 1. For this experiment the source of the
percepts and the destination for the control actions is the robot shell process.

You can use the task name to later terminate the task using a

kill task(collector)

command. If testing a TeleoR program with several procedures you can
now start another task executing a different top level procedure call. A
good strategy is to start with procedure calls that are at the bottom of
the call chain and to work up testing procedures they call already tested
procedures one at a time - bottom up testing of your control program. If
your consulted TeleoR program allowed for multiple robotic resource use,
then you can have more than one task running at a time.

Immediately after start agent is executed, you will see an initialise

message in the robot shell window - this is part of the handshake with the
percept handling thread.

The interaction between the agent, the robot shell and the logger is
depicted in the upper configuration of Figure 2.

We will now step through a scenario that you can reproduce by running
the programs as described above - remember to start to robot shell and
logger before the agent.

15

Robot
shell

Agent

robo ag

All on same host

Robot
interface

Agent

robotI@robothost

ag@aghost

On aghost

Logging
process

logger

Logging
process

logger@aghost

pedro

pedro

Figure 2: Emulating a robot and remote robot control

The first thing you will notice is that the agent shell will display initialise_

in the window and if you do nothing then it will repeat this message. If you
now press the Send button without anything in the Percepts entry box it
will send the empty list of pecepts to the agent.

In the logger you will now see

agent::: ------ Current Percepts and Dynamic Beliefs

[]

agent::: collector: New call stack evaluation:

get_object() - 3 fired

get_to() - 5 fired

[turn(left)]

Robotic actions for collector are: [turn(left)]

16

and in the robot shell you will see

actions(collector, [turn(left)])

The logger shows that the empty list of percepts arrive and then displays
the result of the evaluator calculating the call stack. The third rule of
get_object is chosen because the guard of this rule is the first guard that
is true reading from the first rule. The action of this rule is a call to get_to

and its fifth rule is chosen for the same reason. The action for this rule is
the singleton list containing the robotic action turn(left). This is shown
in the logger and the actions term, which includes the task name and the
list of actions is sent to the robot shell.

The call stack is actually a sequence of data structures that contain the
TeleoR procedure call, the index of the rule chosen and the instantiation of
any variables from the guard of the chosen rules that are used in the action.

Now, playing the role of the robot, you see an object on the left at 10
units distance. You simply enter see(10, left) in the percepts entry box
in the robot shell. The agent responds by re-evaluation the call stack based
on this new percept. The logger diaplays

agent::: ------ Current Percepts and Dynamic Beliefs

[see(10, left)]

agent::: collector: New call stack evaluation:

get_object() - 3 continued

get_to() - 4 fired

[move(4), turn(left)]

Robotic actions for collector are: [move(4), turn(left)]

The call stack above the line of asterisks are unchanged in the re-evaluation
(as the first true guard has not changed) but the chosen rule for get_to has
changed because there is now a see percept. Now the chosen action is a
combination of moving and turning. Although not shown in the logger, the
entry in the call stack for get_to has the variable Dir instantiated to left.
The robot shell displays the new robotic actions.

Now imagine something in the environment moves this object and so you
might enter see(8, right). Again, the agent will re-evaluate its call stack
based on the new percept and the logger will show

17

agent::: ------ Current Percepts and Dynamic Beliefs

[see(8, right)]

agent::: collector: New call stack evaluation:

get_object() - 3 continued

get_to() - 4 refired

[move(4), turn(right)]

Robotic actions for collector are: [move(4), turn(right)]

The same rule of get_to is chosen but the variable Dir is now instantiated to
right causing the robot to now start turning right. The robot shell displays
the updated actions.

Now you might enter the percept see(5, centre). The agent will re-
evaluate its call stack based on the new percept and the logger will show

agent::: ------ Current Percepts and Dynamic Beliefs

[see(5, centre)]

agent::: collector: New call stack evaluation:

get_object() - 3 continued

get_to() - 3 fired

[move(6)]

Robotic actions for collector are: [move(6)]

Now you might imagine the robot arriving at the object and so you enter
the percept see(0, centre). The logger will now display

agent::: ------ Current Percepts and Dynamic Beliefs

[see(0, centre)]

agent::: collector: New call stack evaluation:

get_object() - 2 fired

[grab()]

Robotic actions for collector are: [grab()]

18

Now rule 2 of get_object is chosen and you might now enter the per-
cepts:

see(0,centre), holding()

Note that you need to repeat the see percept because you are using the
all percept interface.

The logger now shows

agent::: ------ Current Percepts and Dynamic Beliefs

[holding(), see(0, centre)]

agent::: collector: New call stack evaluation:

get_object() - 1 fired

[]

Robotic actions for collector are: []

Now the overall goal of the program has been achieved.
If this was a traditional program you might think the program would

now terminate as it has achieved its goal. However this is not the case as
TeleoR prgrams are achieve-and-maintain and so the program continues to
run.

If you now imagine removing the object from the robot’s grasp then you
would send the empty (set of) percepts. In response to this the logger will
now show the same as when you began:

agent::: ------ Current Percepts and Dynamic Beliefs

[]

agent::: collector: New call stack evaluation:

get_object() - 3 fired

get_to() - 5 fired

[turn(left)]

Robotic actions for collector are: [turn(left)]

and it would start scanning for a new object.
We now consider the part of the semantics of TeleoR programs neces-

sary to explain the behaviour of this program. We will give the extended
semantics of other constructs as we introduce them via the later examples.

19

The robot side will send lists of percepts (starting with the initial per-
cepts) to the percept handling thread. Each time the percept handler gets
a list of percepts it will update the BS. This will continue for as long as the
agent is running.

At some point start_task will be called and that will cause the evaluator
thread to generate an initial call stack for the task. Each call stack is a
sequence of triples consisting of a procedure call, a rule number and a list
of variable bindings for variables that are instantiated in the rule guard and
used in the rule action. The procedure call of the first triple in the sequence
is the call in start_task. For each subsequent triple in the sequence the
procedure call is the action of the chosen rule of the previous element in the
sequence.

The action of the chosen rule of the last element of the sequence is a list
of robotic actions (possibly the empty list).

To compute the chosen rule for each element of the call stack the eval-
uator begins at the first rule and evaluates the guard. If that guard is true
(possibly instantiating variables) then that rule is chosen. If the guard is
false then it moves on to the second rule and repeats the process. Therefore
the chosen rule is the first rule whose guard is true.

If none of the guards are true the evaluator raises an exception and the
agent is terminated.

When this program is run (assuming that the percept handler has not
added any percepts to the BS) then, as highlighted in the logger, the initial
call stack will be

<(get_object(), 3, []), (get_to(), 5, [])>

When the percept handler updates the BS with see(10, left) the eval-
uator will build the following call stack.

<(get_object(), 3, []), (get_to(), 4, [left])>

Recall that the variable Dir in the guard will be instantiated to this value.
Now when the percept see(8, right) arrives the percept handler will

replace the fact see(10, left) with see(8, right) in the BS. The evalu-
ator will then build the call stack

<(get_object(), 3, []), (get_to(), 4, [right])>

We say that, upon re-evaluation of the call stack, an entry that remains
the same is a rule continuation, an entry with the same procedure and same
rule number but with a different variable instantiation is a rule refiring and
otherwise is a rule firing.

20

So, in the example above the first entry is a continuation in each re-
evaluation, the second entry in the first re-evaluation is a firing and the
second entry in the second re-evaluation is a refiring.

The astute reader will notice that, for this program, it is not necessary
to construct a call stack at all. Simply following the chain of chosen rules
would be enough. We will see later as we add more constructs that we will
need to keep track of the previous rule choices and variable instantiations -
the previous call stack.

Related to semantics, Nilsson introduced two definitions that are useful
for both designing and reasoning about TeleoR procedures: regression and
completeness.

A TeleoR procedure has the regression property if the action of each rule
(except the first) will normally, eventually, make an earlier guard true and
it has the completeness property if, for a given state of the system, at least
one guard is true. If a TeleoR procedure has these properties then it will
typically make progress towards its ultimate goal.

We say “normally, eventually” because the environment might continu-
ally thwart the agent. We assume the environment is not so hostile that the
agent won’t be able to make progress if it tries for long enough.

As you might imagine, keeping these ideas in mind when designing
TeleoR agents can be of great help. They have also been used to prove
properties about progress given reasonable assumptions on the environment.

Later we will see examples where we slightly relax the regression property
and another example where we generalize this property making it more
flexible in certain applications.

3.2 Simple Bottle Collector: commit while and timed se-
quences

The file qulog/examples/bottle_collector/bottleCollector.qlg con-
tains a slight extension of the example program above. In this case, the
agent repeatedly finds and goes to a bottle, picks it up and delivers it to a
drop. This example is supported by a Python simulation of the environment
that you can interact with: creating and removing bottles and dragging them
around. Instructions on running the program are in the comments near the
beginning of the file.

We now update the type declarations to add dead_centre as a direction
and a type declaration for things the agent is interested in.

def dir::= left | centre | dead_centre | right

def thing::= bottle | drop

21

The percepts and the robotic actions are extended.

percept holding(), gripper_open(), see_at(thing, int, dir),

over_drop()

def robotic_action ::=

open_gripper() | close_gripper() |

move(num) | turn(dir,num)

We have added a speed for moving and turning that we vary as we get
close to the object of interest.

The top-level TeleoR procedure is more complex as it needs to collect a
bottle and deliver it.

tel collect_bottle()

collect_bottle(){
delivered() ∼> ()

next_to_centre(drop) & holding() ∼> open_gripper()

holding() ∼> get_next_to(drop)

next_to_centre(bottle) & gripper_open() ∼> close_gripper()

next_to(bottle,Dir) & gripper_open() ∼> turn(Dir,0.2)

gripper_open() ∼> get_next_to(bottle)

true ∼> open_gripper()

}

The guards are now typically relation calls that are defined in terms of
the facts in the BS. For example

rel next_to(?thing,?dir)

next_to(Thing, Dir) <= see_at(Thing, Dist, Dir) & Dist < 1

rel delivered()

delivered() <= next_to(drop,_) & next_to(bottle,_) & gripper_open()

You will notice that the action of two rules are both calls on the TeleoR

procedure get_next_to but with different arguments. This procedure is
defined as follows.

