Model Checking Object-Z Classes:
Some Experiments with FDR

Geoff Kassel and Graeme Smith
Software Verification Research Centre
University of Queensland
Australia

Abstract

This paper investigates model checking Object-Z classes via their trans-
lation to the input notation of the CSP model checker FDR. Such a trans-
lation must not only be concerned with preserving the semantics of the
original specification, but also with how efficiently the resulting specifi-
cation can be model checked. Hence, the paper investigates alternative
translation schemes and compares how efficiently the resulting specifica-
tions can be checked.

1 Introduction

Model checking [4] is an automatic technique for proving properties of systems
specified in a formal notation. A model checker exhaustively checks the state
space of a specified system for a state in which the property does not hold. If
no such state is found, the model checker indicates that the property is true of
the specified system. If such a state is found, the model checker provides the
sequence of steps leading to that state as a counter-example (possibly as one
among a set of counter-examples).

Model checkers have been applied extensively in both hardware and proto-
col verification [10, 1]. However, their application to other systems, including
general software systems, has been limited for a number of reasons. One of
these is that the state space of such systems is often too large. This can result
in the model checker requiring an unacceptable amount of both memory and
time, or being unable to handle the specification at all. This is referred to as
state explosion. Another reason is that the formal notations of existing model
checkers support only simple types and type constructors since they are aimed
at modelling hardware [9], or event-based notations (process algebras) which are
not particularly suited to modelling data structures [12].

Rather than take on the significant task of building a model checker for more
expressive notations, one approach to the latter problem is to translate from such
notations to those of existing model checkers [3, 8]. For such translations to be

practically useful, they must, as far as is possible, avoid the problem of state
explosion. Hence, the translation must be concerned not only with preserving
the semantics of the original specification, but also with how efficiently the
resulting specification can be model checked.

Object-Z [17, 5] is an object-oriented extension of the formal specification
language Z [19]. It includes, in addition to the constructs of Z, a class construct
for defining the behaviour of the objects which comprise a specified system.
The relationship between the semantics of Object-Z classes and processes in a
language such as CSP [13] was first investigated by Smith [15] and has sub-
sequently formed the basis of a number of integrations of Object-Z and CSP
[16, 7, 18]. In this paper, we show how this relationship also provides a basis for
translations between Object-Z classes and the input notation of the CSP model
checker FDR [12, 6]!.

In Section 2, we introduce the notion of classes in Object-Z and outline their
semantics and its relationship to CSP processes. In Section 3, we provide two
translation schemes. The first is based on existing work of Fischer and Wehrheim
[8] for the integration of Object-Z and CSP called CSP-OZ [7]. The second aims
at avoiding the use of certain constructs in the Fischer and Wehrheim approach
argued to be inefficient by Mota and Sampaio [11]. In Section 4, we compare
the efficiency of the translation schemes via a number of experiments. These
reveal that neither of the schemes is more efficient in all cases and we conclude
the section by developing and running the experiments on a third translation
scheme using aspects of both. In Section 5, we conclude with a discussion of
future work.

2 Classes in Object-Z

Object-Z [17, 5] is an object-oriented extension of Z [19], a state-based formal
specification language in which system states, initial states and operations are
modelled by schemas comprising a set of variable declarations constrained by
a predicate. A class in Object-Z encapsulates a state schema, and associated
initial state schema, with all the operation schemas which may change its vari-
ables. As an example, consider the following Object-Z specification of a credit
card account [5].

The class has an axiomatic definition of a constant limit of type natural
number (N) whose value is in the set {1000,2000,5000}. It has a single state
variable balance of type integer (Z) whose value is constrained to be more than
—limit. Initially, the value of balance is zero and it can be decreased or increased
by an input value amount? via the operations withdraw and deposit respectively.
The notation A(balance) in these schemas denotes that they may change the
value of balance. The balance can also be reduced to —limit by the operation
withdrawAvail which outputs (via the output variable amount!) the total funds
available.

LA description of FDR can also be found in Roscoe’s book on CSP [13].

_ CreditCard
limit : N
limit € {1000, 2000, 5000}

balance : 7

balance + limit > 0

__INIT
balance =0

__withdraw
A(balance)
amount? : N

amount? < balance + limit
balance’ = balance — amount?

__deposit
A(balance)
amount? : N

balance’ = balance + amount?

