
Introducing Reference Semantics via Refinement

Graeme Smith

Software Verification Research Centre, University of Queensland, Australia
smith@svrc.uq.edu.au

Abstract. Two types of semantics have been given to object-oriented
formal specification languages. Value semantics denote a class by a set
of values representing its objects. Reference semantics denote a class by
a set of references, or pointers, to values representing its objects. While
adopting the former facilitates formal reasoning, adopting the latter facil-
itates transformation to object-oriented code. In this paper, we propose
a combined approach using value semantics for abstract specification and
reasoning, and then refining to a reference semantics before transforming
specification to code.

1 Introduction

Research on object-oriented formal specification languages has gone through two
main phases of development.

The first phase focussed on extending existing formal specification languages
with object-oriented constructs in order to enhance modularity and reusability.
These constructs included classes, objects, inheritance and polymorphism. A
number of new formal languages were developed, notable among which are those
which extend VDM or Z [21, 14]. The goal was to make formal methods more
applicable to larger-scale systems and industrial problems [6, 15].

The languages developed in this phase of research, including MooZ [20], ZEST
[23] and early versions of VDM++ [8] and Object-Z [2, 4], have a value semantics ,
i.e., a semantics in which a class is denoted by a set of values. Each value in such
a set corresponds to an object of the class at some stage of its evolution. Such
a semantics is conservatively based on that of the language being extended and
hence introduces no additional complexity to the semantic basis.

The second phase of research saw the inclusion of object references in object-
oriented formal specification languages. Object references work in the same man-
ner as pointers in programming languages. They introduce the possibility of
object sharing (through aliasing) and non-trivial, recursively defined structures
(since objects may reference objects which also reference them). Existing object-
oriented formal specification languages such as VDM++ and Object-Z were ex-
tended with object references [13, 7, 5, 17]. The goal was to make the transition
from formal specification to code easier [9].

To incorporate object references, the new versions of the languages developed
in this phase of research have a reference semantics , i.e., a semantics in which
a class is denoted by a set of references to values (denoting objects). Such a

semantics is a major departure from that of the language being extended and
hence much effort has subsequently gone into developing suitable semantics [10].

The additional complexity of reference semantics has had a large impact on
developing methods for reasoning about specifications [11], refining specifica-
tions [3] and encoding languages in tools such as theorem provers [19]. Although
object references enable an easy transition from specification to object-oriented
code, they hinder the abstract representation of systems and hence unnecessarily
complicate refinement and reasoning.

In this paper, we propose a step backward to the languages with value se-
mantics for abstractly specifying systems as part of a step forward to a new
approach to formal object-oriented development. This approach involves refin-
ing value-semantics specifications to specifications with reference semantics. This
allows reasoning to be carried out in the absence of object references, but al-
lows the addition of references through refinement in order to ease the transition
to code. To illustrate our approach, we use the Object-Z specification language
for which both value and reference semantics exist. This distinguishes our work
from similar work in the refinement calculus where explicit stores are introduced
during refinement to model mappings from references to values [22, 1]. In Sec-
tion 2, we introduce the value-semantics version of Object-Z and in Section 3,
the reference-semantics version. In Section 4, we illustrate through a simple case
study how a value-semantics specification can be refined to a one with a reference
semantics.

2 Value Semantics

The early work on Object-Z [2, 4] adopts a value semantics [16]. The main ex-
tension to Z is syntactic: the introduction of a class schema. A class schema
encapsulates a single state schema with its associated initial state schema and
all the operations which can change its variables. For example, the following
specifies a generic node which has two state variables, empty denoting whether
or not a value has been inserted into the node and val denoting the value.

Node[T]

empty : B

val : T

INIT

empty

Insert

∆(empty , val)
v? : T

empty ∧ val ′ = v? ∧ ¬ empty ′

Initially, the node is empty and a value v? can be inserted into it via the
operation Insert . The ∆-list of this operation indicates that it is able to change

the variables empty and val . The operation can occur when empty is true, and
results in empty being false and val taking the value v?.