22

tel get_next_to(thing)

get_next_to(Th){
next_to_centre(Th) ∼> ()

next_to(Th,Dir) ∼> turn(Dir,0.3)

close_to(Th,_) ∼> approach(Th,0.5,0.5)

% Now very near to Th, slow right down

near(Th,_) ∼> approach(Th,1.5,0.5)

% more slowly to achieve very_near(Th,Dir)

see(Th,_) ∼> approach(Th,2.5,0.3)

% approach Th quickly to achieve near(Th,_)

true ∼> [turn(left,0.5):7,move(2):2]

% Th not in sight, wander hoping to see it

}

Again notice that the TeleoR procedure approach takes different argu-
ments (speeds) depending on the situation.

The new construct in this procedure is the action of the last rule: a timed
sequence. This is a list of action, time pairs and the semantics for this case
is that as long as this rule continues then the turn action will be active for
7 seconds and then the move action will be active for 2 seconds and this
will be repeated indefinitely (for as long as the rule is active). This gives
the robot a simple wandering (searching) behaviour. If the last entry has
no time component then the semantics is that the last action will be active
indefinitely.

This example shows where we really need the call stack as it keeps track
of any timers (delays) and the evaluator needs to be able to access all the
current delays recorded in the call stack.

The objective of the procedure approach is to get close to a given thing.

tel approach(thing,num,num)

approach(Th,Fs,Ts){

see(Th, Dir) & centre_dir(Dir) ∼> move(Fs)

see(Th,Dir) commit_while dir_or_centre(Th, Dir) ∼>

23

move(Fs),turn(Dir,Ts)

}

The second rule uses another new construct: commit_while. In the ex-
ample the semantics is, when this rule fires, the rule will stay active within
this procedure while dir_or_centre(Th, Dir) is true for the fired instan-
tiation of Dir even if see(Th,centre) becomes true. In other words when
this rule fires it “takes over” the procedure. The purpose of this construct
is to “over achieve”.

Superficially, it seems that the commit_while is not needed - if the second
rule is chosen it will turn in the appropriate direction until the thing is seen
at centre. The problem is that we will flip rules as soon as the boundary
between left, say, and centre. After moving a small distance we will flip
back to the second rule. This causes the robot to “flutter” along the boundry
between left and centre. If you remove the commit_while and run the
program and simulation you will see this happening. By commiting until
dead_centre is reached it will be a while before it moves off track.

Because the commit_while takes over you need to be very careful getting
the test right. If it’s not quite right it might not give up control when it
should. The definition of dir_or_centre covers the cases in which we want
the action to continue:

rel dir_or_centre(thing, dir)

dir_or_centre(Th, Dir) <=

see(Th, Dir)

dir_or_centre(Th, _) <=

see(Th, centre)

If the environment moved the thing from, say, left to right then
dir_or_centre(Th, Dir) will fail and the second rule would refire and
the action would now be to turn right. On the other hand if the thing
stays where it is then dir_or_centre(Th, Dir) will remain true until the
direction becomes dead_centre.

3.3 Cooperating Bottle Collector: or while, messages, at-
tached QuLog actions, modified regression

The file qulog/examples/bottle_collector/coopBottleCollector.qlg

is also a TeleoR control program for a bottle collecting robot but with im-
portant differences from the program just discussed. The controlled robot is

24

in a physical space occupied by second bottle collecting robot controlled by
another agent. Collisions, even near misses, must be avoided, and the robot
agents have a joint task of having their robots collect and deliver to a single
drop area a specified number of bottles. When this total has been reached
each robot should stop collecting bottles. Both robots are controlled using
the same TeleoR program.

In order that each robot can be stopped when the requisite number of
bottles have been collected their controlling agents communicate via the
Pedro server. When each agent is launched using the teleor command it is
given its own public name and each agent sends messages to the other using
its public name.

To avoid collisions the robots need to have some means of ’seeing’ each
other. Minimally each robot needs to be able to sense when the other robot is
’near’ and ’in front’. Each has a camera with simple image analysis software
that generates the see(thing,dir) percepts where thing is a bottle or the
drop. We shall assume this is now able to generate see percepts where thing
is robot. If we are just using colour blob detection, all we need to assume is
that each robot has a different colour from bottles and the drop. We could
have, for example, painted each robot in such a way that the camera image
processing could determine the approximate orientation of a seen robot as
well as its distance and relative direction. Generally, the more sophisticated
the percepts the less work the agent needs to do in determining what to do.
We have deliberately kept visual processing simple to show that, when we
have communication, message exchange can be used to enhance perception.

Recall that when an TeleoR agent is started it creates a message thread
for processing messages - all messages sent to an agent are placed in the mes-
sage queue of this thead. We must therefore program the message handler
to convert such messages into dynamic beliefs which can be queried along
with the latest percepts in TeleoR action rules. In addition TeleoR action
rules have to include message send actions to other controlling agents, as
well as action messages to controlled robots.

3.3.1 Programming the message handler

The agent message handler is programmed by defining a QuLog action pro-
cedure with system declared type3:

act handle_message(!message,!agent_handle)

3The handle message type need not, indeed should not, be included in the agent
program. Only the QuLog rules defining the handle message action need be given.

25

Here message is a programmer defined type specific to the agent application.
The message type, and any other user defined types it uses, defines the inter-
agent communication ontology of the application.

The TeleoR agent system code that is executed as the outer loop code of
the message handling thread calls the application specific handle_message

QuLog procedure whenever it receives a ground message of type message.
All other messages are discarded unless the programmer has also defined the
action handle_invalid_message of system declared type:

act handle_invalid_message(!string, !agent_handle)

This takes a string representation of the non-message as argument.
In this application it is easy to see that the only messages are ground

messages of type message and so there are no invalid messages. Hence we
do not need to define handle_invalid_message. However, for purposes of
illustration, we assume there might be other agents, perhaps written in a
different language, that also send messages to the robotic agents. It could
also be argued that when developing the application code it might be good
defensive programming to assume invalid messages might be received by an
agent.

In the example below this action simply displays a message to standard
output. If these were real robots with the agent running on the robot then
there would be no standard output and so, instead, we could send a message
to a monitoring process for dispay or logging.

We start with the message type declaration.

def message ::= count(int) | stopped() | stopped_dir(dir)

The first constructor is for updating the collection count and the second
and third are for conflict avoidance.

We also want to send these messages to the simulation so the messages
can be displayed and to do that we add the following type declaration.

def display_info_t ::= display_info(message)

We now give the two system declared, programmer defined message han-
dling actions.

26

handle_message(count(Count),_) ∼>
other_collected := Count

handle_message(stopped(),_) ∼>
forget([stopped_received()]);

remember_for([stopped_received()], 4)

handle_message(stopped_dir(Dir),_) ∼>
forget([stopped_received()]);

remember_for([stopped_dir_received(Dir)], 4)

handle_invalid_message(Message,Agent) ∼>
write_list(["Invalid message received: ",Message,nl_])

Two of the above rules update the belief store and so we declare appro-
priate dynamic relations below. Global variables are used and so are also
declared below.

int other_collected := 0

int collected := 0

dyn stopped_received()

dyn stopped_dir_sent(dir)

dyn stopped_dir_received(dir)

Each action for handle_message forwards the received message wrapped
with display_info to the Python env process which displays them. The
first rule updates the count for the other robot. The next two remember a
fact for 4 seconds. The addition and then removal of these facts cause the
agent to pick different TeleoR rules in an attempt to avoid conflict. The
last rule deals with invalid message messages from other agents - the other
agent sees the message sent to it from this agent as invalid.

3.3.2 Exception handling rules

The typical structure of a TeleoR procedure is a linerisation of a sub-goal
tree routed at the guard of the first rule. When called, the partially instan-
tiated first rule guard is the goal of the call, and the partially instantiated
guards of the later rules are sub-goals of the call goal. The leaf goals of this
sub-goal tree represent initial states of the robotic agent’s environment that
might prevail when the procedure is invoked. They are handled by an action

27

rule with a guard LG towards the end of the rule body with an action that
will normally bring about an environment state in which some guard G of a
higher rule will hold.

However, in some applications exception situations can occur at any time
during the procedure call, usually entirely outside of the agent’s control. An
example is a possible collision that is signalled by a percept that another
robot is close. The action of such a rule should ensure there is no collision
and ultimately result in an environment state in which another robot is not
perceived as close. That is, the goal the action response should achieve is
often just the negation of the rule guard. The issue is where to place such
exception rules.

One solution is to place them at the end of the normal rules. Such a
TeleoR procedure body would then take the form

{
G1 ∼> A1

...

Gn ∼> An

EG1 ∼> RA1

...

EGm ∼> RAm

}

where G1,...,Gn are the guards detecting the ”normal” environment states
which have a sub-goal ordering rooted at the guard G1 and EG1,...,EGm are
the guards of the exception rules. The Gi guards fall into normal sub-goal
tree where a later guard will not hold, so a later rule will not fire, when an
earlier guard holds, and that is exactly what we want to happen.

But with exception rules we need them to fire as soon as the exception
is detected. It will not generally be the case that when an exception occurs
that none to the normal guards G1,...,Gn holds. To give precedence to
exception handling, we will have to augment the normal guards to explicitly
rule out the possibility that an exception needs to be handled. In other
words we would have to include the equivalent of the conjunction

not EG1 & ... & not EGm

as part of each Gi.

28

Further, EGm is typically the worst exception and EG1 is the least worst
exception and it is usually the case that each EGi will explicitly include the
conjunction of the negation of later exception rule guards.

In the ’logical’ semantics of TeleoR rules each guard implicitly contains
the conjunction of the negations of all earlier guards. In the example above
we have had to explicitly add the conjunction of negations of exception rule
guards and so, from a logical semantics point of view it would make more
sense to put the exception rules first, even though their guards will not
usually have a sub-goal relationship and the guard G1, giving the goal of
each procedured call, will no longer be the guard of the first rule. For the
same reason, when we put the exception rules first we would typically invert
the order.