__ withdrawAvail
A(balance)

amount! : N

amount! = balance + limit
balance’ = —limit

A semantics of Object-Z classes has been given by Smith [15] in which a class
is represented by the set of histories, i.e., sequences of states and operations, its
objects may undergo. In this semantics, an object may undergo any operation
that is enabled, i.e., whose predicate can be met. If an operation is not enabled,
it is said to be blocked, i.e., it cannot occur. This is in contrast to the semantics
of Z where operations which are not enabled can occur but with an undefined
outcome.

This semantics can be mapped to the failures semantics of the process al-
gebra CSP [13]. In the latter semantics, processes are represented by failures
which comprises a sequence of events the process can undergo together with the
set of events which can be refused after this sequence. A mapping between the
two semantics in which Object-Z classes are associated with CSP processes and
Object-Z operations with CSP events has been presented by Smith [16] in order
to integrate Object-Z and CSP.

CSP CSPu Explanation

STOP STOP Deadlock process

ced channel c Definition of event c

cveED channel ¢ : ¢ Parameterised event c.v (v in t)
c—Dp c—>p Process p prefixed by event c
cVv—Dp c.v—>0p Process p prefixed by event c.v
pOq pllq Simple internal choice
Ovitep [Jo:tep Replicated internal choice
pMq pl|7l ¢ Simple external choice
Mvitep ||lv:tep Replicated external choice
P=... pP=.. Simple process definition
Pv)=... Pv)=... Parameterised process

if b then p else STOP | b & p Simple guarded command

if b then p else q if b then p else ¢ | Complex guarded commands

Table 1: A summary of the CSPj; notation, as compared to CSP.

In the following sections, we use this mapping as the basis for translating
between Object-Z classes and CSP processes in the input notation of the model
checker FDR [12, 6]. The mapping faithfully represents the semantics of Object-
Z classes in terms of failures and is, therefore, more appropriate for our needs
than the mappings between the semantics of Object-Z and CSP developed for
other integrations of the languages [7, 18]2.

3 Model checking Object-Z Classes

As noted previously, Fischer and Wehrheim [8] have developed an approach for
translating CSP-OZ [7] for checking with the model checker FDR [12, 6]. This
translation provides a method of encoding Object-Z classes in the FDR input
notation, a machine-readable dialect of CSP called CSPj, [14, 6] that incorpo-
rates a functional language notation similar to Haskell [2]. It is this functional
language which gives specifications written in CSP,; the expressive power to
represent Object-Z, drawing on the CSPj; implementation of set theoretical
and logic concepts to encode Object-Z schemas. A summary of the CSP; no-
tation as compared to CSP is in Table 1, and similarly, a summary of the CSP j,
functional language notation as compared to Object-Z is found in Table 2.

To encode Object-Z classes in CSPj; by this approach, classes are decom-
posed into their component aspects — state and operation definitions. State def-
initions comprise axiomatic definitions and the state and initial state schemas,
and are encoded by set constructions based on their declarations and predi-
cates. Operation definitions are further decomposed into their communications,

2In CSP-OZ [7], Object-Z classes are given a non-blocking semantics similar to that of Z.
In both CSP-OZ and the work of Smith and Derrick [18], outputs of operations may not be
constrained by the environment, in contrast to outputs in Object-Z.

Object-Z CSPu Explanation

==alb datatype t = a | b Free type
aAb a and b Logical and
aVvb aorb Logical or
a=b a==1"5 Equality
a<b a<=b Less than or equal
a>b a>=b Greater than or equal
a. b {a..b} Ranged set
#s card(s) Set cardinality
achb member(a, b) Set membership
{v:t]b} {v]v<—t, b} Simple set construction
{c:s;d:t|b} | {(e,d)]| c<—s,d <—t, b} | Complex set construction

Table 2: A summary of the CSP), functional language notation, as compared
to Object-Z.

enabling precondition, and a post-state ‘effect’. A CSP communication event is
also used to represent the occurrence of the operation, parameterised with the
values to be communicated. The class aspects are re-composed via a Semantics
process, which gives the non-blocking semantics of CSP-OZ — an event may
occur at any time if it is enabled, but if there is no valid post-state, chaos may
occur. Chaos is modelled in CSP via divergence — a process which undergoes
infinite recursion or an infinite sequence of hidden events.

