
A Formal Framework for Modelling and Analysing Mobile Systems

Graeme Smith

School of Information Technology and Electrical Engineering
University of Queensland, Australia

Email: smith@itee.uq.edu.au

Abstract

This paper presents a formal framework for modelling and
analysing mobile systems. The framework comprises a collec-
tion of models of the dominant design paradigms which are
readily extended to incorporate details of particular technolo-
gies, i.e., programming languages and their run-time support,
and applications. The modelling language is Object-Z, an ex-
tension of the well-known Z specification language with explicit
support for object-oriented concepts. Its support for object ori-
entation makes Object-Z particularly suited to our task. The
system structuring techniques offered by object orientation are
well suited to modelling mobile systems. In addition, inheri-
tance and polymorphism allow us to exploit commonalities in
mobile systems by defining more complex models in terms of
simpler ones.

Keywords: formal methods, mobile computing, object
orientation

1 Introduction

Recent developments in both hardware and software
technology have provided the basis for a new dis-
tributed computing paradigm — mobile computing.
Portable hardware devices such as laptops and smart
cards enable computer networks where physical de-
vices migrate from one location to another. This
ability is further enhanced by advances in wireless
data communication and the embedding of comput-
ers in a wide range of devices such as active badges,
pagers, mobile phones and GPS receivers. To over-
come the latency and bandwidth restrictions of the
Internet, programming languages such as Telescript
[White, 1996] and Java Aglets [Lange, 1997] have
been developed which allow executable code to simi-
larly migrate throughout a network.

In such a setting, issues such as access to dis-
tributed data and services, routing, consistency of
distributed data and, in particular, the secure trans-
fer of confidential data and code arise and must be
dealt with. To tackle these issues in the design of
traditional distributed, i.e., non-mobile, computing
applications is a complex task involving aspects of
data, (network) architecture, behaviour, interaction
and distribution. For mobile systems, another layer
of complexity is introduced by the fact that the archi-
tecture and distribution aspects of the modelled ap-
plication can change dynamically. If we are to move
beyond trivial applications of the mobile computing
paradigm, we need a sound understanding of the base
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concepts of the paradigm and a way of identifying and
tackling the complex issues that arise in given appli-
cations.

Toward this end, Fuggetta, Picco and Vigna
[Fuggetta et al., 1998] present a conceptual frame-
work for understanding and guiding development of
systems incorporating mobile code. Their framework
introduces three dimensions along which such systems
can be classified: technologies , design paradigms and
applications . Mobile code technologies are the mech-
anisms present in languages to enable and support
code mobility. Design paradigms are the architec-
tural styles that enable the technologies to be effec-
tively utilised. Applications are systems which use
mobile code. In particular, four design paradigms
are described: the Client-Server paradigm which sup-
ports non-mobile distributed computing; the Remote
Evaluation and Code on Demand paradigms which
support weak mobility , i.e., where code, but not ex-
ecution state, can move around a network; and the
Mobile Agent paradigm which supports strong mo-
bility , i.e., where both code and execution state can
move around a network.

While this informal framework has been
shown to be useful for designing mobile systems
[Baldi et al., 1997, Ghezzi and Vigna, 1997], it is not
meant for reasoning about such systems. As the
authors point out, “models enabling formal reasoning
and verification” are also needed. In this paper, we
take up this challenge by producing a formal frame-
work for modelling mobile code technologies, design
paradigms and applications using the specification
language Object-Z [Smith, 2000].

Object-Z is an extension of the well-known Z spec-
ification language [Spivey, 1992] with explicit sup-
port for object-oriented concepts such as classes, in-
heritance, object references (which allow for aliasing
and mutual recursion between objects) and polymor-
phism. These concepts facilitate our task in two ways.

1. The system structuring techniques offered by
object orientation are well suited to modelling mobile
systems.

We model network nodes as objects and connec-
tions between nodes via object references. Chang-
ing references hence changes network connectivity en-
abling dynamic network topologies, as would exist in
a wireless network, to be modelled. Processes are
also modelled as objects and are associated uniquely
with a node via a notion of object containment. Such
processes can be passed as parameters between nodes
modelling process migration. Mutually recursive ref-
erences between two objects allow either of the ob-
jects to activate an event, in which the other is a
passive participant. This is useful to model, for ex-
ample, whether a process moves autonomously or is
sent to another node by its host node.

