
Specifying mode requirements of embedded systems

Graeme Smith

Software Verification Research Centre
University of Queensland, Australia

Email: smith@svrc.uq.edu.au

Abstract

This paper presents a formal notation for specifying require-
ments of embedded systems which exhibit continuous, real-time
behaviour and move through various modes under digital con-
trol. It does this by extending an existing formal notation sup-
porting continuous, real-time behaviour with an explicit con-
cept of modes. The resulting notation avoids the subtleties
which would otherwise arise when specifying mode-related re-
quirements. It is therefore ideal as a means of specifying and
communicating requirements of embedded systems.

Keywords: formal specification, requirements engi-
neering, embedded systems

1 Introduction

Embedded systems are becoming ubiquitous in mod-
ern society. Such systems comprise a digital con-
troller which interacts in real time with a continu-
ously changing physical environment. To cater for the
growing complexity of applications, such controllers
are increasingly implemented in software. Many em-
bedded systems are safety-critical, being capable of
causing harm (i.e., loss of life or injury) by failure
to correctly interact with their environment. Ex-
amples include fly-by-wire aircraft, heart pacemakers
and process control systems of chemical and electrical
power plants. Hence, there has been growing interest
in using formal methods to specify (functional and
performance) requirements of embedded systems, or
more specifically, requirements involving relationships
between continuous values and time.

Research in this area has produced a number
of different approaches, notable among which are
those based on timed traces , i.e., where systems
are modelled by functions whose domains range
over all values of time. Examples include the Du-
ration Calculus [Hansen and Zhou Chaochen, 1997],
the timed stream model [Broy, 1993] and the
timed refinement calculus [Mahony and Hayes, 1992,
Fidge et al., 1998b]. These techniques provide a
precise and intuitive approach to modelling time-
dependent behaviour, essentially the same as that
used in the physical sciences.

However, when it comes to modelling systems
which, through digital control, move between various
modes in which the time-dependent behaviour is dif-
ferent, the techniques tend to be much less intuitive.
Since they model the value of variables as functions
over all time, they do not explicitly support notions of
time-bounded modes and mode changes. These need

Copyright c©2001, Australian Computer Society, Inc. This pa-
per appeared at the Twenty-Fifth Australasian Computer Sci-
ence Conference (ACSC2002), Melbourne, Australia. Confer-
ences in Research and Practice in Information Technology, Vol.
4. Michael Oudshoorn, Ed. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

to be encoded indirectly via the interval concatena-
tion, or ‘chop’, operator common to these notations.
From a requirements engineering point of view, this
is problematic because such specifications are difficult
to understand and reason about.

In this paper, we present a formal specification
language which builds on the timed trace paradigm,
specifically on the notation of the timed refinement
calculus, by introducing a notion of modes and oper-
ators for combining modes. We begin, in Section 2,
by providing an overview of the notation of the timed
refinement calculus. In Section 3, we introduce the
concept of modes and the syntax of our notation. We
illustrate the notation using the well-known Steam
Boiler case study [Abrial et al., 1996]. A specification
of the entire system, as well as another which sepa-
rates the software controller from the boiler hardware,
are provided. In Section 4, we provide the semantics
of our notation and discuss briefly how the formal ba-
sis it provides can be used to gain confidence in the
requirements engineering process.

2 Timed Trace Notation

The specification notation of the timed refinement
calculus [Mahony and Hayes, 1992, Mahony, 1992] is
set-theory based and uses the syntax of the well-
known Z specification language [Spivey, 1992]. Since
its initial definition, it has been extended with a
simple set-theoretic notation for concisely express-
ing time intervals , i.e., non-empty contiguous sets
of times, and operators for accessing interval end-
points. In this section, we present a simplified subset
of the extended notation based on that of Fidge et al.
[Fidge et al., 1998b] which provides the syntax and
semantics of a minimal set of operators in addition to
those of standard set theory. This notation has been
successfully employed to specify the requirements of
a sizeable case study [Smith and Fidge, 2000] as well
as those of the Nulka Active Missile Decoy, a hovering
rocket developed for the Australian and US Depart-
ments of Defence. However, it remains difficult for
non-experts to read and write specifications in the
notation.

Absolute time, T, is modelled by the real numbers
R.

