
Linear Temporal Logic and Z Refinement

John Derrick1 and Graeme Smith2

1 Computing Laboratory, University of Kent, Canterbury, CT2 7NF, UK
2 School of Information Technology and Electrical Engineering, The University of

Queensland 4072, Australia

Abstract. Since Z, being a state-based language, describes a system in
terms of its state and potential state changes, it is natural to want to
describe properties of a specified system also in terms of its state. One
means of doing this is to use Linear Temporal Logic (LTL) in which
properties about the state of a system over time can be captured. This,
however, raises the question of whether these properties are preserved
under refinement. Refinement is observation preserving and the state of
a specified system is regarded as internal and, hence, non-observable.
In this paper, we investigate this issue by addressing the following ques-
tions. Given that a Z specification A is refined by a Z specification C ,
and that P is a temporal logic property which holds for A, what tem-
poral logic property Q can we deduce holds for C ? Furthermore, under
what circumstances does the property Q preserve the intended meaning
of the property P? The paper answers these questions for LTL, but the
approach could also be applied to other temporal logics over states such
as CTL and the µ-calculus.

Keywords: Z, refinement, temporal logic, LTL.

1 Introduction

Z [14], like other state-based languages such as B [1] and VDM [9], describes a
system in terms of its state and the changes on this state. A specification typically
comprises a state schema declaring and restricting a set of state variables, an
initial state schema restricting the initial values of the state variables, and a
set of operation schemas detailing possible changes to the state variables with
respect to additional variables representing inputs and outputs.

While invariant properties of the system can be captured directly by the
specification, more complex behavioural properties need to be proved to hold.
Given the emphasis on the state while specifying using Z, it seems natural to
want to also describe desired behavioural properties in terms of the system’s
state. Ideal for this purpose are temporal logics which define predicates over
infinite sequences of states. They can be used to specify how the state of the
system evolves over time, in a way that isn’t possible directly in the model.

Along with their ability to capture behavioural properties in terms of state,
temporal logics are also commonly used for describing properties in model check-
ing [4]. Hence, investigating their use with Z is an important first step toward

C. Rattray et al. (Eds.): AMAST 2004, LNCS 3116, pp. 117–131, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

118 John Derrick and Graeme Smith

developing model checking support for the language [13]. The most common
temporal logics used in model checking are Linear Temporal Logic (LTL) [8],
Computation Tree Logic (CTL) [8] and the µ-calculus [10]. In this paper, we
focus on the use of LTL, although the approach we develop could also be used
to similarly investigate CTL and the µ-calculus.

The purpose of the definition of refinement in Z is to formalise the develop-
ment from an abstract to a more concrete specification [6]. It is therefore prudent
to ask whether temporal logic properties are preserved under refinement. That
is, if a property is proved to hold for a Z specification, will it also hold for a
refinement of that specification? This question is complicated by the fact that
refinement is defined to preserve observable properties. In Z, only the operations
and their inputs and outputs are regarded as observable; the state of a specifica-
tion, to which temporal logic properties refer, is regarded as internal and, hence,
non-observable.

In this paper, we develop a general approach for investigating preservation of
temporal logic properties under refinement, and apply it to LTL. In Section 2, we
provide an overview of refinement in Z and motivate our work with an indicative
example of where a temporal property is not preserved. Our general approach
to determining temporal logic property preservation is defined in Section 3 and
applied to LTL in Section 4. We conclude with a discussion of related work and
future directions in Section 5.

2 Refinement

Refinement in Z is defined so that the observable behaviour of a Z specification
is preserved. This behaviour is in terms of the operations that are performed
and their input and output values. Values of the state variables are regarded
as being internal. Hence, they are not observable and properties on them are,
in general, not preserved. The reason for regarding them as internal is so that
refinement can be used to change the representation of the state of a system.
This is referred to as data refinement .

The definition of refinement in Z is derived from a relational model into which
Z is embedded. The details of this are contained in [6], and if a specification C
is a refinement of another specification A we write A � C .

