
Structuring Real-Time Object-Z Specifications

Graeme Smith∗ and Ian Hayes†

∗Software Verification Research Centre
†School of Computer Science and Electrical Engineering

University of Queensland, Australia

Abstract. This paper presents a means of structuring specifications in
real-time Object-Z: an integration of Object-Z with the timed refine-
ment calculus. Incremental modification of classes using inheritance and
composition of classes to form multi-component systems are examined.
Two approaches to the latter are considered: using Object-Z’s notion
of object instantiation and introducing a parallel composition operator
similar to those found in process algebras. The parallel composition op-
erator approach is both more concise and allows more general modelling
of concurrency. Its incorporation into the existing semantics of real-time
Object-Z is presented.

1 Introduction

Object-Z [?] is an extension of Z [?] to facilitate specification in an object-
oriented style. The major extension in Object-Z is the class schema which cap-
tures the object-oriented notion of a class by encapsulating a single state schema,
and its associated initial state schema, with all the operation schemas which
may change its variables. Classes may be incrementally specified using Object-
Z’s notion of inheritance which enables definitions from one class (the inherited
class) to be implicitly included in another class (the inheriting class). The en-
hanced structuring provided by object-oriented constructs, such as classes, and
techniques, such as inheritance, significantly improve the clarity of large specifi-
cations.

In an earlier paper [?], we showed how Object-Z could be extended to model
systems with continuous variables and real-time constraints. The approach was
to provide a semantic basis for combining Object-Z and the real-time notation of
the timed refinement calculus [?,?]. This notation allows a system to be specified
by constraints over time intervals on which properties hold. However, the inte-
grated approach, referred to as real-time Object-Z, did not utilise the structuring
techniques of Object-Z provided by classes and inheritance. Hence, as presented,
it is not suitable for large-scale specifications, nor for specifications comprising
several components such as those of concurrent or distributed systems.

In this paper, we present an overview of real-time Object-Z (Section 2) and
provide extensions to utilise Object-Z’s structuring techniques. In particular,
we show how inheritance can be used to incrementally modify existing class
specifications (Section 3), and how different classes can be composed to form

multi-component systems (Section 4). Two approaches to the latter are consid-
ered: using the object instantiation technique of Object-Z, and introducing a
parallel composition operator similar to those found in process algebras. The
parallel composition operator approach is both more concise and allows more
general modelling of concurrency. It is also easily incorporated into the existing
semantics of real-time Object-Z (Section 5).

2 Real-time Object-Z

Real-time Object-Z [?] is an integration of the timed refinement calculus [?,?]
with Object-Z [?]. It differs from other approaches to specifying continuous and
real-time systems in Object-Z since

– it uses only standard notation from Object-Z and the timed refinement cal-
culus (the approaches of Friesen [?] and Mahony and Dong [?] introduce
additional notation into schemas of Object-Z classes),

– it maintains Object-Z’s specification style (the approach of Periyasamy and
Alagar [?] requires each object to be specified by two classes: one for its
functionality and one for its real-time properties), and

– it models the passing of time implicitly (the approach of Dong, et al. [?]
requires an explicit Tick operation in each class).

2.1 Timed refinement calculus

The timed refinement calculus is a Z-based notation for the specification and
refinement of real-time systems. It has been extended with a simple set-theoretic
notation for concisely expressing time intervals [?] and operators for accessing
interval endpoints. We adopt a simplified subset of the notation based on that
of Fidge, et al. [?] which provides a minimal set of operators outside those of
standard set theory.

Absolute time, T, is modelled by real numbers and, in this paper, we will
assume has the units seconds. Observable variables of a system are modelled
as total functions from the time domain to a type representing the set of all
values the variable may assume. A system is specified by constraints on the time
intervals over which properties hold. For example, the following expresses that
an observable variable v : T → R becomes equal to a differentiable (denoted by
the function symbol ; [?]) observable variable u : T ; R within 0.1 seconds
whenever u > 10.

〈u > 10〉 ⊆ 〈δ = 0.1〉 ; 〈v = u〉

The brackets 〈 〉 are used to specify a set of time intervals1. The left-hand side
of the above predicate denotes the set of all time intervals where, for all times t

in the intervals, u(t) is greater than 10.

1 We adopt here a simpler notation than the brackets used by Fidge et al. [?] and
our previous paper [?].

In general, the property in the brackets is any first-order predicate in which
total functions from the time domain to some type X may be treated as values
of type X . The elision of explicit references to the time domain of these functions
results in specifications which are more concise and readable.