T == R

For the purposes of this paper, we assume the units
of T is seconds.

Observable variables of a systems are modelled as
timed traces, i.e., total functions from the time do-
main to a type representing the set of all values the
variable may assume. For example, a variable indicat-
ing that a boiler system is operating may be declared
using the Boolean type B as follows.

OP : T → B

Functions modelling physical quantities generally
map from the time domain to some contiguous sub-
set of the real numbers. In most cases, such functions
are differentiable (i.e., continuous and smooth). To
facilitate specifying this, whenever X is a contiguous
set of real numbers, we use the notation T ; X to
represent the set of all differentiable functions from
the time domain to X [Fidge et al., 1998a]. For ex-
ample, the steam demand SD and steam output SO
of the boiler system may be declared, using a type
RATE == {r : R | r > 0}, as follows.

SD ,SO : T ; RATE

Given this declaration, we let the derivatives of SD
and SO be denoted by d SD and d SO respectively.

System requirements are specified using time in-
tervals over which properties hold. Sets of such in-
tervals can be specified using the interval brackets 〈 〉.
For example, the set of intervals where the boiler is
operational for the whole interval is specified as:

〈OP〉

An interval I is in the set of intervals 〈OP〉 if, for all
times t in I , OP(t) is true.

In general, the property in brackets is any first-
order predicate in which total functions from the time
domain to some type X may be treated as values
of type X . The elision of explicit references to the
time domain of these functions results in specifica-
tions which are more concise and readable.

The starting point, end point and duration of in-
tervals can also be accessed using the reserved sym-
bols α, ω and δ respectively. For example, given dura-
tion N : T, the set of intervals where the steam boiler
has been operating for at least N seconds is specified
as:

〈OP ∧ δ > N 〉

Requirements are specified by predicates formed
by combining sets of intervals using operators from
set theory such as ∩, ∪ and ⊆, and the inter-
val concatenation operator ‘;’. The latter operator
forms a set of intervals by joining intervals from one
set to those of another whenever their end points
meet [Fidge et al., 1998b]. For example, given err :
RATE , the requirement that the steam output must
be within err of the steam demand whenever the
boiler has been operating for at least N seconds can
be specified as:

〈OP ∧ δ > N 〉 ⊆ (〈true〉 ; 〈SO ∈ SD ± err〉)

Note that 〈true〉 is the set of all possible intervals,
and hence the right-hand side above is the set of all
intervals that end with the predicate SO ∈ SD ± err
true.

The above specification is arguably understand-
able by someone familiar with set theory. However, it
is not without subtlety. The fact that SO ∈ SD ±err
is always true after N seconds can only be gleaned
from the realisation that, given an interval in the
left-hand set of duration greater than N seconds, all
prefixes of this interval of duration at least N sec-
onds are also in the set. For each of these prefixes,
SO ∈ SD ± err must be true at the end of the prefix.
Hence, it follows that it must be true after N seconds
in the original interval.

3 Modes

A mode is a set of intervals in which similar be-
haviours can be observed. In the steam boiler exam-
ple of Section 2, there are two obvious modes: when

the boiler is operating and when it is not. Often we
want to specify requirements on the timing properties
of a mode, e.g., its duration, or to specify require-
ments on the occurrence of a mode with respect to
other modes. In a timed-trace notation such as that
of the timed refinement calculus, this can be difficult
to specify resulting in specifications which are difficult
to understand [Smith, 1999].

As an example, consider adding a requirement to
those in Section 2, that whenever the steam boiler is
not operational, it must remain so for a duration of at
least MinStop : T seconds. This requirement may be
necessary for the boiler to undergo initialisation tests
before starting again. The easiest way to specify this
is as follows.

〈OP〉 ; 〈¬ OP〉 ; 〈OP〉 ⊆ 〈δ > MinStop〉

The intuition behind this specification is that the in-
tervals 〈OP〉 are not restricted in duration and so may
be arbitrarily small (and hence of zero duration)1.
Hence, the above predicate states that all maximal
intervals in the set 〈¬ OP〉, i.e., those that are not
strict prefixes or postfixes of any other interval in the
set, have to satisfy the constraint on the duration.