It could also be argued that from a readability point of view putting the
exception rules first signals their importance. On the other hand, also from
a readability point of view, the casual reader of such a procedure might not
notice that the exception rules are special or that normal regression is not
being followed.

Our solution is to bracket the exception rules using >>>, <<< chevron
sequences (which are purely syntactic). The chrevons indicate that the rules
inside the chevrons are special. They take priority over the normal sub-goal
achieving rules but their guards are not sub-goals of the goal for which the
procedure is invoked, and their actions are not required to ’achieve’ the guard
of a higher exception rule. Quite the contrary, their actions are intended
to change the environment so that none of the exception guards will hold,
allowing a return to the normal sub-goal regression using the rules below
the <<<.

The revised procedure body would then have the form:

{
>>>

EGm ∼> RAm

...

EG1 ∼> RA1

<<<

G1 ∼> A1

...

Gn ∼> An

}

29

Now, G1,...,Gn do not now have to explicitly mention the negation of the
exception rule guards.

The guard evaluation order for the exception rules is before-after as for
the regression rules. So where there is more than one exception condition
that needs to be handled, the rules will typically be ordered so that the
most serious exception condition is handled by the guard EG1 of the first
exception rule. Further, the guard EGi of an exception rule lower down the
exception rule sequence will typically be a lesser exception condition, and
the repair action RA1 of the first rule could be such that it normally brings
about the lower exception rule guard EGi. So we could have an inverted sub-
goal tree of exception rule guards with actions that are intended to descend
the exception sub-goal structure of regression rule guards so that eventually
a normal goal achieving following the <<< can be fired.

3.3.3 The co-operating bottle collector main procedure

The top-level TeleoR procedure contains several new constructs.

tel communicating_collect_bottles(nat,agent_handle)

communicating_collect_bottles(Total,OthrAg){
>>>

near(robot, _) commit_while min_time 6 ∼>
avoid_robot(OthrAg)

% Rules between the chrevron >>> and <<< brackets

% are exception reaction rules for handling

% exceptional events

<<<

% The normal goal directed regression rules start here

$collected + $other_collected >= Total ∼> ()

delivered() or_while min_time 5 ∼>
[turn(right,0.5):3,move(1.5)] ++

update_and_communicate_count(OthrAg)

holding() & next_to_centre(drop) ∼> open_gripper()

holding() ∼> get_next_to(drop)

next_to_centre(bottle) & gripper_open() ∼> close_gripper()

next_to(bottle,Dir) & gripper_open() ∼> turn(Dir,0.3)

gripper_open() ∼> get_next_to(bottle)

true ∼> open_gripper()

}

30

As discussed in the previous section, the top-level goal of this agent proce-
dure is the guard of the second rule, not the first rule as is normally the
case. The guard of the first rule, near(robot,), is an exception condition,
a condition that if all goes well will not occur. But if it does occur, we must
temporarily jump out of the sub-goal regression behaviour of the rules be-
low the <<<, to bring about a situation in which the percept near(robot,)

is no longer received by either robotic agent executing separate calls to
communicating_collect_bottles.

Notice that the exception handling rule has a min_time component. This
rule is a shorthand for

near(robot, _) commit_while min_time 4 ∼> avoid_robot(OthrAg)

and instead of commiting to the rule while a test is true we commit to the
rule for 4 seconds. This gives the agent 4 seconds to avoid the conflict.

The third rule uses a or_while. As with commit_while, the test is an
alternative to the rule guard after the rule has been fired. The action of the
rule will continue while the guard or the test remain inferable, providing no
earlier rule in the procedure has an inferable guard. It normally takes a test
and in that case it takes over this rule (only) while the test is true. In this
case it means that the action sequence [turn(right,0.5):3,move(1.5)]

will continue for 5 seconds providing neither of the two earlier rules can fire,
that is providing the other robot is not seen as near and the sum of the
counts of the delivered bottles does not equal or exceed the target total.
Recall that messages are concurrently being received in the agent’s message
handling thread so a count update message from the agent controlling the
other robot may cause the second rule to fire. The first rule will fire if the
other robot is seen as close.

This rule also contains the ++ operator. This is a QuLog action that is
attached to the rule action and when this rule is fired or refired this action is
executed. In this case this action updates it’s local count and communicates
that to the other agent.

Attached actions are also used in the TeleoR procedure below but in a
shorthand form.

tel avoid_robot(agent_handle)

avoid_robot(OthrAg) {

stopped_dir_sent(OtherRobotDir) &

stopped_dir_received(MyRobotDir)
∼> avoid_move(MyRobotDir,OtherRobotDir)

31

other_robot_is_stopped() & near(robot,OtherRobotDir)
∼+> send_stopped_dir_remember_sent(OtherRobotDir,OthrAg)

true
∼+> send_stopped(OtherAg)

}

The rule operator ∼+> may be used when the TeleoR action is the null action
to emphasise that there is no robot action. The last rule of avoid robot is
shorthand for:

true ∼> () ++ send_stopped(OtherAg)

The robots avoid one another using the same set of avoidance rules:

tel avoid_move(dir,dir)

avoid_move(MyRobDir,OtherRobDir){

centre_dir(MyRobDir) & centre_dir(OtherRobDir) ∼>
[turn(left,0.5):2, move(1.0)]

% Robots see each other head on, both turn left then move forward

MyRobDir=OtherRobDir ∼> [turn(MyRobDir,-0.2):2, move(1.0)]

% Each robot sees the other on its left or right. Each turns slightly in opp
% direction to increase divergence of their paths then move forward.

centre_dir(MyRobDir) ∼>
[turn(OtherRobDir,-0.4):2, move(1.0)]

% Only this robot sees the other in centre view. Other robot will do
% nothing, as per rule below, until it can no longer see this robot. This
% robot turns to point behind the other robot then moves forward.

centre_dir(OtherRobDir) ∼> ()

% Other agent will be doing an avoid move using rule above.
% This robot waits until other robot no longer seen.

true ∼> [turn(MyRobDir,-0.4):2, move(1.0)]

% One sees other on its left, the other sees it on its right. Each
% turns slightly away from the other robot. They then pass each other
% slowly. Both are using this rule.

}

32

3.4 Nilsson’s Simple Block Tower Builder: Cognitive control
and Recursion

The file qulog/examples/towers/towerBuilder.qlg contains a very sim-
ple tower builder program - a direct translation of the example given by
Nilsson in [3].

We give this simple example for three reasons: firstly to pay homage to
Nilsson and his elegant invention of Teleor-Reactive Programming; secondly
to give an example of a recursive TeleoR procedure; and thirdly as a pre-
cursor to the introduction of multiple tasks, sharing and alternating the use
of one or more physical resources.

The tower builder problem introduced by Nilsson consists of a table con-
taining a collection of numbered blocks and a robot arm that can pick up
blocks and build a tower of numbered blocks in a given order. The environ-
ment might cover needed blocks, shuffle (partly built) towers or even help
build the tower or uncover needed blocks. There is a simplifying assumption
that there is enough room on the table for every block to be placed directly
on the table in the area that can be reached by the robot arm.

The relatively high level robotic actions and percepts that we can assume
are:

def robotic_action ::= pickup(block) | put_on_block(block) |

put_on_table()

percept holding(block), on_table(block), on(block,block)

In this case the emphasis of the TeleoR agent control program is cognitive
control - knowing what block move action should be attempted next to
efficiently achieve a built tower goal.

The top-level TeleoR procedure does not directly invoke any robotic
actions. It calls subsidiary TeleoR procedures, and itself. It is recursive.

33

tel makeTower(list(block))

makeTower(Blocks){
tower(Blocks) ∼> ()

stack(Blocks) & Blocks=[Block,..] ∼> unpile(Block)

Blocks=[Block1,Block2,..Rest] & tower([Block2,..Rest]) ∼>
move_to_block(Block1,Block2)

Blocks=[Block] ∼> move_to_table(Block)

Blocks = [_,..Rest] ∼> makeTower(Rest)

}

The unpile procedure clears blocks above a block of interest.

tel unpile(block)

unpile(Block){
clear(Block) ∼> () % The goal of the procedure is achieved

on(OnBlock, Block) ∼> move_to_table(OnBlock)

}

tower, stack and clear are inferred from the on table and on percepts
using the following rules.

rel stack(?list(block))

% The ? means list of labels may be given or generated

stack([Block]) <= on_table(Block)

stack([Block1,Block2,..Blocks]) <=

on(Block1,Block2) & stack([Block2,..Blocks])

rel tower(list(block))

tower([Block,..Blocks]) <=

not on(_,Block) & stack([Block,..Blocks])

rel clear(block)

clear(B) <= not on(_,B)

The basic move procedures are given below.

tel move_to_block(Block1:block, Block2:block)

34

% Moves Block1 from wherever to be on Block2

move_to_block(Block1,Block2){ % Only called if Block2 is clear

on(Block1,Block2) ∼> () % The goal is achieved

holding(Block1) & clear(Block2) ∼> put_on_block(Block2)

holding(_) ∼> put_on_table()

clear(Block1) & clear(Block2) ∼> pickup(Block1)

clear(Block2) ∼> unpile(Block1)

% Need to clear Block1 to pick it up

true ∼> unpile(Block2)

}

tel move_to_table(block)

move_to_table(Block){
on_table(Block) ∼> () % Goal is achieved

holding(_) ∼> put_on_table()

clear(Block) ∼> pickup(Block)

true ∼> unpile(Block)

}

Note that makeTower is a recursive procedure and that unpile and
move_to_table are mutually recursive.

To reinforce the differences between TeleoR procedures and procedures
of traditional procedural code we focus on two aspects of this program.