This approach can be adapted to the blocking semantics of Object-Z by
a modification of the Semantics process — altered so that an event may not
occur unless it is guaranteed to succeed. When no event can occur, deadlock
occurs. Due to this modification, the model state-space, as derived by the model
checker, is reduced significantly — in some cases, by up to a factor of four. This
highlights the significance of the choice of semantics of a specification language
with respect to the efficiency of model checking.

To investigate the efficiency of different encodings of Object-Z classes, the
following trial encodings of the CreditCard class were made — an initial encoding
based on the CSP-OZ encoding, altered for Object-Z semantics, and a trial
encoding which attempts to provide a more efficient representation of state and
operation definitions. These are compared in Section 4.

3.1 The initial encoding

The initial approach chosen to model Object-Z semantics in CSP ; differs from
the CSP-OZ encoding approach detailed in [8] only by the different semantics
chosen when re-composing class aspects. Hence, the CreditCard class is de-
composed into its state, communication, precondition, and post-state aspects.
These are represented by state and init set constructors, operation event defini-
tions, and enable and effect clauses. The following demonstrates the encoding
of the axiomatic constant and state schema of the CreditCard class in the CSP s

functional language (see Table 2).

state = {(limit, balance) |
limit <—Nats,
balance <—Ints,
member(limit, {1000, 2000, 5000}),
balance + limit >= 0}

This set constructor constructs all possible values of the axiomatic constant
limit and the state variable balance, typed respectively by the natural num-
bers (‘Nats’) and the integers (‘Ints’)3, and restricted by the predicates of the
axiomatic definition and the state schema.

The INIT schema is derived similarly. A predicate (limit, balance) <—state
ensures that the constraints on the axiomatic constant and state variable are
met.

init = {(limt, balance) |
(limit, balance) <—state,
balance == 0}

Operation communications are encoded next. CSP events are used to rep-
resent both communication and the occurence of operations — discrete events
represent the occurrence of a similarly named operation, parameterised with
values to be communicated [16, 7]. CSP s requires the prior definition of such
events using the reserved word channel. The operations withdraw, deposit and
withdrawAvail hence produce the following definitions, as each communicates a
natural number:

channel withdraw : Nats
channel deposit : Nats
channel withdrawAwvail : Nats

To distinguish between input and output communications, each operation
has an event definition, which matches given inputs and outputs to the param-
eters of the operation event:

event(withdraw, in, out) = withdraw.in
event(deposit, in, out) = deposit.in
event (withdrawAvail, in, out) = withdrawAvail.out

The types of these inputs and outputs are given as sets so that they can be
used later in replicated choice operations (see Table 1):

in(withdraw) = Nats
in(deposit) = Nats
in(withdrawAvail) = {{}}
out (withdraw) = {{}}

out(deposit) = {{}}
out (withdrawAvail) = Nats

3The CSP); definitions of these types are given in Section 4.

The events of the class are similarly made accessible to choice operations by
definition of a set of all possible class operations:

Ops = {withdraw, deposit, withdrawAvail }

Due to it having a non-blocking semantics, CSP-OZ has a special construct
to enforce blocking of operations if desired. To model this, the CSP-OZ encoding
has an enable clause for each operation. This clause evaluates to true when the
operation is not blocked. For Object-Z, blocking is determined by whether or
not the operation can occur and hence the enable clause is unnecessary. We
give it the default value true.

enable(withdraw)((limit, balance)) = true
enable(deposit)((limit, balance)) = true
enable(withdrawAvail)((limit, balance)) = true

The post-state, or ‘effect’, of the operation is encoded via a set construc-
tor similar to that of the INIT schema — in addition to constructing the state
values, values for the output communications are constructed, and constraints
representing the A-list of the operation are added. The set constructor for each
operation takes as parameters the current state values and the values of the
inputs (denoted ‘_’ when there are no relevant inputs).

effect (withdraw)((limit, balance), amount) =
{{({}, (limit’, balance’)) |
(limit’, balance”) <— state,
amount <= balance + limit,
balance’ == balance — amount,
limit" == limit}
effect(deposit)((limit, balance), amount) =
{({}, (limit’, balance’)) |
(limit’, balance”) <— state,
balance’ == balance + amount,
limit’ == limit}
effect (withdrawAvail) ((limit, balance), _) =
{(amount, (limit’, balance’)) |
(limit’, balance’) <— state,
amount <— Nats,

amount == balance + limit,
balance’ == —limit,
limit’ == limit}

Finally, the aspects of the class are re-composed in the Semantics process.
For CSP-OZ semantics, this is the following, which uses the divergent process
DIV (trivially defined as DIV = DIV [8]) to model chaos.