3.1 Syntax

The notation presented in the remainder of this pa-
per aims at overcoming the subtleties that arise when
specifying requirements using the interval concatena-
tion operator. In particular, it makes the notion of
modes explicit and introduces operators for combin-
ing modes. The latter are not only used for describing
system requirements, but also for describing require-
ments of complex modes in which a number of (sub)
modes are composed sequentially or concurrently. Se-
mantically, modes and systems are not distinguished
and hence, from this point on, we discuss modes only.

A simple mode is defined by a statement M =̂ 〈P〉.
The right-hand side of the definition is the defini-
tion of a set of intervals using the syntax of the
timed refinement calculus. These intervals are those
in which the mode may be operating. All variables
in P are regarded as output (i.e., system controlled)
variables unless they underlined in which case they
are regarded as input (i.e., environment controlled)
variables. For example, the mode corresponding to
when the boiler is operational and the steam output
is an acceptable approximation of the steam demand
is specified as:

Running =̂ 〈OP ∧ SO ∈ SD ± err〉

A complex mode is defined by a statement
M =̂ Q where Q is either a sequence of modes of the
following form:

M1̂M2 – mode M1 until some arbitrary instant
then mode M2

M1 ↓ M2 – mode M1 for as long as possible then
mode M2

M̂ – mode M until some arbitrary instant
then mode M again

↓ M – mode M for as long as possible then
mode M again

1An interval cannot be empty [Fidge et al., 1998b]. However, it
may comprise only a single point of time in which case its duration
is zero.

SteamBoiler =̂ Init̂ŜB

Init =̂ 〈¬ OP ∧ δ > MinInit〉

SB =̂ (OperatêStop)2Operate

Operate =̂ (RunUp̂Running)2RunUp

RunUp =̂ 〈OP ∧ δ 6 MaxRunUp〉

Running =̂ 〈OP ∧ (SD 6 MaxSteam ⇒ SO ∈ SD ± err)〉

Stop =̂ 〈¬ OP ∧ δ > MinStop〉

Figure 2: System specification of the steam boiler.

or constructed using the following operators:

M12M2 – mode M1 or mode M2

M1 ‖ M2 – mode M1 running concurrently with
mode M2

The difference between the binary operators ̂

and ↓ is that the latter only allows a mode change
when the property of the first mode is no longer true,
whereas the former allows a mode change at any time
which respects the constraints on the durations, and
start and end times of the modes. The ̂ operator
is therefore useful for modelling mode changes which
occur due to influences outside the scope of the re-
quirements. No particular reason for the change of
mode need be specified. The ↓ operator, on the other
hand, is useful for specifying mode changes which oc-
cur for defined reasons. The unary forms of these op-
erators facilitate the definitions of behaviours which
repeat over time.

The use of these operators, as well as the operators
2 and ‖, is illustrated in the following case study. The
semantics of the operators is defined in Section 4.

3.2 Steam Boiler Case Study

One of the challenges of requirements engineering for
embedded systems is that the requirements must be
specified at two levels. One level is required to cap-
ture the requirements of the entire system (both the
hardware and the software). This level is required for
communication with end users of the system and/or
customers for which the system is being implemented.
The second level separates the hardware and software
components of the system. While such a separation
of a system into components often occurs after the
requirements phase, during design, it is essential that
it occurs as part of the requirements phase for em-
bedded systems. This is so that requirements can be
communicated to the implementors who will gener-
ally be involved with only the software or only the
hardware.

The Steam Boiler case study [Abrial et al., 1996]
describes a system comprising a steam boiler and as-
sociated hardware such as water pumps and valves
together with various sensors which report the state
of the boiler to a monitor computer. Initially, the
boiler undergoes a number of tests and possibly ad-
justs its water level to make sure that it can operate
correctly. When these tests and adjustments are suc-
cessfully completed, the monitor informs the system’s

environment which demands steam at a rate within
the system’s capabilities. If the boiler fails, either to
complete its tests or during operation, the monitor
informs the environment and stops the operation of
the boiler. This action is critical because if the boiler
continues to run, it can be damaged.

Our specifications are based on those developed by
Mahony et al. [Mahony et al., 1994], but extended, as
by Smith [Smith, 1999], to model system start-up, an
acceptable error between steam demand and steam
output, and a run-up time for the steam output to
meet the steam demand within this error.