2. Inheritance and polymorphism allow us to ex-
ploit commonalities in mobile systems by defining



more complex models in terms of simpler ones.
We provide a library of design paradigm mod-

els which can be readily extended to model new
paradigms as they arise. We also discuss how this li-
brary enables us to define particular technologies and
applications by incorporating their details into our
models.

We begin in Section 2, with a brief introduction to
Object-Z, including conventions for interpreting spec-
ifications which we adopt in our framework. In Sec-
tion 3, we specify a generic network and illustrate how
the common Client-Server paradigm of distributed
computing can be defined from it via inheritance.
In Section 4, we extend the Client-Server model to
capture the design paradigms supporting weak mo-
bility, i.e., the Remote Evaluation and Code on De-
mand paradigms. In Section 5, we similarly extend
the Client-Server model to capture the Mobile Agent
paradigm supporting strong mobility. In Section 6,
we discuss other approaches to modelling mobile sys-
tems. In Section 7, we conclude with a brief discussion
of future directions.

2 Object-Z

Object-Z [Smith, 2000] is a formal specification lan-
guage which supports modelling using object-oriented
concepts. An Object-Z specification comprises a num-
ber of global constant and type definitions, specified
according to the syntax of Z [Spivey, 1992], and a
number of classes including a system class which acts
as the interface to the system being modelled. A
full description of Object-Z can be found elsewhere
[Smith, 2000]. Below we summarise those aspects of
the language relevant to this paper.

A class encapsulates a collection of typed state
variables, invariant constraints on these variables, ini-
tial constraints on these variables and several opera-
tions which may change these variables. The type
of a state variable may be a class. In this case, the
value of the variable is a reference to an object of that
class. Using references to objects, rather than values
of objects, allows aliasing and mutually recursive class
specifications.

To indicate that an object is (physically) contained
by another class, rather than just referenced by it, its
type is annotated with the symbol ©C. For example,
the declaration a : A©C in class B indicates that an
object of class B has a reference a to an object of
class A and that this object is contained by the ob-
ject of class B . A single object cannot be (directly)
contained by more than one object.

Classes may be specified incrementally using in-
heritance. A class which inherits another may extend
its definition with new state variables, new invariant
and initial constraints, and new operations. It may
also add new constraints to existing operations. In a
specification including one or more inheritance hier-
achies, variables may be declared polymorphically to
have the type of any class within a hierarchy.

As in Z, it is useful to adopt conventions for inter-
preting Object-Z specifications when used for a par-
ticular type of modelling. In our framework, we adopt
two conventions for interpreting Object-Z specifica-
tions.

Firstly, we assume that the modelled system com-
prises those objects that can be reached (directly or
indirectly) via object references explicitly declared in
the system class. For example, if A is the system class
of the specification below, then the modelled system
comprises one object of class B and two objects of
class C . (An alternative convention, which we do not
adopt, would include an object of the system class A
in the modelled system.)

A

b : B

. . .

B

c1, c2 : C

. . .

C
. . .

Our second convention concerns which object ac-
tivates an event which involves two or more objects.
This is done by objects referencing (either directly or
indirectly) all objects involved in the events which
they activate. In the system class, operations are
specified in terms of the active object only. The par-
ticipation of other objects in an event are specified in
the active object’s class via the object references. For
example, in the specification below, the system class
A declares two objects b1 and b2 which reference each
other. The operations OpA1 and OpA2 involve both
objects, but whereas OpA1 is activated by b1, OpA2
is activated by b2.

A

b1, b2 : B

b1.b = b2

b2.b = b1

OpA1 =̂ b1.OpB2
OpA2 =̂ b2.OpB2

B

b : B

OpB1 =̂ . . .