Semantics(Ops, in, out, enable, effect, init, event) =
let Z_PART(s) =] op: Ops @ enable(op)(s) & []i : in(op) @
if empty(effect(op)(s,i))then
(I"| o : out(op) e event(op, i, 0)—> DIV)
else
(7] (0.") - effect(op)(5,) @
event(op, i,0)—> Z_PART(s'))
Z_MAIN = |"| s : init @ Z_PART(s)
within Z_MAIN

This process begins by choosing an initial state s from the set init (derived
from the initial state schema) and then behaves as the (sub)process Z_PART (s).
This latter process after choosing an enabled operation op and input ¢ undergoes
the event corresponding to that operation with an internally chosen output o. In
the case that a valid post-state exists for op for the input 7 and pre-state s, such
a post-state s’ is internally chosen and the process behaves like Z_PART(s').
Otherwise, the process diverges.

Following Smith [16], the Semantics process can be modified to Object-Z’s
blocking semantics by replacement of the then branch of Z_PART with STOP,
the deadlock process. This ensures the choice of op and i such that a valid post-
state exists, if possible. This is due to the CSP law, P 00 STOP = P [13]. This
law means a process (v : ¢ @ if b then STOP else P(v) will, whenever possible,
choose a value of v from ¢ which does not satisfies b — since a value which does
satisfy b will result in the process STOP. The alteration also requires the use
of the external choice operator for initial states, outputs and post-states.

Given that not b & p abbreviates if b then STOP else p (see Table 1), we
have:

OZSemantics(Ops, in, out, enable, effect, init, event) =
let OZ_PART(s)=1] op: Ops Q enable(op)(s) & []i : in(op) Q
not empty(effect(op)(s,i))&
([1(o, s") = effect(op)(s,i) @
event(op, i,0)—> OZ_PART(s'))
OZ_MAIN = []s : init @ OZ_PART(s)
within OZ_MAIN

The encoding is completed by a process which calls the Semantics process
with the derived class aspects:

CreditCard = OZSemantics(Ops, in, out, enable, effect, init, event)

3.2 A more efficient encoding?

This initial adaption of the CSP-OZ encoding, while reducing the state-space of
the compiled model, and hence some portion of the model checking time, is still
somewhat time consuming as a model checking technique. A likely culprit for
this time inefficiency, as noted by Mota and Sampaio [11], is the extensive use of

set construction to determine valid states of the specification. It is deemed that
avoidance of this construct improves the efficiency of model checking Object-Z
constructs, and hence a replacement construct — replicated external choice — is
trialled as an alternative in the following encoding.

Our use of replicated external choice fills the same role as set construction
— a valid value can be selected for a given variable, within given predicate
constraints. This is possible because of the CSP law, P O STOP = P, which,
in this case, ensures a process Ov : t e b & P(v) chooses a value of v from ¢
which satisfies b whenever possible. Note that a similar law does not hold for
internal choice and hence this approach is not possible with CSP-OZ due to its
non-blocking semantics.

Although replacing set comprehension in this way does not decrease the
state-space of a specification, a decrease in average model compilation time is
observed. This time is most often the largest time factor in the FDR model
checking process, outweighing the actual checking time by orders of magnitude,
and hence is worthwhile to reduce.

A consequence of the avoidance of set construction is that decomposition of
class aspects into labelled sets is no longer relevant. Instead, a class is encoded
as a OZSemantics-like process which begins by choosing an initial value for the
state. A choice is made for each declared constant and variable in this process
definition, and axiomatic definition and state schema constraints are included
in-line (conjoined with the logical operator and) as in the following:

CreditCard =

—— Axziomatic schema type declarations

[] limit : Nats @

—— State schema type declarations

[] balance : Ints @Q
—— Aziomatic schema constraints
member(limit, {1000, 2000, 5000}) and
—— State schema constraints
balance + limit >= 0 and
—— Init schema constraints
balance == 0 &

CreditCardBehaviour (limit, balance)

The process CreditCardBehaviour(limit, balance) performs the same role as
the OZ_PART process of the initial encoding — an operation and its input, out-
put and post-state values are selected, and the corresponding event performed.
Each operation is separated into its own ‘branch’, unfolding the replicated choice
on the operation set Ops of OZ_PART. Operation events can be included in-
line because of this unfolding. enable clauses are always true and hence are
excluded entirely.