We begin by defining the input and output
variables of our system specification (see Figure 1).

SD
Boiler System

OP

SO

Figure 1: System view of the steam boiler.

These are identical to the definitions in Section 2.

OP : T → B

SD ,SO : T ; R

We then define the constants necessary to for-
malise the requirements on the performance of the
system. The system need only be able to supply
steam up to a certain maximum level, MaxSteam :
RATE , where RATE is defined as in Section 2. Also,
the error, err : RATE , between the steam output and
steam demand is strictly positive, i.e., err > 0.

The steam boiler is then specified as in Figure 2
where MinInit : T, MinStop : T and MaxRunUp : T

are the minimum time required for initialisation, the
minimum time required before the system can begin
operating again after stopping, and the maximum
time for the the system to reach MaxSteam output
from a zero steam rate, respectively.

The specification states that the steam boiler
starts in a mode Init and then, at some arbitrary
instant, repeatedly behaves according to the complex
mode SB .

• The mode Init is defined as one in which OP is
not true and which lasts at least MinInit seconds.

• The mode SB either behaves as mode Operate
followed, at some arbitrary instant, by mode
Stop, or simply as mode Operate.

Boiler =̂ B̂

B =̂ InitB2OperateB2StopB

InitB =̂ DetectInitB̂InitialiseB

DetectInitB =̂ 〈CD = init ∧ δ 6 MaxDelayB 〉

InitialiseB =̂ 〈¬ OR ∧ δ > MinInit〉

OperateB =̂ (RunUpB ̂RunningB)2RunUpB

RunUpB =̂ 〈CD = operate ∧ δ 6 MaxRunUpB〉

RunningB =̂ 〈CD = operate ∧ (SD 6 MaxSteam ⇒ SO ∈ SD ± errB)〉

StopB = DetectStopB̂StoppedB

DetectStopB =̂ 〈CD = stop ∧ δ 6 MaxDelayB 〉

StoppedB =̂ 〈CD = stop ∧ ¬ OR〉

Figure 4: Specification of the boiler component.

– Mode Stop is similar to Init . During Stop,
OP is not true and it lasts at least MinStop
seconds.

– Mode Operate begins as mode RunUp, dur-
ing which OP is true and which lasts for no
longer than MaxRunUp seconds, and then,
at some arbitrary instant, becomes mode
Running . During the latter mode, OP is
also true and SO ∈ SD ± err provided that
SD is less than or equal to MaxSteam. In
general, requirements on the environments
under which a system is supposed to behave
in a certain way can be specified using im-
plication as in the definition of Running .
The choice operator 2 is used to allow for
the possibility that the mode may change
before run-up has completed.

The inputs and outputs of the component specifi-
cation, in terms of a software monitor and a hardware
boiler, are shown in Figure 3.

Monitor

Boiler

CD OR

SOSD

OP

Figure 3: Component view of the steam boiler.

The boiler has an input CD ::= init | operate |
stop which provides it with the commands to ini-
tialise, operate or stop, and an output OR : B which
models the indication from the sensors that the boiler
is operating correctly.

The steam boiler can be specified as the boiler and
monitor components operating in parallel.

SteamBoilerMB =̂ Monitor ‖ Boiler

The specifications of the boiler and monitor compo-
nents are given in Figure 4 and Figure 5 respectively.

The boiler simply waits for commands from the
monitor and behaves accordingly. It is allowed to
take up to MaxDelayB : T seconds before detect-
ing a command. As shown by Smith [Smith, 1999],
the values for the allowable error in the steam out-
put errB : RATE and the maximum run-up time
MaxRunUpB : T of the boiler are smaller than those
of the system. This is necessary to account for this
time delay, as well as that which may occur between
the boiler failing and the monitor reacting.

The boiler is in one of three modes, InitB ,
OperateB or StopB , depending on the input command
CD .

• If the command is init then the boiler is in InitB
mode. After a time less than MaxDelayB sec-
onds, the boiler must indicate that it is not op-
erational for at least MinInit seconds (while it
performs its initialisation tests).

• If the command is operate then the boiler is in
OperateB mode. After a run-up of less than
MaxRunUpB seconds, if the input command has
not changed and the steam demand is less than
or equal to MaxSteam, the boiler must provide
steam output within errB of the demanded rate.