To prove a data refinement one needs to link the states in the abstract and
concrete specifications via a relation known as the retrieve relation. The retrieve
relation shows how a state in one specification is represented in the other. For re-
finement to be complete, a relation, rather than simply a function, is required [6].

Given such a retrieve relation, simulation rules relating the schemas of the
specifications are used to verify the refinement. The standard simulation rules
for Z assume that operations have preconditions outside of which they can occur
changing the state arbitrarily. Such arbitrary state changes make it difficult to
prove any interesting temporal properties however. Hence in our approach, we
adopt an alternative view of operations in which they are blocked , i.e., cannot
occur outside their preconditions.

Linear Temporal Logic and Z Refinement 119

As well as facilitating the use of temporal logics, the blocking model also
makes our approach applicable to variants of Z which adopt this model, such
as Object-Z [12]. It is also equivalent to the standard non-blocking model of Z
when operation preconditions are totalised , i.e., post-states are defined for all
pre-states. Such totalisation of preconditions would be necessary in standard Z
for the specification to exhibit interesting temporal properties.

As for standard Z refinement, there are two simulation rules for refinement
under the blocking model which are together complete, i.e., all possible refine-
ments can be proved with a combination of the rules (in fact, every refinement
can be verified with one downward together with one upward simulation).

The first rule, referred to as downward simulation, requires that

1. the initial states of the concrete specification are related to abstract initial
states,

2. the concrete operations are only enabled in states related to abstract states
where the corresponding abstract operations are enabled, and vice versa (i.e.,
they have equivalent preconditions), and

3. whenever a concrete operation can result in the state change (t , t ′), for any
abstract state s related to t , the corresponding abstract operation can result
in (s , s ′) such that s ′ is related to t ′. That is, the effect of the concrete
operation is consistent with the requirements of the corresponding abstract
operation.

It is defined as follows [6]. (Note that the state variables of a schema S after
each operation are denoted by S ′, and, in general, the Z notation is also used
for expressing its own metatheory, details of this notation can be found in [6].)

Definition 1. A Z specification with state schema CState, initial state schema
CInit and operations COp1 . . .COpn is a downward simulation of a Z speci-
fication with state schema AState, initial state schema AInit and operations
AOp1 . . .AOpn , if there is a retrieve relation R such that the following hold for
all i : 1..n.

1. ∀CState • CInit ⇒ ∃AState • AInit ∧ R
2. ∀AState; CState • R ⇒ (preAOpi ⇔ pre COpi)
3. ∀AState; CState; CState ′ • R ∧ COpi ⇒ (∃AState ′ • R′ ∧ AOpi)

The second rule, referred to as upward simulation, requires that

1. there is an abstract state related to every concrete state,
2. the initial states of the concrete specification are only related to abstract

initial states,
3. for every concrete state, there exists an abstract state, such that all opera-

tions enabled on the abstract state are also enabled on the concrete state,
and

4. whenever a concrete operation can result in the state change (t , t ′), for any
abstract state s ′ related to t ′, the corresponding abstract operation can result
in (s , s ′) where s is related to t .

It is defined as follows [6].

120 John Derrick and Graeme Smith

Definition 2. A Z specification with state schema CState, initial state schema
CInit and operations COp1 . . .COpn is an upward simulation of a Z speci-
fication with state schema AState, initial state schema AInit and operations
AOp1 . . .AOpn , if there is a retrieve relation R such that the following hold.

1. ∀CState • ∃AState • R
2. ∀AState; CState • CInit ∧ R ⇒ AInit
3. ∀CState • ∃AState • ∀ i : 1..n • R ∧ (preAOpi ⇒ preCOpi)
4. ∀ i : 1..n • ∀AState ′; CState; CState ′

• (COpi ∧ R′ ⇒ (∃AState • R ∧ AOpi)

Note that we use a slightly stronger form of upward simulation, in particular,
one where the quantification over the operations (that is, i) in condition 3 is
after the existential quantification of the abstract state. The reasons for using
this form of upward simulation are explored in [2, 7]. In particular, this form
ensures that refinement corresponds to failures-divergences refinement in CSP.
We need this form here since Lemma 2 does not hold for the weaker form of
upward simulation.