Like schemas in Z, a class schema can be used as a type: its instances are
values denoting possible objects of the class. For example, a generic list could
be defined as a non-empty sequence of node objects as follows (seq∞ X extends
the Z definition seqX of finite sequences of type X , i.e., finite functions whose
domain is a contiguous set of natural numbers with least element 1 and whose
range is X , to possibly infinite sequences, i.e., seq∞ X == seqX ∪ N → X).

List [T]

list : seq∞ Node[T]

list 6= 〈 〉

INIT

∀n : ran list • n.INIT

Insert

∆(list)
v? : T

∃ i : dom list •
(∀ j : 1 . . i − 1 • ¬ list(j).empty) ∧
list(i).Insert ∧
{i} −C list ′ = {i} −C list

The class List denotes the functionality of a (possibly bounded) list abstractly
by defining a possibly infinite sequence of nodes, the non-empty nodes of which
denote the actual list. A finite sequence models a bounded list and an infinite
sequence, an unbounded list.

Initially, each node n in the list satisfies the initial state of the class Node,
i.e., it is empty. The operation Insert chooses a node such that all other nodes
before it in the sequence are not empty, and inserts a value v? into that node.
The fact that a node must be empty for an insertion to take place (as defined in
class Node) ensures that the selected node is the first empty one in the sequence.
The final line of the operation ensures that all other nodes are unchanged (−C is
domain subtraction). It is needed since the inclusion of list in the ∆-list allows
list to change arbitrarily unless otherwise constrained.

3 Reference Semantics

More recent work on Object-Z [7, 5, 17] adopts a reference semantics [10]. This
enables a style of specification which more closely reflects implementation in an
object-oriented programming language. In particular, it allows object sharing
and non-trivial, recursive structures to be defined. For example, a list could be
specified recursively by the variables associated with the node at the head of the
list together with a pointer to the tail of the list (as in Fig. 1).

A reference-semantics specification in Object-Z is

empty
value

empty
value

empty
value

empty
value

tail tailtail tail

Fig. 1. Recursively defined list

List*[T]

empty : B

val : T

tail : List*[T]

tail = self ∨ tail ∈ List*[T]©C

INIT

empty ∧ tail .INIT

Insert =̂ [∆(empty , val) v? : T | empty ∧ val ′ = v? ∧ ¬ empty ′]
[] [¬ empty]∧tail .Insert

Classes in the reference-semantics version of Object-Z have an implicitly de-
clared constant self denoting a reference to the current object. This is used in
class List* to specify that tail may point to the current object (when there is
no tail). In all other cases, the tail list and all objects referenced either directly
or indirectly from it must be “contained” by the current list (denoted by the
©C symbol decorating the type). Containment is a means of controlling aliasing
among references. An object may be directly contained by only one other ob-
ject and may not contain itself. Hence, circularities in the structure of list are
precluded.

The initial state schema and operation Insert are defined recursively.
Initially, the list’s head is empty and the list’s tail is in an initial state. Since

the list’s tail is a list, this means it’s head element is also empty and it’s tail is
also in an initial state, and so on.

The operation Insert is specified by an operation expression (rather than a
schema) using the operators for disjoining ([]) and conjoining (∧) operations.
It inserts a value v? into the head element of the list (when it is empty), or
performs an insert operation on the tail of the list when it’s head element is not
empty.

The meaning of INIT and Insert can be given using fixed point theory as
shown by Smith [18]. INIT can be shown to be equivalent to

INIT

∃ s : seq∞ List*[T] •
s(1) = self ∧ (∀ i : dom s \ {1} • s(i) = s(i − 1).tail) ∧
s ∈ seqList*[T] ⇒ s(#s).tail = s(#s) ∧
(∀ i : dom s • s(i).empty)

and Insert can be shown to be equivalent to

Insert =̂ [] s : seq∞ List*[T]; i : dom s | p • s(i).NodeInsert

where p is the predicate s(1) = self ∧ (∀ j : dom s \ {1} • s(j) = s(j − 1).tail) ∧
s ∈ seqList*[T] ⇒ s(#s).tail = s(#s) ∧ (∀ j : 1 . . i − 1 • ¬ s(j).empty) and
NodeInsert =̂ [∆(empty , val) v? : T | empty ∧ val ′ = v? ∧ ¬ empty ′].

4 Refinement

Refinement in reference-semantics Object-Z is defined in terms of simulation
rules by Derrick and Boiten [3]. Downward simulation is defined as follows.