OpB2 =̂ b.OpB1

Formal rules for reasoning about Object-Z spec-
ifications have been developed [Smith, 1995a], as
have approaches to reasoning which take advan-
tage of the object-oriented structure of specifi-
cations [Smith, 1995b, Griffiths, 1997]. Work on
tools to assist reasoning in Object-Z are also
being developed. These include tools for an-
imation (interactive exploration of specifications)
[McComb and Smith, 2003], model checking (auto-
matic proof on specifications with a limited state
space) [Kassel and Smith, 2001] and theorem prov-
ing (interactive proof on specifications, including
those with a large, or even infinite, state space)
[Smith et al., 2002]. There is also ongoing work
looking at combining model checking and the-
orem proving techniques [Smith and Winter, 2003,
Winter and Smith, 2003].

3 Distributed Systems

In this section, we specify a generic network in
Object-Z and show how it can be extended, via inher-
itance, to model the common Client-Server paradigm.

We begin by declaring two types, Address and
Data, which will be used throughout the paper.

[Address ,Data]

We also define a type Message to denote any type
of message that can be sent on a network. A mes-
sage has three components: a source, a destination
and some data. It may represent a single packet in a
network or several packets whose data parts need to
be combined at the destination.

Message
source, destination : Address
data : Data

3.1 A Generic Network

Given these types, we define the class of a generic
network node at the top of Figure 1.



Node

address : Address
input queue : seqMessage
neighbours : P Node
next : Address → PNode

rannext ⊆ neighbours

INIT

input queue = 〈 〉

Send0

m! : Message

m!.source = address

Receive
∆(input queue)
m? : Message

input queue ′ = input queue a 〈m?〉

Accept
∆(input queue)

input queue 6= 〈 〉
(head input queue).destination = address
input queue ′ = tail input queue

Transfer0
∆(input queue)
m! : Message

input queue 6= 〈 〉
(head input queue).destination 6= address

input queue = 〈m!〉 a input queue ′

Send =̂ [nn : neighbours ] • (Send0 • [ nn ∈ next(m!.destination) ]) ‖! nn.Receive
Transfer =̂ [nn : neighbours ] • (Transfer0 • [nn ∈ next(m!.destination) ]) ‖! nn.Receive

Network

nodes : P ↓Node

∀n : nodes • n.neighbours ⊆ nodes
∀n1,n2 : nodes • n2 ∈ n1.neighbours ⇒ n1 ∈ n2.neighbours

INIT

∀n : nodes • n.INIT

Send =̂ [n : nodes ] • n.Send
Accept =̂ [n : nodes ] • n.Accept
Transfer =̂ [n : nodes ] • n.Transfer

Figure 1: Generic network.



Each node has an address, an input queue of mes-
sages (used to model asynchronous communication),
a set of neighbours and a routing strategy. These
are represented by state variables. The routing strat-
egy, represented by state variable next , is a function
which, given a destination address, returns a set of
nodes which are the possible next nodes a message
should be sent to in order to reach the destination.
The set of nodes can be empty; when the address is
the current node’s address, for example. An invariant
constraint restricts the nodes in the set of nodes to
be neighbouring nodes. (ran f denotes the range of
function f .)

Initially, the input queue is empty and the values
of the other variables are not further constrained. The
class has six operations.

Send0 outputs a message m! (the ! decoration de-
notes an output variable) whose source is the node’s
address. The operation captures just the conditions
common to nodes in all kinds of networks. For specific
networks, more detail about the data which is sent,
or the reason for sending a message may be required.
In these cases, further constraints could be added to
this, and other operations, using inheritance.

Receive inputs a message m? (the ? decoration
denotes an input variable) and adds it to the input
queue. (The ∆ symbol in an operation precedes a list
of state variables which the operation may change.
All other state variables are unchanged. The variables
after an operation are decorated with a ′.) When the
input queue is not empty, the message at its head
may be accepted by the node or transferred to an-
other node depending on its destination. The for-
mer situation is captured by Accept and the latter by
Transfer0.

The final two operations Send and Transfer com-
bine previously defined operations with the operators
• (“such that”) and ‖! (“in parallel with”). They
specify the sending and transferring of a message, re-
spectively, to a neighbouring node nn which receives
the message. (The parallel operator ‖! equates inputs
to outputs with common basenames, i.e, apart from
the ! and ? decorations.)