The following demonstrates the approach:

CreditCardBehaviour (limit, balance) =
(—— withdraw operation
—— Input type declarations
[] amount_in : Nats Q
—— Post-state typing constraints
[] balance’ : Ints @
—— State schema constraints
(balance’ + limit >=0) and
—— withdraw schema constraints
(amount_in <= balance + limit and
balance’ == balance — amount_in) &
withdraw.amount_in —>
CreditCardBehaviour (limit, balance’)

(—— deposit operation
—— Input type declarations
[] amount_in : Nats Q
—— Post-state typing constraints
[] balance’ : Ints @
—— State schema constraints
(balance’ + limit >=0) and
—— deposit schema constraints
(balance’ == balance + amount_in) &
deposit.amount_in —>
CreditCardBehaviour (limit, balance’)

[]

(—— withdrawAwvail operation
—— Post-state typing constraints
[] balance’ : Ints @
—— QOutput type declarations
[] amount_out : Nats @
—— State schema constraints
(balance’ + limit >=0) and
—— withdrawAwvail schema constraints
(amount_out == balance + limit and
balance’ == —limit) &
withdrawAvail.amount_out —>
CreditCardBehaviour (limit, balance’)

)

A consequence of not decomposing the class aspects to labelled sets is that
explicit inclusion of state aspects — notably state schema constraints — is required
in each operation schema encoding. Axiomatic constants need not be explicitly
included — their values are fixed in the top-level process, and passed to the class

10

behaviour process. Their definitions are hence made available throughout the
class behaviour process.

The above process draws upon the same channel event definitions as the
initial CSP-OZ based encoding, and so with inclusion of these definitions, the
alternate encoding is complete. The following section compares the time effi-
ciency of this encoding against the initial encoding.

4 Case Studies

Before a comparison of the time efficiency of these encodings can be made,
a key limitation in any model checking methodology must be addressed - the
state explosion problem [4]. This problem occurs when large sets are utilised in
classes to be model-checked — as the size of the set increases linearly, the model
state-space often increases in a polynomial or even exponential fashion, causing
the ‘explosion’ of states for which this problem is named. This reduces the
feasibility of model checking classes utilising these large sets, as model checking
time and consumption of processing resources increases in a similar fashion. The
restriction of large sets to the minimum deemed necessary to properly ‘exercise’
the specification is frequently necessary before model checking is feasible.

In the case of the CreditCard class, the use of integer and natural number
sets cause a state explosion problem, which may be overcome with modification
of these types. The expedient of defining upper and lower bounds (Minlnt
and MazInt) for the number sets used allows this specification to be model
checked, but has an impact on completeness of verification in the form of the
boundary problem. This problem occurs when an operation that would otherwise
successfully assign a variable a value is not permitted to do so by this typing
constraint or ‘boundary’. This issue is negligible where values encountered are
expected to be within these boundaries, but some further modification of the
class is often necessary.

Modification of the constant values in the definition of the axiomatic constant
limit is also required for the CreditCard class, as model checking a class utilising
the range of all natural numbers up to these constants is not feasible. Hence,
these constants are modified from 1000, 2000, and 5000 to 1, 2 and 5 respectively.
The range of integer values of -8 to 8 is deemed to be a suitable minimum
range to exercise the full behaviour of the CreditCard class with this modified
limit constant. Hence MaxInt, MinInt, and the type definitions for the integers
(‘Ints’) and the naturals (‘Nats’) are declared as follows:

nametype MaxiInt = 8
nametype MinInt = —8

nametype Ints = { MinInt..MazInt}
nametype Nats = {0..MazInt}

With these modifications, the two encodings of the CreditCard class may be
feasibly model checked.