• If the command is stop, the boiler is required to
indicate that it is not operational after a period
of MaxDelayB seconds.

The monitor’s behaviour is more sophisticated
than that of the boiler. It cycles through its modes
in a particular order, only breaking this order when
a failure occurs. Failures are detected via the
boiler output OR. They must be detected within
MaxDelayM : T seconds.

The monitor is modelled as having a Normal and
Failed mode of operation.

• In the Normal mode, the monitor sends the
init command to the boiler and waits for up to

Monitor =̂ M̂

M =̂ Normal2Failed

Normal =̂ InitM ̂(((OperateM ↓ FailM)̂StopM)2OperateM)

InitM =̂ 〈CD = init ∧ ¬ OP ∧ δ 6 MaxWaitM 〉

OperateM =̂ 〈OR ∧ CD = operate ∧ OP〉

FailM =̂ 〈¬ OR ∧ CD = operate ∧ OP ∧ δ 6 MaxDelayM 〉

StopM =̂ 〈CD = stop ∧ ¬ OP〉

Failed =̂ TimeOutM ̂StopM

TimeOutM =̂ 〈¬ OR ∧ CD = init ∧ ¬ OP ∧ δ = MaxWaitM 〉

Figure 5: Specification of the monitor component.

MaxWaitM : T seconds for OR to become true.
After this, it sends the operate command to the
boiler and indicates to the environment, via OP ,
that the boiler is operating. It continues to do
this as long as OR is true. The ↓ operator is used
to model the fact that the monitor will send the
operate command as long as possible. If OR be-
comes false, it responds by sending the stop com-
mand and indicating that the boiler is no longer
operational within MaxDelayM seconds.

• In the Failed mode, the monitor, after waiting
MaxWaitM seconds for the boiler to successfully
initialise, sends a stop command to the boiler.

The specifications of the boiler system and boiler
and monitor components presented in this section are
much clearer than similar specifications produced by
the author using the timed trace notation of Section 2
alone [Smith, 1999]. The latter specifications required
extensive use of the interval concatenation operator to
specify durations of modes and mode changes. As well
as the inherent subtleties with using this approach,
the resulting specifications fail to show the partition-
ing of the overall behaviours into easily understood
modes. A clear understanding of the system can only
be inferred through some amount of analysis.

The use of modes for specifying embedded
systems is in fact well-established. A number
of automata-based approaches have been de-
veloped [Alur et al., 1995, Kesten et al., 1998,
Lynch et al., 1996] in which vertices represent modes
and edges represent instantaneous mode changes.
The semantic identification of systems and modes in
our approach, however, leads to an approach which
is more structured (since modes can be specified in
terms of sub-modes) and flexible (since traditionally
system-level operators such as parallel composition
can be used for modes and vice-versa). While this se-
mantic identification is quite simple in a set-theoretic
semantics such as ours, it would be more difficult in
an automata-based approach.

4 Towards a Mode Calculus

One of the advantages of using a formal specification
language is that analysis of descriptions is precise and
potentially automatable. Such analysis is crucial for
safety critical applications. In the context of require-
ments engineering of embedded systems, formal anal-
ysis can also be used to verify that a system specifi-
cation is refined by its component specification. That

is, that the component specification meets all require-
ments specified in the system specification. This rela-
tionship between specifications is essential when the
different specifications are being used to communicate
to different parties involved with the system.

For a specification language to be formal, it must
have a precise mathematical semantics. In this sec-
tion, we provide a semantics for the notation intro-
duced in Section 3. We also explain briefly how this
could be used as the basis for a set of rules for refine-
ment. A complete set of rules, however, is beyond the
scope of this paper.

We let I denote the set of all time intervals and,
given a predicate P with free occurrences of timed
trace variables ~v , let P [~v(t)/~v] denote the predicate
with all occurrences of v from ~v , which are not deref-
erenced, replaced by v(t) [Fidge et al., 1998b]. The
semantics of our notation is then as given in Figure 6.

The semantic function d e returns the set of inter-
vals in which a mode could be operating. The func-
tions inf and sup return the start and end points
(infimum and supremum) of an interval respectively.

• If the mode is a simple mode of the form 〈P〉,
then its set of intervals comprises all those for
which P holds.