First we consider recursion. In traditional programming a recursive call
is made and eventually the child call will return and the parent will continue
and eventually return itself. For TeleoR procedures the parent will pick a
rule that calls the child TeleoR procedure. This is similar to traditional
procedure calls. The important difference is that the child procedure never
returns. Each procedure is continually monitoring the state and eventually
the parent will pick a different rule and the child procedure will no longer

35

be active.
The second procedure we consider is unpile. On superficial reading

you might think that the second rule will move blocks to the table. This
is only partially true. Consider the case where Block is covered by ex-
actly one block OnBlock. In this case the third rule of the procedure call
move_to_table(OnBlock) will fire causing the arm to pick up the block. As
soon as the block is picked up the first rule of unpile fires and so it does not
complete the move to the table. For this reason it might have been better
to rename unpile to something like remove_blocks_above.

You will notice that both move_to_table and move_to_block have a
rule to deal will holding an unwanted block. This is partially to deal with
this problem but also because the environment might rearrange the blocks
in a partial tower and the block being held intended for that partial tower
will now need to be put on the table.

3.5 Simple Multi-Task Tower Builders: Tasks, Resources

The previous example consisted of a single task that builds a single tower.
What if we want to have multiple tasks each building their own tower?
The first problem is if two tasks need to use the same block to build their
towers. Clearly this is not going to be possible. However, assuming the
blocks needed for each tower are disjoint, we must ensure that the tasks do
not attempt to control the one arm at the same time. Unless we allow each
task to finish its tower before starting another tower building task, which is
not multi-tasking, we must fairly alternate the use of the arm between the
tasks.

The arm can be thought of as a resource. A tower building task T needs
to have exclusive use of the resource whenever it needs to move a block.
It can then release the resource when the block move is completed, or is
abandoned because that move is no longer the next thing that must be done
in task T, due to outside interference. For example, the move of a block B1

to lie on top of another block B2 will be abandoned if outside interference:

• has covered B2,

• moved B2 so it is no longer the top block of a partly built tower,

• covered B1 with a block,

• helped by moving B1 to be on top of B2.

36

In traditional programming exclusive use of a resource is often accom-
plished by using locks. In TeleoR, exclusive access to one or more resources
is achieved in a more declarative fashion by simply specifying which proce-
dures may be called to start a resource sharing task, and which procedures
must be given exclusive access to the resources they need before a call to the
procedure in some task T can proceed. The resources will be released im-
mediately T terminates the call to the procedure, for whatever reason. The
management of the resource sharing is done using a combination of extra
code generated for such resource using procedures, and by the multi-tasking
TeleoR evaluator. The result is round-robin fair allocation of resources be-
tween tasks, with no task starved of the resources it needs.

As an example, we use the program in the file
qulog/examples/towers/oneArmTowerBuilders.qlg

which is almost identical to the above program.
The first change is to decide which TeleoR procedures can be called to

start a task in a multi-tasking context. The procedures so declared are the
only ones that can be used as the top-level procedure call of a task. These
declarations are used by the TeleoR compiler to generate possible call tree
information related to resource use.

In this example we simply change the declaration of make_tower to

start_tel makeTower(list(block))

The only other change we need to make is to decide the granularity of
the interleaving of the use of the arm resource by tasks. We do this by
declaring certain procedures as atomic tel. There is one major constraint
on our choice of the atomic procedures - the resource use constraint. Every
procedure P that has a robotic action rule, i.e. a rule with one of the actions:

pickup(block), put_on_block(block), put_on_table()

must either be declared an atomic tel procedure, or in the call graph of the
program procedures every path beginning at makeTower must pass through
an atomic tel procedure before it reaches a procedure with robotic action
rules.

The maximum interleaving will be achieved by declaring as atomic tel

only those procedures that contain at least one robotic action rule and are
the first such procedures on some path of the program call graph starting
at makeTower.

Figure 3 shows the call graph of the tower building program. We could
satisfy the resource use constraint by declaring makeTower to be atomic tel.

37

Figure 3: Call graph of single arm tower builder program

The first task to be launched will acquire the arm resource and will re-
lease it only when its tower is completed and makeTower fires its first rule.
There will be no interleaving. For maximum interleaving we should declare
move to block and move to table as atomic tel procedures. Both proce-
dures contain robotic action rules and in the call graph no path from either
procedure back to makeTower has procedure with a robotic action rule.

atomic_tel move_to_block(block, block)

atomic_tel move_to_table(block)

In this example that is all the programmer needs to do. Now we can have
multiple tasks running, each building a different tower, with reasonably fair
interleaving of their use of the robot arm with every tower eventually built
providing there is no persistent outside interference that repeatedly takes
apart built towers before all have been built.

It should be noted that the first rule of each atomic procedure has to
have the null action as the robotic action. This signals the evaluator that
the task can give up the resource even if no parent procedure chooses a
different rule when the goal of the atomic task has been achieved.

38

In this case we have only one resource and so we can think of the atomic
tasks as having to grab all resources. In the next example we have multiple
resources and tasks might only want to grab a subset of resources. This can
lead to tasks running in parallel if they use non-overlapping resource.

The task evaluator maintains a set of running tasks and a queue of
waiting tasks together with what resources they are using or want to use.
When the task evaluator re-evaluates tasks it first considers the running
tasks. If the call stack changes only inside the outermost atomic call (and
the first rule is not fired) then the task will continue to run. Otherwise it is
added to the end of the wait queue.

Once the running tasks have been processed it considers the waiting
tasks in queue order. If the re-evaluation of the first task leads to a call on a
atomic procedure and its resources are not being used it becomes a running
task. If not it maintains its position in the wait queue possibly waiting on
a new set of resources.

The evaluator continues through the remainder of the wait queue and a
waiting task T will become running it the required resources do not overlap
with any running task, or waiting task that is earlier on the wait queue than
T. The second of these requirements provides a degree of fairness.

If you run this program using the simulator you will see that the tasks
take turns building their towers. However, if you add extra blocks on top
of two of the towers, you will notice that instead of the arm alternating
the removing of the extra blocks from each tower, all the extra blocks are
first removed from one tower before any is removed from the other. This is
because unpile is called from within move_to_table, which is declared to
be atomic.

For this reason we have also included
qulog/examples/towers/oneArmTowerBuildersIterUnpile.qlg

that uses an iterative version of unpile and so is not mutually recursive
with move_to_table. It therefore produces better interleaving of the tasks
when unpiling. In making this change we also added two more rules to
makeTower while removing two rules from move_to_block and one from
move_to_table. In this program the definition of unpile is

unpile(Block){
clear(Block) ∼> ()

top_block_above(TopBlock, Block)

or_while holding(TopBlock) ∼> move_to_table(TopBlock)

}

39

In this version, apart from being iterative, we also use or_while. The reason
for this is, when the rule fires, TopBlock will be instantiated to the current
top block above Block. When this block is picked up as part of the move
to table then, without the or_while the rule will refire with a different
instantiation of TopBlock. This will cause the atomic move_to_table to
become waiting. Another task will become running, putting this block down.
With the or_while the task will complete the block move and only then give
up control to another task. If you run this program and a variant with the
or_while deleted you will notice by carefully observing the task colours on
the arm that this is indeed the case.

Note that, semantically, or_while is different from using a disjunction.
Consider the two rules

g(X) or_while w(X) ∼> a(X)

and

g_or_w(X) ∼> a(X)

where g_or_w(X) is the disjunction of g and w. Now consider a case where
the first rule is fired with the instantiation X = v making g(X) true. In
order for the second to have the same semantics we would need to call g(X)
before w(X). Now imagine that w(v) becomes true and at the same time
g(v) becomes false. The first rule will continue but the second rule might,
instead, refire if X = v is not the first instantion found that makes w(X)

true.

3.6 Multi-Task, Multi-Arm, Multi-Table Tower Builders: Re-
source Declarations

The file qulog/examples/towers/twoArmCoopTowerBuildersMod1.qlg con-
tains a tower buider that has two “home tables” where the towers are to
be built with each task having a home table and with a shared table that
sits between the two home tables. There are two arms with each associated
with a home table and where each arm can reach both its home table and
the shared table.

Now we have an additional problem we need to avoid and that is the
two arms conflicting on the shared table. We avoid this by making both the
tables and the arms as resources with the following type declaration.

def resources == arm || table

40

If the user does not declare this type then the system uses a default
declaration that is equivalent to the user making the declaration

def resources := all__

Typically the atomic procedures will take one or more resources as ar-
guments as in the following declaration.

atomic_tel move_to_block(arm,block,table,block,table)

In any case, if resources have been declared the TeleoR compiler looks
at all possible call stacks of atomic procedures and determines the set of
resources that might be used. If the atomic procedures have resource argu-
ments they will be variables in the program and so the actual resources that
are required are determined at runtime.

If a task needs to move a needed block from the other home table to a
tower on its home table then it will first require the other arm, the other
table and the shared table as resources and then the home arm, home table
and the shared table.

On the other hand if the task only needs to move a block locally then it
only needs the home arm and the home table leaving a task to build a tower
on the other table using its home arm. We therefore get tasks running in
parallel when they have non-overlapping resource needs.

We can further improve parallelism if we consider the case where one task
is moving a block from the shared table to table2 using resources arm2,

shared, table2 and another task wants to move arm1 to the shared table.
As soon as the first task starts moving towards table2 - i.e. tracking(arm2)
becomes true then the second task can safely use the shared table. We
can accomplish this by defining the system declared, user defined relation
overlapping_resources as follows

%% overlapping if the same arm is in both resources lists

overlapping_resources(Res1, Res2) <=

arm1 in Res1 & arm1 in Res2

overlapping_resources(Res1, Res2) <=

arm2 in Res1 & arm2 in Res2

%% if there are no arms in common then the only possible

%% overlap is because both resources included the shared

%% table and require different arms so below we check that

%% the shared table is required by both tasks. If both are

%% over their home tables but require the shared table then

%% there is an overlap

41

overlapping_resources(Res1, Res2) <=

shared in Res1 & shared in Res2 &

over_home(arm1) & over_home(arm2)

%% If one is over home and the other is over the shared table

%% but is not tracking then that task is not finished with the

%% shared table and so there is an overlap

overlapping_resources(Res1, Res2) <=

shared in Res1 & shared in Res2 &

over_home(arm1) & not tracking(arm2)

overlapping_resources(Res1, Res2) <=

shared in Res1 & shared in Res2 &

over_home(arm2) & not tracking(arm1)

If the user does not define this relation the system uses a default defini-
tion that is the same as if the user had made the following definition.

overlapping_resources(Res1, Res2) <=

R in Res1 & R in Res2

The evaluator uses this relation to determine if resources overlap and, if
not, allows the tasks to run in parallel.