The class of a generic network is defined at the
bottom of Figure 1.

This class is the system class of our specification.
Hence, our system comprises a set of nodes. The ↓
preceding the type Node is the polymorphism symbol.
It indicates that the nodes may be of type Node or
any class derived from Node via inheritance. This
allows us to extend Node with additional variables
and constraints, to define specific design paradigms,
for instance, and still use the Network class. The
invariant constraints ensure that the neighbours of
all nodes in a network are also in the network, and
that for any pair of nodes, if the second is a neighbour
of the first then the first is a neighbour of the second.

Initially, all nodes satisfy the initial constraints of
their class. Therefore, initially their input queues are
empty. Three operations are possible in a generic
network. Send models a node n proactively sending
a message. This will involve another node passively
receiving the message (as specified in the Send opera-
tion of Node). Accept models a node n proactively ac-
cepting a message in its input queue. Transfer models
a node n proactively transferring a message (which is
passively received by another node as specified in the
Transfer operation of Node).

Although Network defines a statically connected
network, it can be used as the starting point for defin-
ing a dynamically connected network. Node could be
extended (via inheritance) to have an operation which
allows the variables neighbours and next to change,
and an operation to direct its neighbours to appro-
priately update their neighbours and next variables

while it does this. The Network class would then be
extended to allow a node n to proactively perform the
second operation.

3.2 The Client-Server Paradigm

To show how our generic network specification
can be used to model more specific distributed
paradigms, we extend it to model the Client-
Server paradigm that is used, for example, in
CORBA [Object Management Group, 1995]. In this
paradigm, certain nodes in the network (often only
one) act as a server . All other nodes act as a client .
The clients send requests to a server which runs local
code to determine a response to return to the client.

We begin by introducing two more types, Request
and Response,

[Request ,Response]

and two functions, req and resp, which extract a re-
quest or response, respectively, from given data. The
functions are partial (denoted by the symbol 7→) since
not all data represents a request or response. In par-
ticular, no two pieces of data represent both a request
and a response. If we wanted to model sending a re-
quest and response in a single message, then an ad-
ditional partial function could be introduced for this.
(dom f denotes the domain of a function f .)

req : Data 7→ Request
resp : Data 7→ Response

dom req ∩ dom resp = ∅

We also introduce a type for programs. A pro-
gram is a partial function which given a request in its
domain returns a response.

Program == Request 7→ Response

An instance of a program may only be a fragment
of code such as a class in an object-oriented program.
In such a case, it needs to co-operate with other pro-
grams and this would be captured by further con-
straints.

Given these definitions, we define the class of a
server at the top of Figure 2.

Class Server inherits class Node and adds two new
state variables: programs , the set of local programs;
and pending , the set of requests received together
with the addresses of the clients who sent them. A set
is used for the latter variable, rather than a sequence,
to allow for requests to be dealt with in a non-FIFO
manner, e.g., according to a priority mechanism, or
simply when the required program or a resource it
requires is available.

Initially, the set of pending requests is empty. The
class has no new operations, but its Accept and Send
operations are extended with new constraints.

If the data field of an accepted message is a request
then the data and the source address of the message
are added to the set of pending requests. For gener-
ality, we assume the data accepted by a server may
also be something other than a request. In particular,
in a network with more than one server, it may be a
response to a request sent by the server in question.
When a message which is not a request is accepted,
the set of pending requests is unchanged.

If the data field of a sent message is a response
then it is being sent to a client who made a request.
If this request is in the domain of one of the local
programs then the data of the message is the result
of applying the local program to the request. Oth-
erwise, the data of the message is left unspecified.



Server
Node

programs : P Program
pending : P(Request × Address)

INIT

pending = ∅

Accept
∆(pending)

let m == head input queue •
(m.data ∈ dom req ⇒ pending ′ = pending ∪ {(req(m.data),m.source)}) ∧
(m.data 6∈ dom req ⇒ pending ′ = pending)

Send
∆(pending)

m!.data ∈ dom resp ⇒
(∃ r : Request ; a : Address | (r , a) ∈ pending •

m!.destination = a ∧ ((∃ p : programs • r ∈ dom p) ⇒ m!.data = p(r)) ∧
pending ′ = pending \ {(r , a)})

m!.data 6∈ dom resp ⇒ pending ′ = pending

CSNetwork
Network

∃n : nodes • n ∈ ↓Server

Figure 2: Client-Server network.