11

CSP-0OZ Initial ‘Efficient’
encoding encoding encoding
Integer range | Time/States | Time/States | Time/States
8.8 35/109 3s/36 15/36
710..10 6s/131 5s/42 3s/42
-12..12 9s/153 7s/48 4s/48
14,14 13s/175 10s/54 7s/54
716..16 26s/107 14s/60 10s/60
18,18 36s/210 105/66 145/66
720..20 45s/241 25572 10s/72
750..50 550s/571 200s/162 372s/162

Table 3: Model checking times (in seconds) and number of states for the
CreditCard class for increasing upper and lower bounds of the integer type.

4.1 Approach comparison

To examine the behaviour of both encodings under varied state spaces, trials
using a series of differing upper and lower bounds on the types Ints and Nats
were conducted. The model checking time (comprising the time for compilation
and performing a simple deadlock check) and state space of each encoding were
compared to a baseline of a CSP-OZ encoding of the class. These encoding trials
were tested on a Sun Sparc Ultra-80 machine with four 450MHz Ultra Sparc 11
processors and 2GB of RAM, and running the Solaris version of FDR 2.77. The
results can be found in Table 3.

The table shows a significant reduction in the state space for the initial and
‘efficient’ encodings for all integer bounds tested. This reflects the underlying
difference in the semantics of classes adopted between these approaches and the
CSP-0Z encoding. The initial and ‘efficient’ encodings are also generally more
time efficient with the latter encoding being slightly better than the former.
An anomaly occurs, however, at the high end of the trials (as indicated by the
time / state pair in bold face in Table 3) where the initial encoding proves more
time efficient.

Experiments on encodings of other classes showed similar anomalies. In
particular, anomalies appeared earlier in the trials when the types used to define
the state variables and constants were larger than those of communicated values.
This suggested that the encoding of state in the initial encoding is more efficient
than that in the ‘efficient’ encoding and that the latter’s improved efficiency
came from its encoding of operations alone. Working from this hypothesis, a
new encoding unifying the others was developed.

4.2 A unified encoding

In the unified encoding, the state definitions are encoded in a similar fashion to in
the initial encoding. To enable the values of the axiomatic constants to be fixed,
as in the ‘efficient’ encoding, separate set constructors are used for axiomatic

12

constants and state variables. This is demonstrated for the CreditCard class
below:

CreditCardAziom = {limit |
limit <— Nats,
member(limit, {1,2,5})}

CreditCardState(limit) = {balance |
balance <— Ints,
balance + limit >= 0}

CreditCardInit(limit) = {balance |
balance <— CreditCardState(limit),
balance == 0}

The approach then more closely follows that of the ‘efficient’ encoding except
that choices of constants and state variables are made using the above sets as
in the following;:

CreditCard =
[] timit : CreditCardAziom Q@
[] balance : CreditCardInit(limit) Q
CreditCardBehaviour (limit, balance)

where CreditCardBehaviour is:

CreditCardBehaviour (limit, balance) =
(—— withdraw operation
—— Input type declarations
[] amount_in : Nats Q
—— Post-state typing constraints
[] balance’ : CreditCardState(limit) Q
—— withdraw schema constraints
(amount_in <= balance + limit and
balance’ == balance — amount_in) &
withdraw.amount_in —>
CreditCardBehaviour (limit, balance’)

13

Initial ‘Efficient’ Unified
encoding encoding encoding
Integer range | Time/States | Time/States | Time/States

-8..8 3s/36 1s/36 1s/36
-10..10 5s/42 3s/42 2s/42
-12..12 7s/48 4s/48 3s/48
-14..14 10s/54 7s/54 4s/54
~16..16 14s/60 10s/60 65/60
-18..18 19s/66 14s/66 8s/66
~20..20 25s/72 10s/72 11s/72

-50..50 299s/162 372s/162 201s/162

Table 4: Model checking times (in seconds) and number of states for the
CreditCard class for increasing upper and lower bounds of the integer type.

(—— deposit operation
—— Input type declarations
[] amount_in : Nats Q
—— Post-state typing constraints
[] balance’ : CreditCardState(limit) @
—— deposit schema constraints
(balance’ == balance + amount_in) &
deposit.amount_in —>
CreditCardBehaviour (limit, balance’)

[]

(—— withdrawAwvail operation
—— Post-state typing constraints
[] balance’ : CreditCardState(limit) Q
—— QOutput type declarations
[] amount_out : Nats @
—— withdrawAvail schema constraints
(amount_out == balance + limit and
balance’ == —limit) &
withdrawAvail.amount_out —>
CreditCardBehaviour (limit, balance’)

)

The results of running the experiments with the unified encoding are com-
pared with those of the other trial encodings in Table 4.