In the above we define overlapping_resources purely to improve par-
alellism. In qulog/examples/towers/twoArmSlotTowerBuilders.qlg, how-
ever, we can’t use the default definition because each running task requires
access to a range of slots and so overlapping resources is not based on equal-
ity but on intersection.

These programs use the system declared, user defined hook for accessing
resources. In this case we have

def resources_message_ ::=

locked_resources(term) | waiting_resources(term)

resources_hook() ::

get_active_resources(Resources) &

get_waiting_resources(WResources)
∼>

locked_resources(Resources) to twoArmSim ;

waiting_resources(WResources) to twoArmSim

This is so that our simulator can colour the arms and tables with the
task colours to visualize which tasks are using the resources. Typically this
will want to access the relations that retrieve the current active and waiting

42

resources as above. This hook is called by the evaluator each time it has
completed its task re-evaluations.

It’s up to the programmer to decide how to use this. For example,
another process might be used to monitor task resource use over time.

Because this program sometimes requires transferring blocks across ta-
bles using both arms and because we wanted to increase efficiency by having
tasks cooperate more when moving unwanted blocks we have made several
modifications to the basic structure of the one arm tower builder.

The first modification is using the procedure coop_move to move un-
wanted blocks. Sometimes such a block is (eventually) needed by another
task and so this task can help the other task by, for example, moving the
block to the shared table so that the other task then only needs to do a
single move.

The second modifications arises because of the more complex move se-
quences - instead of using an iterative unpile we have moved unpiling rules
into makeTower and made them iterative.

The makeTower procedure is given below. Note that we have used
commit_while in the rules involving coop_move rather than or_while as
in unpile in the previous program. This is because we want each of these
rules to commit to completing a cooperative move. As discussed in the next
section there are some cases where the cooperative move is not completed
by the task. We therefore also present two more variants of this program
that avoid the problem.

start_tel makeTower(arm,list(block),table)

makeTower(Arm,Blocks,TowerTab){
tower(Blocks,TowerTab) ∼> ()

Blocks = [Block, TopBlock,..Rest] & not on(_, Block) &

tower([TopBlock,..Rest],TowerTab) ∼>
move_across_to_block(Arm,Block,TopBlock,TowerTab)

stack(Blocks,TowerTab) & Blocks = [Block,.._Rest] &

top_block_above(TopBlock, Block)

commit_while holding(Arm, TopBlock) ∼>
coop_move(Arm,TopBlock,TowerTab)

Blocks = [Block, TopTowerBlock,..Rest] &

tower([TopTowerBlock,..Rest],TowerTab) &

top_block_above(TopBlock, Block) &

43

can_reach_block(Arm,TopBlock,_)

commit_while holding(Arm, TopBlock) ∼>
coop_move(Arm,TopBlock,TowerTab)

Blocks = [Block, TopTowerBlock,..Rest] &

tower([TopTowerBlock,..Rest],TowerTab) &

top_block_above(TopBlock, Block) &

OtherArm = other(Arm)

commit_while holding(OtherArm, TopBlock) ∼>
coop_move(OtherArm,TopBlock,home_table(OtherArm))

Blocks=[Block] ∼> move_across_to_table(Arm,Block,TowerTab)

Blocks = [_,..Rest] ∼> makeTower(Arm,Rest,TowerTab)

}

This iterative approach turns out to simplify the overall code quite a
bit but a consequence is that it does not exactly follow standard regression.
For example, when the third rule fires the action does not necessarily lead
directly to the guard of the first or second rule becoming true. Instead it
might refire and remove another block. Eventually, however, by repeated
use of this rule an earlier guard will become true (unless the environment
interferes). This is a simple but useful extension of the regression property.

The problem with the above program (as discussed in the next section)
is to do with a case when a recursive call on makeTower is made. That
case is when Blocks is not a stack (but its tail is). This case also arises
in the original Nilsson program but it’s not an issue there because it isn’t
multi-tasking.

In the program
qulog/examples/towers/twoArmCoopTowerBuildersMod2.qlg

we make the recursive call only when the tail of Blocks is not a stack (or
tower) and so we do not “return from recursion” until Blocks is a tower.
This fixes the problem.

Another solution is to make makeTower iterative as well. We do this in
qulog/examples/towers/iterTowerBuilder.qlg

and
qulog/examples/towers/iterTwoArmCoopTowerBuilders.qlg

The downside of this approach is that we move even further away from
standard regression and so we extend the idea of regression in a similar way

44

to a standard approach used to prove program termination. We define an
integer valued “regression cost function” on the state that is bounded below
(typically by the value for the goal state) and where the action of each
rule strictly decreases this function. These programs contains comments
describing the function and how each action reduces this function.

3.7 Atomic Procedure Behaviour

Earlier we noted that a major difference between TeleoR procedures and
those of traditional procedural programs is that a TeleoR procedure call
C, other than the initial call of a task, is always terminated because the
evaluator picks a different rule in an ancestor call of C.

This will usually happen just before the first rule of C’s procedure is
about to be fired because the action of the previous rule that C fired has
resulted in receipt of an update of the agent’s BS later rule fired intended
goal has achieved. This is the call instantiated guard of the first rule of C’s
procedure.

When this termination of C happens just as it is about to fire its first
rule, we could think of this as a normal termination of C. But even this
can happen not because the actions of the fired rules of C have step-by-
step changed the environment until the goal of the call is inferable from the
agent’s BS, but because the environment has been updated by exogenous
actions, and it is because of these events that C’s goal has been achieved.

This distinction is even more important when it comes to understand
what atomic means for TeleoR procedures. In traditional procedural pro-
gramming, resources will be acquired, some activity completed, and then
the resources released.

In atomic TeleoR procedures the resources are acquired and the activity
of that procedure is started. However, either because of the environment
or because of the actions of this procedure, a different rule for an ancestor
procedure may be chosen causing this atomic procedure to terminate. The
resources will be released but it is not necessarily the case that the activity
of this TeleoR procedure will be completed.

This distinction might come as a surprise and go against the intuition of
what atomic means to traditional procedural programmers - the distinction
is about completing an activity - the concept of acquiring and releasing
resources is the same.

We urge the reader to carry out the following experiment involving
qulog/examples/towers/twoArmCoopTowerBuildersMod1.qlg

and

45

qulog/examples/towers/twoArmCoopTowerBuildersMod2.qlg

or
qulog/examples/towers/iterTwoArmCoopTowerBuilders.qlg.

The first of these programs exhibits this difference while the second and
third behave more like how a procedural programmer might expect.

To run this experiment it helps to have the logger running to see how
an ancestor procedure causes termination of an atomic procedure ”before it
finishes its job”.

Start with qulog/examples/towers/twoArmCoopTowerBuildersMod1.qlg

making sure you have it logging. Let the program finish building the towers.
When that is done suspend the program by pressing the spacebar. It might
be helpful to reduce the speed using the left arrow key. Now move block
3 to be directly under block 2 and press the spacebar again to resume the
program. The arm and table change to the colour to be the colour of the
task that is running with those resources acquired. This should not look
surprising. What this manouver does do, however, is change the order of
tasks in the wait queue at this point.

Now repeat this experiment by again moving block 3 under block 2.
Now you will see a different and perhaps surprising behaviour. First task 2
will pick up block 2 and move it to the table as it wants to access block 3
for its tower. Now task 1 gets a turn and it wants to pick up block 3 and
cooperatively move it to the other tower in order to clear its partial tower
so that block 2 can be added. As soon as the arm picks up block 3 the
colour changes signifying that task 1 becomes waiting and task 2 becomes
the running task. This means task 1 did not complete the move of block 3
- it only picked it up.

Looking at the logger will explain the reason for this.
When task 1 became running (to move block 3) the call stack in the

logger was

towers::: t1: New call stack evaluation:

makeTower(arm1, [2, 5, 9, 6], table1) - 7 continued

makeTower(arm1, [5, 9, 6], table1) - 3 refired

coop_move(arm1, 3, table1) - 2 fired

move_to_location(arm1, 3, table1, 4, table1) - 2 fired

move_to_block(arm1, 3, table1, 4, table1) - 3 fired

[pickup(arm1, 3, table1)]

46

Robotic actions for t1 are: [pickup(arm1, 3, table1)]

As soon as block 3 was picked up the following percepts were received.

towers::: Received new percept message:

[r_(holding(arm1, 3)), f_(on(3, 5))]

This caused a re-evaluation of the call stack yielding.

towers::: t1: New call stack evaluation:

makeTower(arm1, [2, 5, 9, 6], table1) - 2 fired

move_across_to_block(arm1, 2, 5, table1) - 2 fired

coop_move(arm1, 3, table1) - 2 fired

move_to_location(arm1, 3, table1, 4, table1) - 2 fired

wait_choice(move_to_block(arm1, 3, table1, 4, table1))

[]

Robotic actions for t1 are: []

At this point a different rule of the top-level makeTower was chosen (rule 2
insted of rule 7). Because the atomic move_to_block was terminated this
task stopped running before the block move was complete.