Given these definitions, one might assume that properties involving states
of the abstract system would hold for the related states in the concrete system.
That is, a property referring to abstract state s would hold for concrete state t
when t was related to s . This is not the case, as the following example shows.

Consider the following Z specification which, from an initial state s = 0,
moves nondeterministically to either state s = 1 or s = 2 via operation AOp1
and then to state s = 3 or state s = 4 depending on its current state via
operation AOp2.

AState
s : 0 . . . 4

AInit
AState

s = 0

AOp1
∆AState

s = 0 ∧ s ′ ∈ {1, 2}

AOp2
∆AState

s ∈ {1, 2}
s = 1 ⇒ s ′ = 3
s = 2 ⇒ s ′ = 4

This is refined by the following specification which from an initial state t = 0
moves to a state t = 1 via operation COp1 and then nondeterministically to
state t = 2 or t = 3 via operation COp2.

CState
t : 0 . . . 3

CInit
CState

t = 0

Linear Temporal Logic and Z Refinement 121

COp1
∆CState

t = 0 ∧ t ′ = 1

COp2
∆CState

t = 1 ∧ t ′ ∈ {2, 3}

This can be proved to be a refinement using an upward simulation with the
following retrieve relation.

R
AState
CState

s = 0 ⇔ t = 0
s ∈ {1, 2} ⇔ t = 1
s = 3 ⇔ t = 2
s = 4 ⇔ t = 3

This can be seen more clearly in Figure 1 which depicts the behaviours of the
specifications and the retrieve relation; with only the operations visible, both
behaviours are identical.

Fig. 1. An example refinement

Some temporal properties that hold for the abstract specification also hold
for the related states in the concrete specification. For example, the property
“it is always true that when s = 0, s ∈ {1, 2} in the next state” holds for the
abstract specification, and the corresponding property “it is always true that
when t = 0, t = 1 in the next state” holds in the concrete specification.

Note, however, that while the similar property “it is always true that when
s = 1, s = 3 in the next state” holds for the abstract specification, the corre-
sponding property “it is always true that when t = 1, t = 2 in the next state”

122 John Derrick and Graeme Smith

does not hold for the concrete specification. Hence, this property is not preserved
under this refinement.

This motivates the question as to when a temporal property is preserved
by refinement. Does it depend on the property, the nature of the refinement or
both? In the next section, we describe a general approach for answering this
question for any temporal logic over states.

3 Temporal Structures

The temporal logics LTL, CTL and the µ-calculus are usually interpreted on
temporal, or Kripke, structures [8]. Given the set of all atomic predicates AP , a
temporal structure (S ,S0,Trans ,L) comprises

– a set of states S ,
– a set of initial states S0 ⊆ S ,
– a transition relation Trans ⊆ S × S where ∀ s ∈ S . ∃ s ′ ∈ S .(s , s ′) ∈ Trans ,

i.e., Trans is total, and
– a labelling function L : S → P AP mapping each state in S to the atomic

propositions which hold in it.

The condition that Trans is total is necessary and, together with an assumption
that some transition always occurs, ensures that temporal structures continue
to progress.

To interpret temporal logic predicates on Z specifications, it is necessary to
also adopt this assumption that the specified system progresses, i.e., that its
environment always allows some enabled operation to eventually occur. It is also
necessary to represent Z specifications as temporal structures.

In order to state temporal properties which refer to inputs and outputs,
we need to embed these in the states of the specification without changing its
behaviour. This can be done as detailed in [13]. In brief, the type of each input
and output when embedded in the state is extended with a value ⊥ and this
value is used for the pre-state value of embedded inputs and post-state value
of embedded outputs when they are not declared in a particular schema of the
original specification.