An Object-Z class C is a downward simulation of a class A if there is a

retrieve relation R such that every abstract operation AOp of A is recast

into a concrete operation COP of C and the following hold.

DS.1 ∀C .INIT • ∃A.INIT • R

DS.2 ∀A.STATE; C .STATE • R =⇒ (preAOp ⇐⇒ preCOp)
DS.3 ∀A.STATE; C .STATE ; C .STATE

′ •
R ∧ COp =⇒ (∃A.STATE

′ • R′ ∧ AOp)

That is, the initial state predicate can be stronger in the concrete class (DS.1)),
as can operation postconditions (DS.3). Operation preconditions (i.e., the pred-
icate preOp for an operation Op) can neither be weaker nor stronger (DS.2).

This definition is simply that for a blocking model of operations, i.e., where
an operation Op cannot occur unless preOp is true, and is therefore independent
of the semantics adopted (see Josephs [12], for example, for a similar definition).
Hence, we would like to use it show that List of Section 2 is refined by List*
of Section 3. The refinement is done in three phases (see Fig. 2) each compris-
ing one or more refinement steps consistent with downward simulation. These
phases represent a general strategy for refining from value semantics to reference
semantics.

Phase 1 In the first phase, all object values are changed to references. Hence,
the sequence of nodes in List becomes a sequence of references to nodes.

Phase 2 In the second phase, references are added between objects where
appropriate. Hence, references are added linking each node to the next in the
list. A self reference is added to the final node in a finite list.

Phase 3 In the third phase, the class describing the system is replaced by
the class of an object which is connected via references to all other objects in
the system. In the list example, the class refined from List is replaced by a class
describing the list from the head node, i.e., List*.

4.1 Phase 1: Replacing object values with references

To accomplish the first phase of refinement in Object-Z, any operation schemas in
which operations are applied to objects must be replaced by equivalent operation
expressions. This is necessary since the reference-semantics version of Object-Z
does not support operation application in schemas [17].

Phase 2

Phase 3

Phase 1

List*

List

 Node

List1*

List2*

Node*

Node1*

Fig. 2. Refinement of List to List*

The operation Insert of List , can be replaced by

Insert =̂ [∆(list)] ∧ ([] i : dom list | p • list(i).Insert)

where p is (∀ j : 1 . . i − 1 • ¬ list(j).empty) ∧ {i} −C list ′ = {i} −C list .
The main step in this phase of refinement is then to replace all classes C in

the specification by a new class with reference semantics. In the case where C

has no declared objects, the definition of the new class is syntactically identical
to C . The new class is therefore trivially a refinement of C under the identity
retrieve relation. In the case where C declares objects, these declarations are
changed to refer to the new classes. Furthermore,

– since, in a value semantics, different declarations always refer to different
objects, all declared references must be contained by C and an invariant
must be added that all declared references are distinct, and

– since, in a value semantics, values are changed by operation application but
in a reference semantics, references are not, a schema [a ′ = a] must be
conjoined with any operation application a.Op.

The resulting classes are again trivially a refinement under the retrieve relation
which equates the state variables of the corresponding declared objects. Such a
retrieve relation is necessary since the semantic representations of the objects in
the different semantics are not directly comparable.

Applying these steps to our example specification, results in a class Node*
defined syntactically identically to Node, and a class List1* defined as follows.
(Note that the conjunction of the schema [list ′(i) = list(i)] with list(i).Insert

has allowed us to remove Insert ’s ∆-list and simplify its definition.)

List1*[T]

list : seq∞ Node*[T]©C

list 6= 〈 〉
∀ i , j : dom list • i 6= j ⇒ list(i) 6= list(j)

INIT

∀n : ran list • n.INIT

Insert =̂ [] i : dom list | ∀ j : 1 . . i − 1 • ¬ list(j).empty • list(i).Insert

The retrieve relations for these refinements are, respectively, Node.empty =
Node*.empty ∧ Node.val = Node*.val and domList .list = domList1*.list ∧
(∀i : domList .list • List .list(i).empty = List1*.list(i).empty ∧ List .list(i).val =
List1*.list(i).val). The latter relates the value-semantics nodes to the reference-
semantics nodes by equating the values of their state variables (empty and val).