Now run the same experiment using
qulog/examples/towers/twoArmCoopTowerBuildersMod2.qlg

As in the first experiment, task 2 moves block 2 to the table and then
task 1 gets a turn where its call stack is

towers::: t1: New call stack evaluation:

makeTower(arm1, [2, 5, 9, 6], table1) - 3 refired

coop_move(arm1, 3, table1) - 2 fired

move_to_location(arm1, 3, table1, 4, table1) - 2 fired

move_to_block(arm1, 3, table1, 4, table1) - 3 fired

[pickup(arm1, 3, table1)]

Robotic actions for t1 are: [pickup(arm1, 3, table1)]

Now, however, in response to the percepts

towers::: Received new percept message:

[r_(holding(arm1, 3)), f_(on(3, 5))]

47

the call stack becomes

towers::: t1: New call stack evaluation:

makeTower(arm1, [2, 5, 9, 6], table1) - 3 continued

coop_move(arm1, 3, table1) - 2 continued

move_to_location(arm1, 3, table1, 4, table1) - 2 continued

move_to_block(arm1, 3, table1, 4, table1) - 2 fired

[put_on_block(arm1, 4, table1)]

Robotic actions for t1 are: [put_on_block(arm1, 4, table1)]

The only change to the call stack is inside the atomic procedure move_to_block
and so it continues and completes the move of block 3.

3.8 Initializing the Message Handler, Post Processing Per-
cepts

The file qulog/examples/navigation/navigate.qlg contains a program
where the robots follow paths between rooms on tracks while avoiding other
robots.

In this section we discuss two system declared, user defined actions.
The first is init_message_handler that, if defined, is called when the

message handler is first created. In this program it is used to set up sub-
scriptions to messages from other robots and is defined below.

init_message_handler() ∼>
subscribe("door_status(D,Rm,S)", _);

subscribe("finished_charging(Rb)", _);

subscribe("path(Rb,Path,Rm)", _);

subscribe("new_loc(Rb,Rm)", _);

subscribe("backed_up(Rob,Rm,Dir)", _);

subscribe("no_path(Rob)", _);

subscribe("end_backed_up(Me)", _);

subscribe("reserve_room(Rob, Rm)", _);

subscribe("new_activity_room(Rom, Rm)", _);

subscribe("joining(_)", _);

write_list(["All Pedro subscriptions lodged",nl_]);

?(my_name(Me));

joining(Me) to pedro

48

The second is post_process_percepts. If defined, the percept handler
thread calls this action while atomically processing the percepts. It is called
immediately after the handler updates the belief store. The arguments are
the list of percepts that are forgotten and the list of percepts that are remem-
bered. This gives the programmer an opportunity to carry out inferences
and perform other actions based on this information.

In this program we use the percepts to infer when the robot has moved
into a new room and to let other robots know. We also use it to announce
when a robot is moving towards the centre of the room and is therefore no
longer backed up.

The code is below.

post_process_percepts(Forgets, Remembers) ∼>
check_for_room_change(Forgets, Remembers);

check_for_backup_change(Remembers)

act check_for_room_change(!list(percept_term), !list(percept_term))

%% A robot gets a forgets close_doorway percepts and a remember through_doorway

%% percept and that signifies that the robot has just moved into a room

%% It notifies all robots about its new room

check_for_room_change(Forgets, Remembers) ::

close_doorway(Door) in Forgets &

through_doorway(Door) in Remembers &

my_name(Me) & loc(Me,InRm) &

connected(Door,InRm, OutRm, _Dir) ∼>
new_loc(Me,OutRm) to pedro

% Empty action when robot has not just passed through a door.

check_for_room_change(_,_) ∼> {}

act check_for_backup_change(!list(percept_term))

check_for_backup_change(Remembers) ::

see_centre_close() in Remembers &

my_name(Me) &

has_backed_up(Me, ChgrRm, _Dir) &

reserved(Me, ChgrRm) &

correctly_backed_up_in_room(Me, ChgrRm) ∼>
end_backed_up(Me) to pedro;

finished_charging(Me) to pedro

check_for_backup_change(Remembers) ::

49

see_centre_close() in Remembers &

my_name(Me) & loc(Me,MyRm) &

has_backed_up(Me, MyRm, _) ∼>
end_backed_up(Me) to pedro

check_for_backup_change(_) ∼> {}

3.9 Embedded Agents

For low-end devices such as the Mindstorm EV3, we would typically want
(or need) to run the agent, the percept gathering and the robotic action
implementation within a single process. The folder qulog/examples/ev3

contains support using the foreign function capabilities of Qu-Prolog and a
very simple TeleoR program trev3.qlg that responds to being touched by
backing away from the touch.

For embedded agents we need to define two system declared actions:
poll_sensors and control_device.

In the program we have

poll_sensors(P) ::

P = [touched(Dir) :: Dir in [left,right] & is_touched(Dir)]
∼> {}

rel is_touched(dir)

%% for the first argument 0 is left and 1 is right

is_touched(left) <= ev3_touch(0, 1)

is_touched(right) <= ev3_touch(1, 1)

control_device(OldActions, NewActions) ∼>
forall L, R { move(L, R) in OldActions ∼> ev3_stop() };
forall L, R { move(L, R) in NewActions ∼>

ev3_run_forever(L, R) }

The responsibility of poll_sensors is to get the list of all the current
sensor values as percepts. In this case we return touched percepts by using
the foreign function interface to get the touch sensor values.

The responsibility of control_device is to stop the old actions and to
start the new actions.

To start the agent we use start_embedded_agent passing in the time
between polls of the sensors as, for example

act go()

50

go() ∼>
ev3_init();

start_embedded_agent(0.1) ;

start_task(ev3, frighten())

This means that the agent will poll the sensors (by calling poll_sensors)
every 0.1 seconds

3.10 ROS and MQTT

In a situation such as a smart home we might be using MQTT for home
sensor notifications and ROS for gathering sensor information from a robot
and sending the robot control messages. In order for a TeleoR agent to
work in such an environment we need to be able to communicate between
the agent and other systems using either ROS or MQTT (or both).

In the examples folder there are two subfolders ROS and MQTT that
contain example C-level interface code that is intended to run as another
node in the system that communicates with the agent using Pedro and the
other nodes using ROS or MQTT. The consequence of this is that each time
percepts are sent to the agent two messages are required and the same goes
for robotic action messages.

This approach means communication is a little slower than if, say, ROS
is used for all communications but we feel this is not a problem for TeleoR

agents for the following reasons.
The first reason is that TeleoR agents are not intended to be used in

applications where it needs to react at a very high speed (a reflex reac-
tion). The TeleoR agent is intended to control robots and other devices at
a reasonably high-level, leaving the details of how this is to be achieved by
low-level code, perhaps at the C-level. Even so, timing suggests that this
communication is running at millisecond speeds.

The second reason is that typically some conversion between low-level
sensor information and the high-level percepts is required and doing this
conversion in this node effectively removes one step in communication. The
same could be argued for converting robotic actions into low-level control
commands.

The third reason is that this approach provides a standard interface to
the TeleoR system and avoids having to worry about potential race condi-
tions that might arise if ROS or MQTT were embedded in Qulog itself.

51

4 Thinking about TeleoR programming

When thinking about writing a TeleoR procedure the first step is to divide
states up into sets distinguished by some properties. The next step is to
order these states from the most desirable to the least desirable with the
most desirable being the goal of the TeleoR procedure. Then for each set
of states (other than the first) we determine an action that, under normal
conditions, will achieve a state that is more desirable. This is the regression
property.

This action might be a collection of primitive actions but when the situ-
ation is more complex it might be another TeleoR procedure whose goal is
the more desirable state.

In doing this initial design, based on available percepts and primitive
robotic actions, some rethinking of what constitutes the sets of interesting
states might make designing the TeleoR procedure simpler. This might
mean changing what constitutes the percepts and maybe even the robotic
actions.

As a running example lets consider a simple block stacking problem
similar to earlier examples.

We have a table that contains a collection of numbered blocks some of
which might be on the table and some might be stacked on other blocks. We
have an arm that has three robotic actions: pickup(Block) that will pick
up Block provided it is uncovered, put_on_block(Block) that puts the held
block on Block provided it is uncovered, and put_on_table() that puts the
held block on the table. We will assume the arm will do nothing if called
when the action conditions are not satisfied - e.g. no block is being held or
the required block is covered.

Our task is to build a tower [1,2,3] where 1, 2 and 3 are the block
numbers. 3 needs to be on the table, 2 on 3 and 1 on 2 (and nothing
on 1). We assume percepts on(Block1, Block2), onTable(Block) and
holding(Block).

Now lets consider dividing states up into sets with properties related to
our problem. So the most desirable set of states is the one that has the
property tower([1,2,3]) where we can define the property (relation) in
terms of the percepts on and onTable. Note that we don’t care where on
the table this tower is or where any other blocks are - the tower property
only cares about the arrangement of these 3 blocks.

A slightly less desirable state would be tower([2,3]) & holding(1).
Applying the action put_on_block(2) will normally achieve the most de-
sirable state (in which tower([1,2,3]) is true).

52

A slightly less desirable state than this would be tower([2,3]) & clear(1)

where clear(1) means 1 is uncovered. The action pickup(1) will normally
achieve the state above.

Note that we say ”normally”. By this we mean that the environment
does not itself modify the state.

For example say tower([2,3]) & clear(1) is true and we invoke the
action pickup(1) but before the arm reaches block 1 the environment puts
another block on top of 1. In this case the action will do nothing and we
won’t achieve a more desirable state.

Even less desirable states consist of variations where needed blocks are
covered.

Now lets consider a first attempt at a makeTower TeleoR procedure. For
moving a block from one place to another we can think of solving this by
having two rules in the top-level TeleoR procedure - one whose action picks
up the block and the other whose action is to put the block down. Since we
will need to do this in several scenarios it might be better to hand off the
problem to a sub-procedure as we have done below.

makeTower(Blocks) {
tower(Blocks) ∼> ()

block_needed_for_tower(Block, TopBlock, Blocks) &

clear(Block) ∼>
move_block_to_block(Block, TopBlock)

block_needed_for_tower(Block, Blocks) &

top_block_above(Block, TopBlock) ∼>
move_block_to_table(TopBlock)

partial_tower_covered_by(Blocks, Block) ∼>
move_block_to_table(Block)

tower_base(Blocks, Block) & clear(Block) ∼>
move_block_to_table(Block)

tower_base(Blocks, Block) &

top_block_above(Block, TopBlock) ∼>
move_block_to_table(TopBlock)

}

where

53

• relation block_needed_for_tower(Block, TopBlock, Blocks) is true
if there is an uncovered partial tower of Blocks with TopBlock the top
block of the partial tower and Block is the next block needed to extend
the tower.