The set S of the temporal structure representing a Z specification is the set
of bindings of the state schema of the specification. For example, for the abstract
specification of Section 2

S = {s � 0, s � 1, s � 2, s � 3, s � 4}
Similarly, the set S0 is the set of bindings of the initial state schema. For the

same example,

S0 = {s � 0}
The transition relation Trans includes mappings (s , s ′) : S × S when there

exists an operation with binding s ∪ s ′, and mappings (s , s) : S × S when there

Linear Temporal Logic and Z Refinement 123

does not exist an operation with binding s∪s ′ for any s ′ : S . The latter mappings
represent stuttering transitions when no other transitions are available. They are
necessary for Trans to be total. For the example,

Trans = {(s � 0, s � 1), (s � 0, s � 2), (s � 1, s � 3), (s � 2, s � 4),
(s � 3, s � 3), (s � 4, s � 4)}

where the final two pairs are stuttering transitions.
The labelling function L maps each binding s in S to the set comprising those

atomic propositions P over the state variables where s is also a binding of the
schema [AState | P]. For example, since s � 0 is a binding of [AState | s < 10],
the proposition s < 10 is a member of L(s � 0).

3.1 Temporal Structures and Refinement

Given the above representation of Z specifications as temporal structures, we
can express that a Z specification A meets a temporal logic property P using
the standard notation A � P . This means that the property P holds from all
initial states of the specification.

To relate the temporal properties of Z specifications under a refinement, we
first prove a lemma on Z refinement.

Lemma 1. Given Z specifications, A and C , if A � C verified via a retrieve
relation R then ∀CInit • (∃AInit • R).

Proof. Since downward and upward simulation are complete, C is either a
downward or upward simulation of A, or a combination of the two. It suffices to
consider each case separately.

In the former case, we have from Definition 1

∀CState • CInit ⇒ (∃AState • AInit ∧ R)

This simplifies to the required condition.
In the latter case, we have from Definition 2

∀CState • ∃AState • R

We also have

∀AState; CState • CInit ∧ R ⇒ AInit

Together these properties of upward simulation give us the required condition. �

For all temporal logics over states, the following general theorem holds.

Theorem 1. Given Z specifications, A and C , and temporal logic property P,
if A � P and A � C under retrieve relation R then C � ∃AState • P ∧ R.

124 John Derrick and Graeme Smith

Proof. From Lemma 1, we know that for each initial state of C there exists
an initial state of A related to it by R. Hence, C � ∃AInit • R. Also since
A � P , we know that P is true from all states satisfying AInit . Hence, we have
C � ∃AInit • P ∧ R which implies the required condition. �

This general theorem provides the basis for our investigations. If a temporal
logic property holds for a specification A, we want to know whether a correspond-
ing property holds for a refinement C . We define a corresponding property to be
one constructed from the same logical operators and with each atomic proposi-
tion P replaced by the following representation of it in the concrete state:

∃AState • P ∧ R

where R is the refinement retrieve relation.
Determining whether this is true reduces to determining whether conjunction

and existential quantification distribute through the operators in the temporal
logic property in such a way that the resulting property is no stronger than the
original. For example, suppose A � P ∧ Q . From Theorem 1, we know that

C � ∃AState • (P ∧ Q) ∧ R

Since conjunction distributes through conjunction resulting in an equivalent
property (i.e., (P ∧ R) ∧ (Q ∧ R) is equivalent to (P ∧ Q) ∧ R), we have

C � ∃AState • (P ∧ R) ∧ (Q ∧ R)

Since existential quantification distributes through conjunction resulting in a
weaker property (i.e., (∃ x • P) ∧ (∃ x • Q) is implied by ∃ x • P ∧ Q), we have

C � (∃AState • P ∧ R) ∧ (∃AState • Q ∧ R)

If P and Q are atomic propositions then the above property is the concrete prop-
erty corresponding to the abstract property P ∧ Q . Hence, the abstract property
is preserved by refinement. If P or Q involve additional operators then we need
to repeat the above process on the relevant conjunct or conjuncts above. Note
that these conjuncts are of the same form as the concrete property derived from
Theorem 1 and so the distribution of conjunction and existential quantification
is again required.