This allows further constraints to be added to model
particular situations. For example, the response may
contain something other than the result of a program
such as a message indicating the requested service is
unavailable. In all cases, the request is removed from
the set of pending requests. For other types of sent
messages, the set of pending requests is unchanged.

The class of a Client-Server network is defined at
the bottom of Figure 2 as the system class of the
Client-Server specification. It is simply an extension
of the class Network where at least one of the nodes is
of class Server (or a subclass of Server). The power
of using inheritance to model incrementally is illus-
trated well by classes Server and CSNetwork of Fig-
ure 2. The details common to all networks are elided
and only those details specific to the Client-Server
paradigm are explicitly shown. This aids in both un-
derstanding the paradigm and consequently reasoning
about its properties.

4 Weak Mobility

In this section, we extend the models of the previous
section to model design paradigms supporting weak
mobility. These paradigms support the movement of
code, but not execution state, about a network.

4.1 The Remote Evaluation Paradigm

The Remote Evaluation paradigm allows a program
to be sent along with a request to a server node. It is
useful where the client has the program but not the
resources needed to execute it. We introduce a subset
of data in the domain of req which also has a program
associated with it (re req). A partial function prog
returns the program.

re req : PData
prog : Data 7→ Program

re req ⊆ dom req
re req ⊆ dom prog

The classes of a node and a server in a Remote
Evaluation network are defined at the top of Figure 3.
A node is extended with a set of programs. It may
send a program with a request which the program
can respond to. A server is extended to incorporate
these features of a Remote Evaluation node (also via
inheritance) and to add received programs to its set
of programs. The request is still added to the set of
pending requests as specified by the inherited con-
straints on Accept in Server . This is necessary as it
may not be possible to execute the received program
immediately if a resource it requires is being used by
another program.

The system class of the Remote Evaluation net-
work specification is defined at the bottom of Fig-
ure 3. It is simply a network in which all nodes are
of class RENode or one of its subclasses, and there
exists at least one node of class REServer .

4.2 The Code on Demand Paradigm

The Code on Demand paradigm allows nodes to re-
quest programs from other nodes. An application of
this paradigm is the World Wide Web where browsers
routinely download code from remote sites. We intro-
duce a subset of the domain of resp corresponding to
responses incorporating code (cod resp).



RENode
Node

programs : P Program

Send
m!.data ∈ re req ⇒ (∃ p : programs | req(m!.data) ∈ dom p • prog(m!.data) = p)

REServer
Server
RENode

Accept
∆(programs)

let m == (head input queue) •
(m.data ∈ re req ⇒ programs ′ = programs ∪ prog(m.data)) ∧
(m.data 6∈ re req ⇒ programs ′ = programs)

RENetwork
Network

∀n : nodes • n ∈ ↓RENode
∃n : nodes • n ∈ ↓REServer

Figure 3: Remote Evaluation network.

cod resp : PData

cod resp ⊆ dom resp
cod resp ⊆ dom prog

The class of a node in a Code on Demand network
is defined at the top of Figure 4. Note that there is
no distinction between client and server nodes in such
a network.

The class extends a server with additional con-
straints on its Accept and Send operations. When an
accepted message is a response incorporating a pro-
gram then this program is added to those local to the
node. When a sent message is a response incorporat-
ing a program then this program is a local program
of the node.

The system class of the Code on Demand network
specification is defined at the bottom of Figure 4. It
extends Network with the constraint that all nodes
are of class CoDNode or one of its subclasses.