As can be seen from these results, not only has the anomaly been overcome
for the integer bounds of -50..50, but additional time efficiency has been obtained
for all integer bounds tested. Experiments on other classes have revealed similar
results.

14

5 Conclusion

This paper has investigated several encodings of Object-Z classes in the input
notation of the CSP model checker FDR. The efficiencies of the representations,
in terms of number of states and time required for compilation and model check-
ing, were compared by running a number of experiments. While this has lead
to some insights into how to efficiently encode such classes, the experimental
approach adopted in this work is seen only as a first step in developing a more
sophisticated scheme for translating Object-Z to FDR.

A more thorough investigation of the algorithms underlying FDR is neces-
sary to justify any general claims of efficiency of the approaches developed. The
results of this paper, however, provide hints as to which aspects of these algo-
rithms need be investigated, and hence provide a basis for future work in this
direction. In addition, other aspects of Object-Z, most notably notions of in-
heritance and object instantiation, need to be incorporated into the translation
scheme. The feasibility of doing this is currently being investigated.

Acknowledgements

The authors would like to thank Kirsten Winter for her interesting and insightful
discussions while collaborating on this work.

References

[1] G. Barrett. Model checking in practice: The T9000 virtual channel proces-
sor. IEEE Transactions on Software Engineering, 21(2):69-78, 1995.

[2] R. Bird. Introduction to Functional Programming using Haskell. Prentice
Hall, 1998.

[3] G. Del Castillo and K. Winter. Model checking support for the ASM high-
level language. In S. Graf and M. Schwartzbach, editors, 6th International
Conference for Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2000), volume 1785 of LNCS, pages 331-346. Springer-
Verlag, 2000.

[4] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.

[5] R.Duke and G. Rose. Formal Object-Oriented Specification Using Object-Z.
MacMillan Press Limited, 2000.

[6) FDR2 user manual. http://www.formal.demon.co.uk/fdr2manual/
index.htm, 1999.

[7] C. Fischer. CSP-OZ - a combination of CSP and Object-Z. In H. Bowman
and J. Derrick, editors, Formal Methods for Open Object-Based Distributed
Systems (FMOODS’97), pages 423-438. Chapman & Hall, 1997.

15

8]

[17]

[18]

[19]

C. Fischer and H. Wehrheim. Model-checking CSP-OZ specifications with
FDR. In K. Araki, A. Galloway, and K. Taguchi, editors, Ist Interna-
tional Conference on Integrated Formal Methods (IFM’99), pages 315-334.
Springer-Verlag, 1999.

K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
1993.

K.L. McMillan and J. Schwalbe. Formal verification of the Gigamax cache
consistency protocol. In N. Suzuki, editor, Shared Memory Multiprocessing.
MIT Press, 1992.

A. Mota and A. Sampaio. Model-checking CSP-Z: strategy, tool support
and industrial application. Science of Computer Programming, 40:59-96,
2001.

A.W. Roscoe. Model checking CSP. In A.W. Roscoe, editor, A Classical
Mind: FEssays in Honour of C.A.R. Hoare, pages 353-378. Prentice Hall,
1994.

AW. Roscoe. The Theory and Practice of Concurrency. Prentice Hall,
1998.

B. Scattergood. The Semantics and Implementation of Machine-Readable
CSP. PhD thesis, Programming Research Group, Oxford University, 1998.

G. Smith. A fully abstract semantics of classes for Object-Z. Formal Aspects
of Computing, 7(3):289-313, 1995.

G. Smith. A semantic integration of Object-Z and CSP for the specification
of concurrent systems. In J. Fitzgerald, C.B. Jones, and P. Lucas, editors,
Formal Methods Europe (FME’97), volume 1313 of LNCS, pages 62-81.
Springer-Verlag, 1997.

G. Smith. The Object-Z Specification Language. Advances in Formal Meth-
ods. Kluwer Academic Publishers, 2000.

G. Smith and J. Derrick. Specification, refinement and verification of con-
current systems—an integration of Object-Z and CSP. Formal Methods in
System Design, 18(3):249-284, 2001.

J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 2nd
edition, 1992.

16