In the following section, we investigate whether conjunction and existential
quantification distribute through the operators of Linear Temporal Logic (LTL).
This shows us when LTL properties are preserved by refinement and throws light
on the cases when they are not.

4 Linear Temporal Logic

Linear Temporal Logic (LTL) [8] is defined on paths, i.e., infinite sequences of
states of a temporal structure where each pair of consecutive states is related by

Linear Temporal Logic and Z Refinement 125

the transition relation of the temporal structure. In this context, A � P means
that P holds on all paths originating from initial states of A. Given a path π of
A, we also adopt the more specific notations A, π � P and A, πi � P for some
i � 0. The former means that property P is true on path π and the latter that
the property is true on the suffix of path π starting with its ith state, i.e., if
π = s0s1s2 . . . sisi+1si+2 . . . then πi = sisi+1si+2

We introduce a further lemma on refinement.

Lemma 2. Given Z specifications A and C, if A � C under retrieve relation
R then for all paths πC = t0t1t2 . . . of C there exists a path πA = s0s1s2 . . . of A
such that each state ti of πC is related to the corresponding state si of πA by R.

Proof. The proof follows by induction.
(i) For state t0, we know that there exists an abstract state related to it by

Lemma 1. Hence, there is a path πA = s0s1s2 . . . of A such that s0 and t0 are
related by R.

(ii) Assume there exists a path πA = s0s1s2 . . . of A and a j : N such that
for all i : N where i � j , si is related to ti by R. Since downward and upward
simulation are jointly complete, C is either a downward or upward simulation
of A, or a combination of the two. It suffices to consider each case separately.

In the former case, we have from Definition 1

∀AState; CState; CState ′ • R ∧ COpi ⇒ (∃AState ′ • R′ ∧ AOpi)

Hence, for any concrete transition from tj , there will be a transition from sj to
a state s ′j+1 such that tj+1 and s ′j+1 are related by R. The definition of a path
means there will always be some transition from tj to tj+1. Hence, there is a
path πA′ = s0s1s2 . . . s ′j+1s

′
j+2 . . . of A such that for all i : N where i � j , si is

related to ti by R and s ′j+1 is related to tj+1 by R.
For upward simulation, we do not require the induction assumption. We

simply prove that a path πA′ = s ′0s
′
1s

′
2 . . . of A exists such that for all i : N

where i � j + 1, s ′i is related to ti by R.
We have from Definition 2

∀CState • ∃AState • R

Hence, there will be an abstract state s ′j+1 related to tj+1 by R. Consider a
concrete transition from tj to tj+1. Either this is skip (when no concrete op-
erations are enabled) or the concrete transition is due to a concrete operation
COpi . In the former case the upward simulation applicability condition means
no abstract operations are enabled, thus there exists a skip in the abstract state
and tj = tj+1, sj = sj+1. In the latter case, we use the following condition from
Definition 2

∀AState ′; CState; CState ′ • COpi ∧ R′ ⇒ (∃AState • R ∧ AOpi)

Hence, for the concrete transition from tj to tj+1 due to COpi , there will be a
transition from a state s ′j of A to s ′j+1 such that s ′j is related to tj by R.

126 John Derrick and Graeme Smith

Similarly, for the concrete transition from tj−1 to tj , there will be a transition
from a state s ′j−1 of A to s ′j such that s ′j−1 is related to tj−1 by R. Following this
line of reasoning, we can deduce that there exists a path πA′ = s ′0s ′1s ′2 . . . such
that for all i : N such that i � j + 1, s ′i is related to ti by R. �

We also specialise Theorem 1 of Section 3.1 for LTL as follows.