4.2 Phase 2: Adding references between objects

For the second phase, we need to add references to classes and constraints on
references reflecting the desired system structure. We begin by refining the class
Node* to a class Node1* which has an added reference next : Node1*[T] denoting
the next node in the list, and strengthens the state invariant as follows.

Node1*[T]

empty : B

val : T

next : Node1*[T]

next = self ∨ next ∈ Node1*[T]©C

INIT

empty

Insert

∆(empty , val)
v? : T

empty ∧ ¬ empty ′ ∧ val ′ = v?

Node1* is a downward simulation of Node* under the retrieve relation which
identifies the variables empty and val , i.e., Node*.empty = Node1*.empty ∧
Node*.val = Node1*.val .

The state invariant of a class is implicitly conjoined to the initial state predi-
cate and the precondition and postcondition of each operation. To show that the
precondition of Insert is not strengthened under the retrieve relation, we need
to show DS.2 holds. That is,

∀Node*.STATE; Node1*.STATE •
Node*.empty = Node1*.empty ∧ Node*.val = Node1*.val ⇒

(Node*.empty ⇔ Node1*.empty ∧ Node1*.Inv)

where Inv =̂ [next = self ∨ next ∈ Node1*[T]©C]. This trivially holds since
the declaration of Node1*.STATE introduces the invariant Inv on the variables
of Node1*. In general, invariants can be added during refinement provided they
do not constrain variables related (by the retrieve relation) to variables that are
changed by the abstract operations [3].

To complete this phase, we refine the class List1* by adding an invariant
linking the nodes in the list in the appropriate way. That is, the next node of
each node in the list, except the last in the case of a finite list, is that which
occurs after it in the list. The next node of the last node of a finite list is itself.
Once again, the invariant does not strengthen the precondition under the retrieve
relation which in this case is the identity relation, i.e, List1*.list = List2*.list .

List2*[T]

list : seq∞ Node1*[T]©C

list 6= 〈 〉
∀ i , j : dom list • i 6= j ⇒ list(i) 6= list(j)
∀ i : dom list •

list(i).next = list(i + 1) ∨
(list ∈ seqNode1*[T] ∧ i = #list ∧ list(i).next = list(i))

INIT

∀n : ran list • n.INIT

Insert =̂ [] i : dom list | ∀ j : 1 . . i − 1 • ¬ list(j).empty • list(i).Insert

4.3 Phase 3: Replacing the system class with an object class

The final phase involves removing the system class needed in a value semantics
specification to relate the objects in the specified system. It is replaced by the
class of one of the objects from which all others can be referenced. In cases
where the value-semantics system class specifies an actual object of the specified
system, this final phase may be unnecessary.

In our example, we want to replace the class List2* with the class List* of
Section 3 (see Fig. 2). We begin by introducing a new variable head as an alias
to the head node of the list and redefine INIT and Insert in terms of head . This
is done by adding an existentially quantified variable s to both INIT and Insert

which denotes a sequence of nodes starting with head and such that each other
node in the sequence is the next node of it predecessor in the sequence.

List3*[T]

list : seq∞ Node1*[T]©C
head : Node1*[T]©C

list 6= 〈 〉
∀ i , j : dom list • i 6= j ⇒ list(i) 6= list(j)
∀ i : dom list •

list(i).next = list(i + 1) ∨
(list ∈ seqNode1*[T] ∧ i = #list ∧ list(i).next = list(i))

head = list(1)

INIT

∃ s : seq∞ Node1*[T] •
s(1) = head ∧
(∀ i : dom s \ {1} • s(i) = s(i − 1).next) ∧
s ∈ seqNode1*[T] ⇒ s(#s).next = s(#s) ∧
(∀ i : dom s • s(i).INIT)

Insert =̂ [] s : seq∞ Node1*[T]; i : dom s |
s(1) = head ∧
(∀ j : dom s \ {1} • s(j) = s(j − 1).next) ∧
s ∈ seqNode1*[T] ⇒ s(#s).next = s(#s) ∧
(∀ j : 1 . . i − 1 • ¬ s(j).empty) •

s(i).Insert

List3* is a downward simulation of List2* under the retrieve relation List2*.list=
List3*.list .