• If the mode is formed using the binary ̂ oper-
ator, then its set of intervals comprises all those
which are the union of intervals from the con-
stituent modes whose end points meet.

• If the mode is formed using the binary ↓ operator,
then its set of intervals comprises all those which
are the union of intervals from the constituent
modes whose end points meet, and where all in-
tervals which extend the first interval are not in-
tervals of the first mode.

• If the mode is formed using the unary ̂ operator,
then its set of intervals comprises the concatena-
tions of sequences of intervals of the constituent
mode.

• If the mode is formed using the unary ↓ operator,
then its set of intervals comprises the concatena-
tions of sequences of intervals of the constituent
mode which do not have extensions in the con-
stituent mode.

• If the mode is formed by the 2 operator, then its
set of intervals comprises those intervals belong-
ing to at least one of the constituent modes.

d〈P〉e = {i : I | ∃α, ω, δ : T • α = inf (i) ∧ ω = sup(i) ∧ δ = ω − α ∧ (∀ t : i • P [~v(t)/~v])}

where ~v are the free occurrences of timed trace variables in P

dM1̂M2e = {i : I | ∃ i1 : dM1e; i2 : dM2e • inf (i2) = sup(i1) ∧ i = i1 ∪ i2}

dM1 ↓ M2e = {i : I | ∃ i1 : dM1e; i2 : dM2e • inf (i2) = sup(i1) ∧ i = i1 ∪ i2 ∧

(∀ i ′, i ′′ : I | i ′ = i1 ∪ i ′′ ∧ inf (i ′′) = sup(i1) • i ′ 6∈ dM1e)}

dM̂ e = {i : I | ∃ s : seqdM e • i = ∪ s ∧ (∀n : 1 . . #s − 1 • inf (s(n + 1)) = sup(s(n)))}

d↓ M e = {i : I | ∃ s : seqdM e • i = ∪ s ∧ (∀n : 1 . . #s − 1 • inf (s(n + 1)) = sup(s(n)) ∧

(∀ i ′, i ′′ : I | i ′ = s(n) ∪ i ′′ ∧ inf (i ′′) = sup(s(n)) • i ′ 6∈ dM1e))}

dM12M2e = dM1e ∪ dM2e

dM1 ‖ M2e = dM1e ∩ dM2e

Figure 6: Semantics of mode operators.

• If the mode is formed by the ‖ operator, then
its set of intervals comprises those belonging to
both of the constituent modes.

Given this semantics, a system, or mode, M1 is
refined by a system, or mode, M2 when the set of
intervals of M2 are a subset of those of M1. That is,
M2 only operates over intervals which are intervals of
M1. Hence, any properties which are true for M1 are
also true for M2.

Formally,

M1 v M2 ⇔ dM2e ⊆ dM1e

where v denotes “is refined by”.
Given this definition, it is now possible to check,

under certain values of the constants such as err
and errB , whether SteamBoilerMB is a refinement of
SteamBoiler , and hence whether the specifications in
Section 3 are consistent. While this could be done by
calculating the sets of intervals corresponding to each
specification, this process, unless automated, is only
really feasible for small specifications.

A preferable technique is to work at the level of the
specification, rather than the semantics. To do this,
we need to develop a set of rules for both reasoning
and refinement which are sound with respect to the
semantics. The following is an example of a possible
refinement rule.

〈P〉 v 〈Q〉 ⇔ Q ⇒ P

It is obviously sound since the set of intervals over
which Q hold will be a subset of those over which P
holds only when Q is stronger than P , i.e., Q ⇒ P .

Similarly, refinement rules involving other opera-
tors can also be defined. For example, it is also pos-
sible to show the following is sound.

〈P〉 v 〈Q〉 ‖ 〈R〉 ⇔ Q ∧ R ⇒ P

Derivation of an adequate set of such rules is an
area of future work.

5 Conclusion

We have presented a notation for specifying the re-
quirements of embedded systems based on a concept
of modes. This notation has a formal semantics al-
lowing us to precisely analyse specifications and prove
one specification is a refinement of another. The lat-
ter is particularly useful for proving consistency be-
tween high-level specifications of entire systems (suit-
able for communication with customers) and compo-
nent specifications in which hardware and software
components are separated (suitable for communica-
tion with implementors). The use of an explicit con-
cept of mode makes the notation more readable, and
less prone to subtlety, than other formal notations
capable of modelling real-time and continuous be-
haviour.