Theorem 2. Given Z specifications, A and C , and temporal logic property P,
if there exists an i : N such that for all abstract paths πA, A, πA

i � P and A � C
under retrieve relation R then for all concrete paths πC , C , πC

i � ∃AState •
P ∧ R.

Proof. From Lemma 2, we know that for each concrete path πC = t0t1t2 . . . of
C there exists an abstract path πA = s0s1s2 . . . of A such that for all i : N, si is
related to ti by R. Hence, C , πC

i � ∃AState • R where one instance of AState
satisfying the existentially quantified predicate is si . Also since A, πA

i � P , we
know that P is true from state si . Hence, we have C , πC � ∃AState • P ∧ R as
required. �

4.1 Syntax and Semantics

Formulae in LTL are generated from the following rules of syntax.

atomic propositions are formulae1

if P and Q are formulae, then ¬ P and P ∧ Q are formulae
if P and Q are formulae, then X P and P U Q are formulae

The operator X is read as “next” and U as “until”. The following abbrevia-
tions are also commonly used:

P ∨ Q ≡ ¬ (¬ P ∧ ¬ Q)
P ⇒ Q ≡ ¬ P ∨ Q
true ≡ P ∨ ¬ P for some P
false ≡ P ∧ ¬ P for some P
F P ≡ true U P (read “eventually P”)
G P ≡ ¬ F ¬ P (read “always P”)

The semantics of LTL is given in terms of a temporal structure A, path
π = s0s1s2 . . . of A, and LTL formulae P and Q as follows.

A, π � P if and only if P is true in s0
A, π � ¬ P if and only if A, π � P
A, π � P ∧ Q if and only if A, π � P and A, π � Q
A, π � X P if and only if A, π1 � P
A, π � P U Q if and only if ∃ j .(A, πj � Q) and ∀ k < j .(A, πk � P)

1 LTL, as used in model checking, is usually restricted to atomic propositions of the
form n = v . We do not require this restriction for our results; any proposition is
allowed.

Linear Temporal Logic and Z Refinement 127

4.2 Property Preservation

Let A and C be Z specifications such that A � C under retrieve relation R.
To determine which LTL properties of A are preserved under Z refinement, we
examine the distribution of conjunction and existential quantification through
each LTL operator in turn. That distribution through conjunction works was
shown in Section 3.1. Of the other operators (surprisingly) negation, rather than
one of the temporal operators, turns out to be the most interesting case and so
we leave it until last.

Next (X). If A � X P then from the semantics of the next operator, for all
abstract paths πA, we have

A, πA
1 � P

Hence, from Theorem 2 we have, for all concrete paths πC ,

C , πC
1 � ∃AState • P ∧ R

Hence, from the semantics of the next operator, we have

C � X (∃AState • P ∧ R)

Hence, conjunction and existential quantification distribute through the next
operator.

Until (U). If A � P U Q then from the semantics of the until operator, we
know there exists a j : N such that for all k : N such that k < j , for all abstract
paths πA, we have

A, πA
k � P

and

A, πA
j � Q

Hence, from Theorem 2 we have, for all concrete paths πC ,

C , πC
k � ∃AState • P ∧ R

and

C , πC
j � ∃AState • Q ∧ R

Hence, from the definition of the until operator, we have

C � (∃AState • P ∧ R) U (∃AState • Q ∧ R)

That is, conjunction and existential quantification distribute through the until
operator.

Since the eventually operator (F) is defined in terms of the until operator,
conjunction and existential quantification also distribute through it.

128 John Derrick and Graeme Smith

Negation (¬)

Negation of a property distributes through conjunction with a retrieve relation.
That is, ¬ P ∧ R implies ¬ (P ∧ R). However, it does not distribute through
existential quantification. That is, ∃ x • ¬ P does not imply ¬ (∃ x • P) (since
there may be some values of x satisfying ¬ P and others satisfying P).

So, in general, LTL properties involving negation are not preserved by refine-
ment. Consider, for example, the following Z specification which performs Op1
once and then Op2 an infinite number of times.