Since list is no longer used in the initial state schema or operation Insert ,
the class can be further refined by removing this variable. The invariants in
terms of list do not constrain head and can be removed as well. In particular,
the invariant that nodes in the list are distinct is captured by the invariant of
Node1* which precludes circular list structures.

In the case where one or more of the invariants did constrain head , they
would need to be redefined in terms of head .

The following class, List4*, is a downward simulation of List3* under the
retrieve relation List3*.head = List4*.head .

List4*[T]

head : Node1*[T]©C

INIT

∃ s : seq∞ Node1*[T] •
s(1) = head ∧
(∀ i : dom s \ {1} • s(i) = s(i − 1).next) ∧
s ∈ seqNode1*[T] ⇒ s(#s).next = s(#s) ∧
(∀ i : dom s • s(i).INIT)

Insert =̂ [] s : seq∞ Node1*[T]; i : dom s |
s(1) = head ∧
(∀ j : dom s \ {1} • s(j) = s(j − 1).next) ∧
s ∈ seqNode1*[T] ⇒ s(#s).next = s(#s) ∧
(∀ j : 1 . . i − 1 • ¬ s(j).empty) •

s(i).Insert

Our system class List4* now comprises a single contained object. Such a class
can be refined to a class C with the single object declaration a : A©C replaced by
the state declarations of A, and with all occurrences of a, A, a.INIT and a.Op

replaced by self , C , and the definitions of INIT and Op respectively. Hence, class
List4* is refined by

List5*[T]

empty : B

val : T

next : List5*[T]

next = self ∨ next ∈ List5*[T]©C

INIT

∃ s : seq∞ List5*[T] •
s(1) = self ∧
(∀ i : dom s \ {1} • s(i) = s(i − 1).next) ∧
s ∈ seqList5*[T] ⇒ s(#s).next = s(#s) ∧
(∀ i : dom s • s(i).empty)

Insert =̂ [] s : seq∞ List5*[T]; i : dom s |
s(1) = self ∧
(∀ j : dom s \ {1} • s(j) = s(j − 1).next) ∧
s ∈ seqList5*[T] ⇒ s(#s).next = s(#s) ∧
(∀ j : 1 . . i − 1 • ¬ s(j).empty) •

s(i).NodeInsert

where NodeInsert =̂ [∆(empty , val) v? : T | empty ∧ val ′ = v? ∧ ¬ empty ′].

Given that self .x = x for each state variable x , List5* is a downward simu-
lation of List4* under the retrieve relation List4*.head = List5*.self .

With next renamed to tail , the initial state schema and operation Insert of
List5* are the equivalent schemas of those of List* derived using fixed point the-
ory in Section 3. Hence, under the retrieve relation List5*.empty =List*.empty ∧
List5*.val = List*.val ∧ List5*.next = List*.tail , we can refine List5* to List*.

5 Conclusion

In this paper, we have shown how to refine an object-oriented formal specifi-
cation with a value semantics to one with a reference semantics. This process
allows an abstract specification to be written in a value semantics in order to fa-
cilitate reasoning, and then be refined to a concrete specification with a reference
semantics in order to facilitate transformation to code.

The general process was illustrated using a simple case study. This case study
involved the introduction of recursion. Other refinements to reference semantics
could involve the introduction of object sharing. The refinement steps were jus-
tified with respect to the definition of downward simulation in Object-Z. A set of
rules proved sound with respect to this definition, or that of upward simulation,
could be developed to aid the specifier by removing much of the proof burden.

Acknowledgement

Thanks to John Derrick for discussions which led to this work and Ian Hayes
for his constructive comments on an earlier draft of this paper. This work was
funded by a University of Queensland External Support Enabling Grant.

References

1. P. Bancroft and I.J.Hayes. Type extension and refinement. In L. Groves and
S. Reeves, editors, Formal Methods Pacific (FMP’97), pages 23–39. Springer-
Verlag, 1997.

2. D. Carrington, D. Duke, R. Duke, P. King, G. Rose, and G. Smith. Object-Z: An
object-oriented extension to Z. In S. Voung, editor, Formal Description Techniques
(FORTE’89), pages 281–296. North-Holland, 1989.