• partial_tower_covered_by(Blocks, Block) is true if a partial (or
full) tower is covered by blocks and Block is the top covering block

• top_block_above(Block, TopBlock) is true if TopBlock is the top
block above Block

• tower_base(Blocks, Block) is true if Block is the last element of
Blocks

The auxliary TeleoR procedure are then

move_block_to_block(Block, ToBlock) {
on(Block, ToBlock) ∼> () % Done

holding(Block) ∼> put_on_block(Block)

true ∼> pickup(Block)

}

move_block_to_table(Block) {
on(Block, table) ∼> ()

holding(Block) ∼> put_on_table()

true ∼> pickup(Block)

}

To determine if these TeleoR procedure will solve the problem we first con-
sider if the tower will correctly be built from any initial state in the absence
of interference from the environement.

Consider a very simple case: there is only one block needed to complete
the tower and it’s clear. In this case rule 2 of makeTower fires causing rule
3 of move_block_to_block to fire and the block will be picked up. As soon
as its picked up the guard of rule 2 of makeTower becomes false and no other
guard is true. There are a few ideas we might consider to solve this problem:

1. Don’t use auxilary predicates and inline the rules for move_block_to_block
in makeTower

54

2. Inject a new second rule to deal with this situation

3. Change the guard to a disjunct

4. Use an or_while in the guard.

1. will work but has the disadvantage of miminizing code reuse and is
going against a design principle that suggests breaking down a problem into
a subproblem and solving that - i.e. writing a sub-procedure

For 2. we would need a rule like

block_needed_for_tower(Block, TopBlock, Blocks) & holding(Block) ∼>
put_on_block(TopBlock)

We might also need to follow this with a rule like

holding(Block) ∼> put_on_table()

to deal with unwanted blocks being held.
This is not completely satisfactory as it adds complexity and reduces

efficiency as there will be more reevaluating of guards.
The third idea looks promising. Lets say we also have a relation

clear_or_holding(Block) and change the rule to

block_needed_for_tower(Block, TopBlock, Blocks) &

clear_or_holding(Block) ∼>
move_block_to_block(Block, TopBlock)

In this case this disjunction works quite well but in more complex cases
it can be difficult to produce a suitable disjunction that has a reasonable
intuition.

The last idea is to use the or_while construct as below.

block_needed_for_tower(Block, TopBlock, Blocks) & clear(Block)

or_while holding(Block) ∼>
move_block_to_block(Block, TopBlock)

The semantics of the or_while is that when this rule is fired (because
the guard is true but no earlier guard is true) then this rule will continue
to be the active rule provided no earlier guard is true and or_while is true
with the same binding of variables as when the rule was (re)fired.

55

In this case as soon as we pick Block up clear(Block) is no longer true
but holding(Block) is and so this rule continues as the active rule.

We argue that the use of or_while is simpler and more intuitive than
using a disjunction.

Now lets reconsider this modified TeleoR procedure:

makeTower(Blocks)

tower(Blocks) ∼> () % goal is achieved - do nothing

block_needed_for_tower(Block, TopBlock, Blocks) & clear(Block)

or_while holding(Block) ∼>
move_block_to_block(Block, TopBlock)

block_needed_for_tower(Block, Blocks) &

top_block_above(Block, TopBlock) ∼>
move_block_to_table(TopBlock)

partial_tower_covered_by(Blocks, Block) ∼>
move_block_to_table(Block)

tower_base(Blocks, Block) & clear(Block) ∼>
move_block_to_table(Block)

tower_base(Blocks, Block) & top_block_above(Block, TopBlock) ∼>
move_block_to_table(TopBlock)

Provided the environment does not intefere with the execution of this pro-
cedure will the goal be achieved gived an arbitrary initial state?

First note that this procedure does not satisfy the regression property
as stated earlier. In an initial state where some or all needed blocks are
covered we will find we will typically repeatedly fire rule 3 to remove blocks
above a needed block then, once it becomes clear, fire rule 2 and then fire
rule 3 again.

However this procedure does satisfy a more sophisticated regression prop-
erty in that the action associated with any fired rule will normally achieve
a state that is ”closer” to the desired goal state as discussed earlier.

For this discussion, we informally argue that the goal of the procedure
will eventually be achieved as long as the environment does not interfere.
One very undesirable state is one in which the base of the tower is not on
the table and is covered by blocks. In this case the last rule fires removing

56

a block above the tower base block. This achieves a slightly more desirable
state. Repeated use of this rule will eventually give us a state in which
the tower base block is clear and so the second last rule will fire moving
this block to the table again producing a more desirable state. Now, as
discussed above, we will typically oscillate between rules 2 and 3 with each
application improving the state either by building more of the tower or by
removing blocks covering needed blocks. Eventually we will fire rule 2 to
move the last block on to the tower, achieving the goal (rule 1 fires).

Above we did not discuss the need for rule 4. This rule is needed when
the initial state has a covered (partial) tower. Once these covering blocks
are removed this rule would not normally fire again.

The other concept we should check is completness. Recall that a TeleoR

procedure is complete if, for any state, some rule is true. For top-level
TeleoR procedure this is a very important property as without it we get un-
defined behaviour. In the implementation of teleor we raise an exception in
this case. For sub-procedures like the one above we talk about completeness
relative to the calling context. Typically sub-procedures are only called for
states that satisfy some property and so we can assume that property to be
true when deciding on the completeness of sub-procedures.

With a bit of thought we see that these procedures are complete.
So completeness tells us that some rule will fire for any given state and

the regression property tells we will normally make progress towards the
goal. This in turns tells us that, without inteference, we will achieve the
goal from any initial state.

What about when the environment itself changes the state? This could
happen in two ways:

1. The environment could help, for example, by putting a needed block
on the tower; or

2. The environment could hinder, for example, by shuffling around the
blocks in a partially built tower.

The beauty of TeleoR programming is that it (mostly) naturally deals with
both cases. For 1. the environment has itself produced a more desirable state
and the TeleoR procedure will flip to firing a rule that takes advantage of
this state. For 2, the environment produces a less desirable state but the
TeleoR procedure will flip to firing a rule to cope with this less desirable
state.

So this block building robot will efficiently cope with inteference by the
environment.

57

Later we discuss a situation where, without more careful thought in the
design of TeleoR rules, we can get inefficiency or even wrong behaviour when
the environment interferes.

We now discuss when commit_while might be useful to consider. The
above example does not need to use commit_while so we now introduce
another very simple example, similar to an eariler one, where commit_while
is useful.

We have a bottle collector robot, part of whose job is to get next to
a bottle so it can pick it up and take it to a depot. For this example we
consider just the get_next_to_bottle TeleoR procedure. For this pro-
cedure the only percept required is see_bottle(Distance, Direction)

where distance is far, near and close and the direction is left, right,
centre_left, centre_right, dead_centre. At any time there will be at
most one see_bottle belief - being a belief about the closest bottle. The
primitive actions are to move forward at a given speed and to turn in a
direction at a given speed with the turn speed being zero when the direction
is a centre direction. If both actions are active the robot moves is a curved
path.

As a first pass consider

get_next_to_bottle() {
see_bottle(close, Direction) & is_centered(Direction) ∼> ()

see_bottle(close, Direction) ∼> turn(Direction, 1)

see_bottle(near, Direction) & is_centered(Direction) ∼> move(2)

see_bottle(near, Direction) ∼> move(2), turn(Direction, 2)

see_bottle(far, Direction) & is_centered(Direction) ∼> move(4)

see_bottle(far, Direction) ∼> move(4), turn(Direction, 4)

true ∼> turn(left, 4)

}

where is_centered(Direction) is true if Direction is
centre_left, centre_right or dead_centre

The idea is when the robot is a long way from the bottle it can afford
to move fast without loosing sight of the bottle but it slows down as it gets
closer.

58

Note that the last rule is required for completeness. Now lets consider
regression. What happens if there is no bottle on the table? In this case the
last rule will fire and we won’t make any progress. So we have to relax the
idea of regression and say provided there is at least one bottle on the table
then normally eventually we will achieve the goal.

This procedure is both complete and satisfies the simple regression prop-
erty, well almost. Take the sceanrio when the robot does not see a bottle
on the table (but there is one). In this case the last rule fires and starts
turning. Eventually it will see a bottle on the left and rule 6 will fire and
will start moving (and continue turning). Now rule 5 will fire as soon as we
move from seeing the bottle on the left to seeing a bottle centre_left and
it will stop turning but continue moving. Note that because we flip rules
exactly when we cross the boundry from left to centre_left then, even if
the robot tracks perfectly without any wheel slipage, we will shortly get the
percept that we see the bottle on the left rather than centre_left and we
will flip back to tuning. Shortly after that we will get the percept that we
see the bottle centre_left. This will lead to a rapid fluttering of the robot.
This is not desirable.

What we would like to do is once we start turning to centre we should
commit to turning until we see the bottle dead centre. We can think of this
as over achieving an earlier guard. This is where commit_while comes in.
Consider the following variant using commit_while.

get_next_to_bottle()

see_bottle(close, Direction) & is_centered(Direction) ∼> ()

see_bottle(close, Direction) ∼> turn(Direction, 1)

see_bottle(near, Direction) & is_centered(Direction) ∼> move(2)

see_bottle(near, Direction)

commit_while not see_bottle(_, dead_centre) ∼>
move(2), turn(Direction, 2)

see_bottle(far, Direction) & is_centered(Direction) ∼> move(4)

see_bottle(far, Direction)

commit_while not see_bottle(_, dead_centre) ∼>
move(4), turn(Direction, 4)

59

true ∼> turn(left, 4)

The semantics of commit_while is that, once the rule is fired, we com-
mit to the action of this rule while the commit_while test is true. This
means it prevents the firing of any other rule in this procedure while the
commit_while test is true. So, in the above scenario, when rule 6 fires we
commit to the actions until we see the bottle dead centre. This avoid the
fluttering discussed above.