4.3 Modelling Technologies

The models presented so far allow us to reason about
general properties of design paradigms. These models
are independent of the technology, i.e., programming
language and corresponding run-time support, that
might be used to implement them. If we want to con-
sider the effect of adopting a particular technology, we
can extend these models with the mechanisms avail-
able within that technology. For example, one aspect
of mobility that varies depending on the programming
language used is that of resource management. The
programs local to a node require certain resources. If
they are sent to a remote node the availability of these
resources must be maintained. This can be done by
moving the resources with the program, or by moving
a copy of the resources with the program. Alterna-
tively, it can be done by creating a reference to the

resources from the remote node, or by simply using
similar resources at the remote node.

Java Aglets [Lange, 1997], for example, supports
copying the resources and moving them with the pro-
gram. Given a type Resource and a partial function
res to return the resources associated with appropri-
ate data:

[Resource]

res : Data 7→ Resource

the Code on Design paradigm using Java Aglets can
be captured by an extension to the CoDNode class as
follows.

CoDNode JavaAglets
CoDNode

resources : P Resource
bindings : Program 7→ PResource

dom bindings = programs
ran bindings ⊆ resources

Send
m!.data ∈ cod resp ⇒

res(m!.data) = bindings(prog(m!.data))

The other means of resource management could
also be captured by extensions to the class CoDNode.
Similarly, other technology-dependent mechanisms
could be incorporated into our models.

5 Strong Mobility

In this section, we look at strong mobility where
both code and execution state can move about a



CoDNode
Server

Accept
∆(programs)

let m == head input queue •
(m.data ∈ cod resp ⇒ programs ′ = programs ∪ {prog(m.data)}) ∧
(m.data 6∈ cod resp ⇒ programs ′ = programs)

Send
m!.data ∈ cod resp ⇒ prog(m!.data) ∈ programs

CoDNetwork
Network

∀n : nodes • n ∈ ↓CoDNode

Figure 4: Code on Demand network.

network. In particular, we model the Mobile Agent
paradigm supported by languages such as Telescript
[White, 1996].

5.1 The Mobile Agent Paradigm

The Mobile Agent paradigm allows code and its exe-
cution state to proactively migrate between network
nodes1. Such code and state are encapsulated in an
entity referred to as a mobile agent .

We model a mobile agent, or process, as an object
in Object-Z. This provides the necessary encapsula-
tion of state and behaviour (i.e., operations). Mi-
gration of a process can then be modelled simply as
passing the object between nodes representing loca-
tions.

The actual state and operations of a process will
depend on the application. Here we model just the
details common to all processes. Further state vari-
ables and operations can be added by inheritance as
required.

A process is either active, or migrating. We define
a type Mode to represent this.

Mode ::= active | migrating

This type is used in class Process of Figure 5 to model
a process which is initially active and may toggle
between being active or migrating. When it moves
to migrating mode, it also updates a state variable,
next address , denoting the address it wishes to mi-
grate to. The value of this variable will be decided by
the process’s internal logic which will vary according
to the application, and so is left unspecified in class
Process .

To allow processes to be passed in messages, we
introduce a partial function proc which given appro-
priate data returns an object of class Process , or one
of its subclasses. Such data does not carry a request
or response.

proc : Data 7→ ↓Process

dom proc ∩ (dom req ∪ dom resp) = ∅

1A more general definition of the Mobile Agent paradigm would

allow both proactive and reactive migration. Here we focus on the
former only, although the latter could also easily be incorporated

into our model.

The class of a node of a Mobile Agent network
is defined at the top of Figure 6. It extends a server
with a set of processes. These processes are contained
objects, meaning they cannot be associated with more
than one node.

The Accept operation is extended with constraints
captured by an expression involving the operations
Accept0 and AcceptProcess defined in the class, and
the operation Activate defined in class Process . The
operators used are [] (“or”) and ∧ (“and”). Accept0
defines the case when the accepted message does not
contain a process, and AcceptProcess the case when
it does. In the latter case, the process is added to
those associated with the node. The conjunction of
AcceptProcess with the operation Activate applied to
the accepted process ensures that the process changes
mode from migrating to active.

The Send operation is constrained so that it only
sends local processes which are in migrating mode.
These processes are sent to the address of their
next address variable, and removed from the set of
local processes.