AState
s : N

AInit
AState

s = 0

AOp1
∆AState

s = 0 ∧ s ′ = 1

AOp2
∆AState

s �= 0 ∧ s ′ = s + 1

It is refined by the following specification with identical behaviour.

CState
t : {0, 1}

CInit
t = 0

COp1
∆CState

t = 0 ∧ t ′ = 1

COp2
∆CState

t = 1 ∧ t ′ = 1

The refinement is a downward simulation under the retrieve relation

R
AState
CState

s = 0 ⇔ t = 0
s �= 0 ⇔ t = 1

However, while the LTL property G (s = 1 ⇒ X (¬ s = 1)) holds for the
abstract specification, the corresponding property G (t = 1 ⇒ X (¬ t = 1))
does not hold for the concrete specification.

This result does not mean that LTL properties involving negation are never
preserved by refinement. For example, the property G (s = 0 ⇒ X (¬ s =
0)) holds for the abstract specification above, and the corresponding property
G (t = 0 ⇒ X (¬ t = 0)) holds for the concrete specification.

Linear Temporal Logic and Z Refinement 129

The reason, in this case, is that the retrieve relation R is functional for
the state t = 0, i.e., there is only one related abstract state. When this is so,
∃AState • ¬ P ∧ R implies that ¬ P is true from the single instance of AState
related to the concrete state. Hence, it is equivalent to ¬ (∃AState • P ∧ R).
That is, negation distributes through existential quantification.

Also, even without the retrieve relation being functional on negated states,
some LTL properties involving negation are preserved. For example, disjunc-
tion which is defined in terms of negation does distribute through existential
quantification as follows.

∃ x • P ∨ Q
≡ ∃ x • ¬ (¬ P ∧ ¬ Q)
≡ ¬ (∀ x • ¬ P ∧ ¬ Q)
� ¬ ((∀ x • ¬ P) ∧ (∀ x • ¬ Q))
≡ ¬ ((¬ (∃ x • P)) ∧ (¬ (∃ x • Q)))
≡ (∃ x • P) ∨ (∃ x • Q)

In fact, whenever we have an even number of successive negations to dis-
tribute, as above, then they will distribute through existential quantification.
The proof follows the reasoning of that above. Therefore, as well as the disjunc-
tion operator, we have that conjunction and existential quantification distribute
through the always operator which is defined by G P = ¬ F ¬ P .

Of the operators defined as abbreviations, the only one we haven’t considered
is implication. Since this is defined by P ⇒ Q = ¬ P ∨ Q , we have an odd num-
ber of successive negations preceding predicate P . For this reason, the operator
does not distribute through existential quantification, and hence temporal logic
properties involving implication are not, in general, preserved by refinement.

This explains the example at the end of Section 2. The first concrete property
can be formulated in LTL as

G (s = 0 ⇒ X (s ∈ {1, 2}))
which despite involving implication is preserved by the refinement since the
retrieve relation is functional on t = 0 (the concrete state related to s0).

The second property can be formulated in LTL as

G ((s = 1 ⇒ (X s = 3))

In this case, the retrieve relation is not functional on state t = 1 (the concrete
state related to s = 1) and so the property is not preserved.

5 Conclusion

In this paper, we have shown that all temporal properties P over the state AState
of an abstract Z specification A are transformed to properties ∃AState • P ∧ R
over a concrete Z specification C which is a refinement of A under the retrieve
relation R.

130 John Derrick and Graeme Smith

This result allowed us to reduce the problem of determining when properties
of a given temporal logic are preserved by refinement to an investigation of the
distribution of the various operators of the temporal logic through conjunction
and existential quantification.

We carried out such an investigation for Linear Temporal Logic (LTL) and
discovered that while properties containing only conjunction and the temporal
operators “next” and “until” (and, hence, also the derived operator “eventually”)
are preserved, those involving negation are, in general, not preserved.