3. J. Derrick and E. Boiten. Refinement in Z and Object-Z, Foundations and Advanced
Applications. Springer-Verlag, 2001.

4. R. Duke, P. King, G. Rose, and G. Smith. The Object-Z specification language.
In T. Korson, V. Vaishnavi, and B. Meyer, editors, Technology of Object-0riented
Languages and Systems (TOOLS 5), pages 465–483. Prentice Hall, 1991.

5. R. Duke and G. Rose. Formal Object-Oriented Specification using Object-Z.
MacMillan, 2000.

6. R. Duke, G. Rose, and G. Smith. Transferring formal techniques to industry: A
case study. In J. Quemada, J. Mañas, and E. Vazquez, editors, Formal Description
Techniques (FORTE’90), pages 279–286. North-Holland, 1990.

7. R. Duke, G. Rose, and G. Smith. Object-Z: A specification language advocated
for the description of standards. Computer Standards and Interfaces, 17:511–533,
1995.

8. E.H. Dürr and J. van Katwijk. VDM++ – A formal specification language for
object-oriented designs. In B. Meyer, G. Heeg, and B. Magnusson, editors, Technol-
ogy of Object-oriented Languages and Systems (TOOLS Europe 92), pages 63–78.
Prentice-Hall, 1992.

9. A. Griffiths. From Object-Z to Eiffel: a rigorous development method. In C. Min-
gins, R. Duke, and B. Meyer, editors, Technology of Object-Oriented Languages
and Systems (TOOLS 18), pages 293–308. Prentice Hall, 1995.

10. A. Griffiths. An extended semantic foundation for Object-Z. In 1996 Asia-Pacific
Software Engineering Conference (APSEC’96), pages 194–207. IEEE Computer
Society Press, 1996.

11. A. Griffiths. Modular reasoning in Object-Z. In Wai Wong and K. Leung, editors,
Asia-Pacific Software Engineering Conference and International Computer Science
Conference (APSEC ’97/ICSC ’97), pages 140–149. IEEE Computer Society Press,
1997.

12. M.B. Josephs. A state-based approach to communicating processes. Distributed
Computing, 3:9–18, 1988.

13. K. Lano. Formal Object-Oriented Development. Springer-Verlag, 1995.
14. K. Lano and H. Haughton, editors. Object-Oriented Specification Case Studies.

Object-Oriented Series. Prentice Hall, 1993.
15. K. Rosenberg. The adoption of formal methods within OTC. In K. Parker and

G. Rose, editors, Formal Description Techniques (FORTE’91), pages 85–92, 1991.
16. G. Smith. A fully abstract semantics of classes for Object-Z. Formal Aspects of

Computing, 7(3):289–313, 1995.
17. G. Smith. The Object-Z Specification Language. Advances in Formal Methods.

Kluwer Academic Publishers, 2000.
18. G. Smith. Recursive schema definitions in Object-Z. In A. Galloway J. Bowen,

S. Dunne and S. King, editors, International Conference of B and Z Users (ZB
2000), volume 1878 of Lecture Notes in Computer Science, pages 42–58. Springer-
Verlag, 2000.

19. G. Smith, F. Kammüller, and T. Santen. Encoding Object-Z in Isabelle/HOL.
In D. Bert, J.P. Bowen, M.C. Henson, and K. Robinson, editors, International
Conference of Z and B Users (ZB 2002), volume 2272 of Lecture Notes in Computer
Science, pages 82–99. Springer-Verlag, 2002.

20. S.R.L.Meira and A.L.C. Cavalcanti. Modular object-oriented Z specifications. In
Z User Meeting 1990, Workshops in Computing, pages 173–192. Springer-Verlag,
1990.

21. S. Stepney, R. Barden, and D. Cooper, editors. Object-Orientation in Z. Workshops
in Computing. Springer-Verlag, 1992.

22. M. Utting. Reasoning about aliasing. In Australian Refinement Workshop (ARW
95), pages 195–211, School of Computer Science and Engineering, The Univeristy
of New South Wales, 1995.

23. H.B. Zadeh and S. Stepney. ZEST – Z Extended with Structuring: A User’s Guide,
PROST-Objects, BT.7004.0.20.13, Issue 2, 1996.