So, without inteference, adding the commit_while improves the effi-
ciency of the program. However, given the dramatic effect commit_while

has on rule firing we have to be careful about environment inteference in the
presence of commit_while. For example, consider the situation where rule
4 fires and after it fires the environment removes the bottle. The robot will
continue moving and turning. Similarly, if the bottle is moved to the other
side (e.g. moved from being seen on the left to being seen on the right) then
the robot will continue to turn but now in the wrong direction.

The problem is the commit_while test it overly strong. We can fix this
by defining the relation

rel dir_or_centre(thing, dir)

dir_or_centre(Th, Dir) <=

see(Th, Dir1) & not Dir1 in op_dirs(Dir)

where, for example, op_dirs(left) = [right, centre_right] and chang-
ing rule 4 (and rule 6 similarly) to

see_bottle(near, Direction)

commit_while dir_or_centre(Dir) ∼>
move(2), turn(Direction, 2)

This example shows that we need to be careful when using commit_while

and need to consider how we can ”escape” from this commit when the envi-
ronment has a negative effect. Here are three ways we can mitigate against
this.

The first approach is similar to the above. Often we want to write
something like

G commit_while C ∼> Action

where the rule trigger G contains a part we want to be initially true and
another part that we want to remain true. In other words G is rewritten as

60

G1 & G2 where G1 is the triggering part and G2 is the continuing part. In
that case we can write

G1 & G2 commit_while G2 & C ∼> Action

and so we won’t stay committed to this rule if G2 becomes false.
The second approach that works sometimes, for example, where the bot-

tle collector needs to detect and avoid another robot is to put the collision
detection/avoidance rules in the parent TeleoR procedure. Since the effect
of commit_while is local to the procedure in which it is used then it will
not block the detection/avoidance of the other robot.

The third approach is to make the action a TeleoR procedure and add
rules to it that will allow recovery from environmental interference.

4.1 Robot Side

In the previous sections of this guide we have focused on the agent side
and how to write TeleoR agents. In this section we look at the robot side
and what the programmer is required to do in order to support the TeleoR

agent. Most of the example programs come with a Python simulator that
is behaving as both the environment and the robot side.

There are two major parts to consider when programming the robot side.

1. Collecting sensor information, converting them into percepts, and send-
ing the percepts to the agent as a peer-to-peer Pedro message.

2. Turning robotic action messages from the agent into control actions,
e.g. setting the speed of a motor or moving an arm.

We start by looking at percepts. How the programmer writes this de-
pends on the percept interface being used. If the all interface is being
used then, whenever the robot side decides to send percepts, it sends all the
current percepts. If the update interface is being used the robot side sends
percepts ’deltas’ that we will discuss shortly.

Before getting into details we discuss the question of how often percepts
should be sent independently of which interface is being used. One approach
is to send percepts at a fixed time interval (as is done in the embedded
agent case). Another approach is to only send percepts when “something
interesting happens”. Of course what interesting means depends on the
application but lets consider the bottle collector example and consider the
robot moving towards the bottle, sending see percept messages that include
direction and distance.

61

If we send see percepts at regular intervals and the robot is a long way
from the bottle then, probably, the agent will keep moving at the same
speed until the robot gets close. A better approach might be to only send
percepts when the robot gets close. In the Python simulator we use a kind of
logarithmic scale. When we cross the 32 distance unit boundary we send a
percept, then when we cross the 16 unit boundary we send another percept
and so on. This means that when the robot is far away we only send an
occasional percept but as we get closer we send percepts more frequently.

If this approach makes sense in the application this can be more efficient
than a time based version as the number of messages is typically lower
and the agent is not updating the belief store (and therefore re-evaluating)
unnecessarily often.

A variant of, or in conjunction with, this approach is to make the per-
cepts as high-level as possible. This means the robot side does most of the
translation from sensor information to percepts leaving the agent to work
with high-level percepts that more directly match the guards of TeleoR rules.
Naturally, the choice of what the percepts should be is an application-level
decision that both the agent and robot side need to conform to.

When the agent starts the percept handling thread sends an initialise_

message to the robot side. When the robot side receives this message it will
then have the address of that thread and it should use this address for send-
ing percepts. The robot side should respond by sending an initial set of
percepts consistent with the interface being used.

When the all interface is being used for a bottle collector we might
expect the robot side to send a message like

[see(bottle, 0, centre)]

and then when the bottle is grabbed a message like

[see(bottle, 0, centre), holding()]

Note: all percepts need to be ground terms declared as percepts in the
agent.

On the other hand, for the updates interface the percepts are wrapped
with one of the following functors:

1. r_ - the percept is to be remembered

2. f_ - the percept is to be forgotten

62

3. fa_ - all the percepts that match the percept pattern are to be forgot-
ten

4. u_ - the percept is to be updated.

For the first two, the enclosed percept must be ground and declared as a
percept in the agent. The same is true for the fourth except some arguments
may have a ’!’ wrapper as well. We discuss this shortly.

The enclosed percept in the third is a declared percept but may include
variables in the arguments.

Note that, because the robot side is sending deltas, it needs to keep
track of the current set of percepts so that it knows which wrapper to use
for constructing the next list of wrapped percepts.

If we consider the bottle collector example where the robot is moving
towards a bottle and assuming it sees the bottle on initialization. Then the
initial percepts might be

[r_(see(bottle, 32, left)), r_(see(depot, 64, left))]

After a while we might get close enough to want to update the bottle
distance and so we might want the percepts message to be

[u_(see(!(bottle), 16, centre))]

This is semantically equivalent to the message

[fa_(see(bottle, _, _)), r_(see(bottle, 16, centre))]

assuming we only produce a percept for the closest bottle.
The reason for wrapping the bottle argument is that we don’t want to

accedentially remove the depot percept.
Note that if there are no patterns that match an fa_ then nothing hap-

pens and so the initial percept message could also have been

[u_(see(bottle, 32, left)), u_(see(depot, 64, left))]

but would have taken slightly longer to process.
Generally speaking, however, using u_ rather than the semantically equiv-

alent form produces a shorter message that is quicker to transmit and pro-
cess.

63

It is possible for percepts to come from multiple sources but in that case
the updates interface would be required and each source would need to be
responsible for a fixed subset of percepts.

The other requirement of the robot side is to process robotic action
messages from the agent such as the message

actions(collector, [move(4), turn(left)])

The message will be a list of ground terms of type robotic_action.
The programmer needs to decode the message string and translate the

robotic actions into appropriate controls. Depending on the complexity
of the message string the programmer might choose to use direct string
processing or, for example, use one of the Pedro parsers supplied with the
Pedro distribution. See, for example, the Python simulators or the ROS or
MQTT C-level example interfaces in the examples folders.

Note that the robotic actions being sent are the ones that should now
become active. This means that the robot side needs to keep track of the
previous list of robotic actions.

Imagine that the above actions were previously sent and next the agent
sends the action message

actions(collector, [move(2)])

This means that the turn(left) action needs to be stopped. Depending
on the hardware being used, the move action needs to be modified or the old
action stopped and the new action started.

In a multi-task application the robot side might need to keep track of
the actions from each task so that the current set of actions can be correctly
updated. The task argument of actions can be used to keep track of task
spectific actions. If the robot side is interacting with several agents then the
agent name in the sender address can be used for this purpose. In rare cases
a combination of task and agent name might be required.

Some of the actions are durative (as above) and will continue unless
stopped and others are terminating and will naturally terminate after a
period of time such as an arm grasping an object. In the special case where
the time to termination is effectively zero we call that action discreet. This
distinction is application specific and the programmer needs to be careful
to distinguish these cases. If an action is durative and is not present in the
next set of actions it needs to be stopped. On the other hand if the action
is terminating then it should only be stopped if it is still in progress.

64

Earlier we discussed using the tool robot_shell.py where the program-
mer can pretend to be the robot side so as to test TeleoR agent code. The
dual of this is the supplied tool agent_shell.py where the programmer can
pretend to be the agent. The programmer might find this tool useful when
testing their implementation of the robot side. The programmer can send
an initilise_ message and see the response and then send robotic actions
and see if the robot responds correctly (and sends back appropriate percepts
as the robot interacts with the environment).

References

65

[1] N. Carriero and D. Gelernter, Linda in context, Communications of the
ACM. 32(4): 444-458, 1989.

[2] N. J. Nilsson, Teleo-reactive programs for agent control. Journal of
Artificial Intelligence Research, 1, 139-158, 1994.

[3] N. J. Nilsson, Teleo-reactive programs and the triple-tower architecture.
Electronic Transactions on Artificial Intelligence, 5:99-110, 2001.

[4] Kuipers, B., Feigenbaum, E., Hart, P., Nilsson, N., Shakey: From Con-
ception to History, AI Magazine, 38(1), pp. 88-103, Spring, 2017

[5] MQTT 3.1.1 Oasis Reference, 2014, At: http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

[6] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully
Foote, Jeremy Leibs, Eric Berger, Rob Wheeler, Andrew
Ng. ROS: an open-source Robot Operating System, 2009. At:
http://www.robotics.stanford.edu/∼ang/papers/icraoss09-ROS.pdf

66

	Introduction
	TeleoR Robotic agents: Deductive Belief Store, robotic resource actions, sensor percepts, inter-agent communication
	Agent communication and co-operation
	A three thread agent architecture
	Task goals and multi-tasking

	Overview of the TeleoR language
	Example TeleoR Agents
	Introductory Example: Declarations, Logger, Robot Shell
	Simple Bottle Collector: commit while and timed sequences
	Cooperating Bottle Collector: or_while, messages, attached QuLog actions, modified regression
	Programming the message handler
	Exception handling rules
	 The co-operating bottle collector main procedure

	Nilsson's Simple Block Tower Builder: Cognitive control and Recursion
	Simple Multi-Task Tower Builders: Tasks, Resources
	Multi-Task, Multi-Arm, Multi-Table Tower Builders: Resource Declarations
	Atomic Procedure Behaviour
	Initializing the Message Handler, Post Processing Percepts
	Embedded Agents
	ROS and MQTT

	Thinking about TeleoR programming
	Robot Side