The right-hand side of the above expression comprises two sets of intervals.
The first uses the reserved symbol δ which denotes the duration of an inter-
val. Hence, this set contains all those intervals with duration 0.1 seconds. Other
reserved symbols are α and ω denoting an interval’s start and end times respec-
tively.

The second set denotes all intervals in which (for all times in the intervals)
v equals u. It is combined with the first set of intervals using the concatenation
operator ‘;’. This operator forms a set of intervals by joining intervals from one
set to those of another whenever their end points meet. (One endpoint must
be closed and the other open [?]). Hence, the right-hand side of the predicate
specifies all those intervals where after 0.1 seconds, v equals u.

The entire predicate, therefore, states (using ⊆) that all intervals where u is
greater than 10, are also intervals where, after 0.1 seconds, v equals u.

2.2 Integration with Object-Z

The semantic integration of the timed refinement calculus with Object-Z was
presented in our previous paper [?]. In this section, we provide an overview of
the approach including two new extensions to the syntax.

Classes in the integrated notation comprise two parts separated by a hori-
zontal line. The part above the line is essentially the standard Object-Z local
definitions and schemas. The part below the line is further constraints on the
class specified in the timed refinement calculus notation. The latter is divided
into an assumption and effect part as in the timed refinement calculus [?]. All
state variables x : X in the Object-Z part above the line are interpreted as timed
trace variables x : T → X in the timed trace part below the line.

Although all real-time properties could be specified in the timed trace part of
the class, we also allow local constants and state variables of type T and include,
in every class, an implicit state variable τ : T denoting the current time. This is
captured by an implicit constraint ∀ t : T • τ(t) = t in the timed traced part of
the class.

As an example, consider specifying a speedometer which calculates the speed
of a vehicle by detecting the rotation of one of its wheels: the speed is calculated
by dividing the wheel circumference by the time taken for a single rotation.

We assume a maximum speed of 60 metres per second (216 km/hr).

MaxSpeed == 60 −metres per second

The speed output by the speedometer is a natural number between 0 and
MaxSpeed .

Speed == 0 . . MaxSpeed −metres per second

A system specified by a class in the integrated approach is a digital system
and, therefore, changes to state variables only occur at discrete points in time.
However, it may interact with continuously changing variables in its environ-
ment. These variables are specified as (possibly differentiable) functions of time.
For example, the speedometer’s environment includes a continuous variable rep-
resenting the angle of the wheel in radians from some fixed position. This can
be specified as follows.

wheel angle? : T ; R −radians

Since this definition gives the values of the wheel’s angle over all time, it
need not be treated as a modifiable state component and can appear as a local
constant in the class. The “?” decoration on the name indicates that it is an
environmental variable that acts as an input to the specified system. Similarly,
environmental variables decorated with “!” act as “outputs” from the system.

Our first extension to the syntax allows such outputs to be declared as state
variables (rather than constants) to indicate that they only change value when
an operation, whose ∆-list they appear in, occurs. Our second extension to the
syntax allows operation names to appear as Boolean variables in the timed trace
part of the class. The variable representing an operation is true in all intervals
during which the operation is occurring. Examples of these features and the other
features of a real-time Object-Z class are provided by the following specification
of the speedometer.

Speedometer0

wheel circum == 1.5 −metres

wheel angle? : T ; R

last calculation : T

speed ! : Speed

INIT

last calculation < τ − 2 ∗ wheel circum

speed ! = 0

CalculateSpeed

∆(last calculation, speed !)

wheel angle?(τ) mod 2π = 0
∀ t : τ . . . τ ′ • wheel angle?(t) mod 2π 6= 0
last calculation ′ = τ
speed !′ = wheel circum/(τ − last calculation) ± 0.5

〈|s wheel angle? |6 2π ∗ MaxSpeed/wheel circum〉 = 〈true〉

〈wheel angle? mod 2π = 0〉 ; 〈wheel angle? mod 2π 6= 0〉 ⊆
〈true〉 ; 〈CalculateSpeed〉 ; 〈true〉

The speedometer calculates the speed (speed !) from the wheel circumference
(wheel circum = 1.5 metres) and the wheel angle (wheel angle?) which implicitly
records the number of whole revolutions of the wheel. To do this it keeps track
of the time of the last speed calculation in a state variable last calculation.
Initially, this variable is set to a time more than 2∗wheel circum seconds before
the current time τ . This ensures that the first speed calculation, when the wheel
starts rotating, will be zero (since the calculated speed is a natural number with
units metres per second and a wheel rotation time of more than 2∗wheel circum

corresponds to a speed of less than 0.5 metres per second). Ensuring the first
speed calculation is zero is necessary because the wheel may not undergo a full
rotation before it occurs.