Acknowledgements

Thanks to Colin Fidge and Ian Hayes for helpful com-
ments on this work. This work is funded by Aus-
tralian Research Council grant number A49801500:
A Unified Formalism for Concurrent Real-Time Soft-
ware Development.

References

[Abrial et al., 1996] Abrial, J.-R., Börger, E., and
Langmaack, H. (1996). Formal Methods for In-
dustrial Applications: Specifying and Programming
the Steam Boiler Control, volume 1165 of Lecture
Notes in Computer Science. Springer-Verlag.

[Alur et al., 1995] Alur, R., Courcoubetis, C., Halb-
wachs, N., Helzinger, T., Ho, P.-H., Nicollin, X.,
Olivero, A., Sifakis, J., and Yovine, S. (1995). The
algorithmic analysis of hybrid systems. Theoretical
Computer Science, 138:3–34.

[Broy, 1993] Broy, M. (1993). Functional specifi-
cation of time-sensitive communicating systems.
ACM Transactions on Software Engineering and
Methodology, 2(1):1–46.

[Fidge et al., 1998a] Fidge, C., Hayes, I., and Ma-
hony, B. (1998a). Defining differentiation and in-
tegration in Z. In Staples, J., Hinchey, M., and
Liu, S., editors, IEEE International Conference on
Formal Engineering Methods (ICFEM ’98), pages
64–73. IEEE Computer Society Press.

[Fidge et al., 1998b] Fidge, C., Hayes, I., Martin, A.,
and Wabenhorst, A. (1998b). A set-theoretic model
for real-time specification and reasoning. In Jeur-
ing, J., editor, Mathematics of Program Construc-
tion (MPC’98), volume 1422 of Lecture Notes in
Computer Science, pages 188–206. Springer-Verlag.

[Hansen and Zhou Chaochen, 1997] Hansen, M. and
Zhou Chaochen (1997). Duration calculus: Log-
ical foundations. Formal Aspects of Computing,
9(3):283–330.

[Kesten et al., 1998] Kesten, Y., Manna, Z., and
Pnueli, A. (1998). Verification of clocked and hy-
brid systems. In Rozenberg, G. and Vaandrager,
F., editors, Lectures on Embedded Systems, volume
1494 of Lecture Notes in Computer Science, pages
4–73. Springer-Verlag.

[Lynch et al., 1996] Lynch, N., Segala, R., Vaan-
drager, F., and Weinberg, H. (1996). Hybrid I/O
automata. In Alur, R., Henzinger, T., and Sontag,
E., editors, Hybrid Systems III: Verification and
Control, volume 1066 of Lecture Notes in Computer
Science, pages 496–510. Springer-Verlag.

[Mahony, 1992] Mahony, B. (1992). The Specifica-
tion and Refinement of Timed Processes. PhD the-
sis, Department of Computer Science, University
of Queensland.

[Mahony and Hayes, 1992] Mahony, B. and Hayes, I.
(1992). A case-study in timed refinement: A mine
pump. IEEE Transactions on Software Engineer-
ing, 18(9):817–826.

[Mahony et al., 1994] Mahony, B., Millerchip, C.,
and Hayes, I. (1994). A boiler control system:
Overview of a case study in timed refinement.
In Belluz, D. D. B. and Ratz, H., editors, Soft-
ware Safety: Everybody’s Business, Proceedings of
the 1993 International Invitational Workshop on
Design and Review of Software-Controlled Safety-
Related Systems, Ottawa, pages 189–208. The In-
stitute of Risk Research.

[Smith, 1999] Smith, G. (1999). Specification and re-
finement of a real-time control system. In Edwards,
J., editor, Australasian Computer Science Confer-
ence (ACSC 99), pages 360–371. Springer.

[Smith and Fidge, 2000] Smith, G. and Fidge, C.
(2000). Incremental development of real-time re-
quirements: The light control case study. Journal
of Universal Computer Science, 6(7):704–730.

[Spivey, 1992] Spivey, J. (1992). The Z Notation: A
Reference Manual. Prentice Hall, 2nd edition.