The system class of the Mobile Agent network
specification is defined at the bottom of Figure 6. It
extends Network with a set of processes and a con-
straint that all nodes are of class MANode or one
of its subclasses. Initially, all processes are in their
initial state, i.e., are active, and the set of processes
is exactly those associated with the network’s nodes.
This is an initial constraint rather than an invariant
since, after initialisation, processes may migrate and
while being transferred about the network (for exam-
ple, while in a node’s input queue) are not associated
with any node.

5.2 Modelling Applications

Given the library of design paradigms in this paper,
applications can readily be modelled by adding con-
straints via inheritance. For example, there are a
range of applications that fall into the category of
distributed information retrieval. These applications
involve gathering information from a set of nodes dis-
persed about a network. We model here a distributed
information retrieval system using the Mobile Agent
paradigm (although other paradigms such as Client-
Server could also be used).

A process capable of distributed information re-
trieval is specified by class DIR Process below. Such



Process

mode : Mode
next address : Address

INIT

mode = active

Migrate
∆(mode,next address)

mode = active
mode ′ = migrating

Activate
∆(mode)

mode = migrating
mode ′ = active

Figure 5: Mobile process.

MANode
Server

processes : P ↓Process©C

Accept0
(head input queue).data 6∈ dom proc

AcceptProcess
∆(processes)

(head input queue).data ∈ dom proc
processes ′ = processes ∪ {proc((head input queue).data)}

Accept =̂ Accept0 [] (AcceptProcess ∧ (proc((head input queue).data)).Activate)

Send
∆(processes)

m!.data ∈ dom proc ⇒
proc(m!.data) ∈ processes ∧
proc(m!.data).mode = migrating ∧ m!.destination = proc(m!.data).next address ∧
processes ′ = processes \ {proc(m!.data)}

m!.data 6∈ dom proc ⇒ processes ′ = processes

MANetwork
Network

processes : P ↓Process

∀n : nodes • n ∈ ↓MANode

INIT

∀ p : processes • p.INIT

processes = ∪{n : Nodes • n.processes}

Migrate =̂ [ p : processes ] • p.Migrate

Figure 6: Mobile Agent network.



a process needs to be able to access information on its
host node. Hence, we add a reference to the host node
to the state variables of the class Process . We also
add an itinerary listing the nodes the process must
visit, and a set of data representing the information
gathered.

Initially, the itinerary is empty and may be up-
dated (to a non-empty itinerary) by the new opera-
tion UpdateItinerary . A process of this class may only
migrate when its itinerary is non-empty, in which case
it moves to the address at the head of the itinerary.
This address is removed from the itinerary when the
process is again activated at its destination. Upon
activation its host reference is also updated. After
activation the process may gather information with
the new operation GatherInfo which invokes an oper-
ation ReadData of the host node.

DIR Process
Process

host : ↓DIR MANode
itinerary : seqAddress
information : PData

INIT

itinerary = 〈 〉

UpdateItinerary
∆(itinerary)

itinerary ′ 6= 〈 〉

Migrate
itinerary 6= 〈 〉
next address ′ = head itinerary

Activate
∆(host , itinerary)

itinerary ′ = tail itinerary

GatherInfo0

∆(information)
data? : P Data

information ′ = information ∪ {data}

GatherInfo =̂ host .ReadData ‖ GatherInfo0

Host nodes of processes of class DIR Process
must be of class DIR MANode. This class inherits
MANode and extends it with a set of local data, and
an operation to read an arbitrary subset of the data.
It also adds a constraint that all processes associated
with a node that are of class DIR Process regard the
node as their host. (self is an implicitly declared vari-
able in every Object-Z class which for each object of
the class is assigned to its reference.) This constraint
ensures that a process’s host variable is updated cor-
rectly when the process is activated.

DIR MANode
MA Node

data : PData

∀ p : processes •
p ∈ ↓DIR Process ⇒ p.host = self

ReadData
data! : P Data

data! ⊆ data

6 Related Work

We are not the first to develop formal models of the
design paradigms identified by Fuggetta, Picco and
Vigna [Fuggetta et al., 1998].