We also pointed out two important cases when properties involving negation
are preserved. The first is when any negated concrete state is related to only
one abstract state. The second is when the number of successive negations in
any part of the property is even. The first case is important as it shows that all
LTL properties are preserved when the refinement retrieve relation is functional.
The second is important as it shows that properties involving certain operators
derived using negation, namely, disjunction and the temporal operator “always”,
are preserved.

The preservation of all LTL properties under a functional retrieve relation
agrees with the recent result by Darlot et al. [5]. Our work extends this result
by considering non-functional retrieve relations and also a complete definition
of refinement (Darlot et al. consider only a variant of downward simulation in
their approach).

We used a form of upward simulation that is compatible with CSP refinement,
and is slightly stronger than the form often used in Z. The extension of our results
to the weaker form of upward simulation is left for future work.

Our work is also closely related to that on abstraction, relevant in model
checking as a means to reduce the size of the state space of a specification to
be checked. Such techniques are in essence the inverse of refinement. Clarke
et al. [3] proved that all properties in the universal fragment of CTL* (i.e., the
fragment of CTL*, an extension of CTL, which excludes existential quantification
over paths) are true of a specification when they are true of an abstraction of
that specification. Loiseaux et al. [11] proved a similar result for the universal
fragment of the mu-calculus. Both of these fragments subsume LTL, but there
is no contradiction with our result as only functional abstraction relations were
considered.

The abstraction results, as well as being limited to functional relations, also
only consider variants of downward simulation. It would be interesting, therefore,
to extend our results to CTL and the µ-calculus. Not only would this make our
approach of using temporal properties with Z more general, and compatible with
more model checking techniques, it would also open the possibility of developing
more general abstraction techniques for model checking. This extension of our
results could readily be achieved using the approach we have presented in this
paper.

Linear Temporal Logic and Z Refinement 131

Acknowledgement

This work was carried out while Graeme Smith was on a visit to the University
of Kent funded by a University of Queensland External Support Enabling Grant.

References

1. J.R. Abrial. The B Book: Assigning Programs to Meaning. Cambridge University
Press, 1996.

2. C. Bolton and J. Davies. A Singleton Failures Semantics for Communicating Se-
quential Processes. Formal Aspects of Computing, 2002. Under consideration.

3. E. Clarke, O. Grumberg, and D. Long. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems, 16(5):1512–1542, 1994.

4. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
5. C. Darlot, J. Julliand, and O. Kouchnarenko. Refinement preserves PLTL prop-

erties. In D. Bert, J.P. Bowen, S. King, and M. Waldén, editors, International
Conference of Z and B Users (ZB2003), volume 2651 of Lecture Notes in Com-
puter Science, pages 408–420. Springer Verlag, 2003.

6. J. Derrick and E. Boiten. Refinement in Z and Object-Z, Foundations and Advanced
Applications. Springer-Verlag, 2001.

7. J. Derrick and E.A. Boiten. Relational concurrent refinement. Formal Aspects of
Computing, 15(1):182–214, November 2003.

8. E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, pages 996–1072. Elsevier Science Pub-
lishers, 1990.

9. C.B. Jones. Systematic Software Development using VDM. Prentice Hall, 1986.
10. D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,

27:333–354, 1983.
11. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving

abstractions for the verification of concurrent systems. Formal Methods in System
Design, 6(1), 1995.

12. G. Smith. The Object-Z Specification Language. Advances in Formal Methods.
Kluwer Academic Publishers, 2000.

13. G. Smith and K. Winter. Proving temporal properties of z specifications using
abstraction. In D. Bert, J.P. Bowen, S. King, and M. Waldén, editors, International
Conference of Z and B Users (ZB2003), volume 2651 of Lecture Notes in Computer
Science, pages 408–420. Springer Verlag, 2003.

14. J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 2nd edition,
1992.

	1 Introduction
	2 Refinement
	3 Temporal Structures
	3.1 Temporal Structures and Refinement

	4 Linear Temporal Logic
	4.1 Syntax and Semantics
	4.2 Property Preservation

	5 Conclusion
	References