Picco, Roman and McCann [Picco et al., 1997] de-
velop models of the paradigms using Mobile UNITY.
They model, however, a simple application in each of
the paradigms, rather than modelling the paradigms
independently of an application as we have done. The
result, therefore, is a set of guidelines rather than a li-
brary of reusable specifications. Although some reuse
occurs between the models of the paradigms, this is
done in an ad hoc manner rather than by using a lan-
guage construct such as inheritance. The use of inher-
itance as a reuse mechanism in our approach, simpli-
fies the specifier’s task by focusing it on the differences
between models (rather than their usually more vo-
luminous commonalities). It can also aid subsequent
reasoning by allowing previously proved properties to
be reused (as shown by Smith [Smith, 1995b]).

One technical issue that arises with the Mobile
UNITY work is that the components in a specification
are fixed. This means programs, which are modelled
as components, cannot be copied and hence cannot
co-exist at two locations. Therefore, the model of the
Remote Evaluation paradigm, for example, requires
that the program is “returned” to the client with a
response.

Models of the design paradigms have also been de-
veloped using an extension of Cellular Automata by
Brooks and Orr [Brooks and Orr, 2002]. Although
these models are presented independently of an ap-
plication, they are less general than ours for two rea-
sons. Firstly, they use one dimensional networks of
cells (representing nodes) limiting the approach to
fixed and linear network topologies. Secondly, due
to the lock-step nature by which cells in Cellular Au-
tomata evolve, all communication is done via pack-
ets. Hence, process migration includes cutting a pro-
cess into multiple packets which must be reassem-
bled when received. Our approach abstracts away
from these lower-level details which are really part
of the underlying technology, rather than the design
paradigms.

The Cellular Automata approach also has a dif-
ferent goal to ours. It is concerned with detecting
emergent properties of mobile systems such as net-
work congestion. Such properties arise from interac-
tions of components and cannot generally be deduced
from the properties of the components themselves.
Our goal, however, is to use component properties
to deduce those of the system (as suggested by Smith
[Smith, 1995a] and Griffiths [Griffiths, 1997]). Hence,
the two approaches can be seen as complementary.

Object-Z is a very general formalism and has found
application in a wide variety of areas. It is interesting
therefore to also compare our work with formalisms
developed specifically for mobile systems.

Most of these are either process algebra ap-
proaches, such as the π-calculus [Milner, 1999] and
its variants, or stream-based formalisms, such as that
of Grosu and Stølen [Grosu and Stølen, 2001]. These
formalisms model systems in terms of sequences of
events which flow over communications channels.
They have no explicit support for modelling the state
of system components, and little support for mod-
elling data structures. While they are notationally
and semantically elegant, their lack of support for
modelling state and data structures makes them less
suited to modelling the often complex details of mo-
bile system technologies and applications.

This issue is addressed by Taguchi and Dong
[Taguchi and Dong, 2002] who combine Object-Z
with a process algebra supporting mobility primitives



to produce a formalism called MobiOZ. Our work
shows, however, that Object-Z alone is sufficient for
modelling mobile systems. Furthermore, the mobility
primitives in MobiOZ are based on those in Telescript
[White, 1996] and hence the language is not as adapt-
able to other technologies, including those yet to be
developed, as our approach.

7 Conclusion

We have presented a library of Object-Z classes mod-
elling the dominant design paradigms used in mobile
systems. We have done this by taking advantage of
object-oriented structuring techniques to allow for dy-
namic network connectivity (connections are poten-
tially mutable references between nodes) and proac-
tive process migration (processes are objects which
may be passed as parameters and which may initiate
events). We have also used inheritance and polymor-
phism to specify our models incrementally, exploiting
commonalities among the design paradigms. Inheri-
tance can similarly be used to extend our models to
represent their realisation with specific technologies,
or to capture their use in specific applications.

The formal basis of Object-Z allows us to use the
models and their potential extensions to reason about
properties of mobile systems. This process can be
aided by taking advantage of the substantial reuse of
classes within our framework, and the particular form
to which our specifications conform. Future work will
look at how these aspects of the models can be ex-
ploited to simplify reasoning and, hence, the develop-
ment of suitable reasoning support tools.
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