The operation CalculateSpeed calculates the speed to the nearest natural
number based on the wheel circumference and the time since the last calculation.
It is enabled each time the wheel passes the point corresponding to a multiple of
2π radians. The first two predicates of the operation ensure that the wheel angle
mod 2π is 0 only for the first time instant of the operation. This prevents the
wheel completing an entire rotation before CalculateSpeed has finished executing.
(Note that intervals of real numbers can be specified using combinations of the
brackets for closed intervals and for open intervals.)

This latter constraint is feasible since the class has an assumption predicate
which limits the rate of change of wheel angle? (s v denotes the derivative of a
differentiable variable v [?]). This assumption also ensures that the speed calcu-
lated by the final predicate of CalculateSpeed is less than or equal to MaxSpeed .
(Note that 〈true〉 denotes the set of all possible intervals.)

To ensure that CalculateSpeed occurs every time the wheel passes the point
corresponding to 0 radians, the class also has an effect predicate which states
that CalculateSpeed is a sub-interval of any interval where the wheel angle mod
2π is 0, and then becomes non-zero.

Note that operations in real-time Object-Z do not have input and output pa-
rameters: all communication is performed through environmental variables such
as wheel angle? and speed !. This restriction enables a straightforward definition
of refinement as shown in Section 5.

3 Inheritance

The speedometer specification of Section 2 works as we would expect when the
wheel of the vehicle is rotating. If it stops rotating, however, the CalculateSpeed

operation does not occur and so the speed output by the class is that which was
last calculated.

To overcome this problems we could add an operation which detects that the
wheel is no longer rotating and sets the output speed to 0. Adding an operation
can be done in standard Object-Z using inheritance [?]. When an Object-Z class
inherits another it implicitly includes its constants, state schema, initial state
schema and operations (and may extend these definitions or add to them). We
extend the notion of inheritance to also implicitly include assumption and effect

predicates in the timed trace part of the inherited class. Hence, the desired
modification to the speedometer can be specified as follows.

Speedometer

Speedometer0

TimeOut

∆(last calculation, speed !)

τ − last calculation > 2 ∗ wheel circum

speed ! = 0

true

〈δ > 3 ∗ wheel circum〉 ⊆ 〈true〉 ; 〈TimeOut ∨ CalculateSpeed〉 ; 〈true〉

The operation TimeOut is enabled when the time since the last calculation
is greater than 2 ∗ wheel circum. This corresponds to a speed of less than half
a metre per second (1.8 km/hr). The additional effect predicate ensures that
TimeOut does occur before the time since the last calculation is greater than
3 ∗ wheel circum.

Semantically, inheritance in real-time Object-Z is the same as inheritance
in standard Object-Z with the addition of conjoining of assumption predicates
and conjoining of effect predicates from the inherited and inheriting classes. The
variables and operations in the inherited assumption and effect predicates will
be renamed to reflect any renaming in the inherited class [?].

4 Composition

To specify systems of concurrent, interacting objects, we need to be able to com-
pose different classes. For example, consider specifying a cruise control system
which is required to keep a car travelling at a desired speed set by the driver [?].
At any time, the driver can resume control of the car by applying the brake.

The system comprises three main components: a speedometer, a controller
which accepts input from the driver, and a throttle which controls the car’s
speed. It is illustrated in Figure 1. (Arrows indicate the direction of information
flow.)

Speedometer Controller Throttle
control

mode

acceleratorset brake

speed

throttlewheel_angle

Figure 1: Cruise Control System.

In Section 4.1, we specify the classes for the controller and throttle in such
a way that they can interact with each other and the speedometer of Section 3
as shown in Figure 1. In Section 4.2, we look at composing the components
using standard Object-Z composition and by introducing a parallel composition
operator. The semantics of this operator is provided in Section 5.

A fundamental difference between our specification and that of Mahony and
Dong using TCOZ [?] is our use of continuous variables for modelling the wheel
angle and throttle inputs from the environment. TCOZ, based on timed CSP, can
only model discrete events corresponding to reading these variables and cannot
model the variables themselves.

4.1 Component classes

The classes for the controller and throttle components are specified using real-
time Object-Z as described in Section 2.

Controller The controller operates in two modes: rest when the speed of the
car is being controlled by the driver, and set point when a desired speed has
been set by the driver and this speed is being maintained by the cruise control
system.

Mode ::= rest | set point

Initially, the controller is in rest mode and is changed to set point when the
driver presses a button indicating that he or she wants the car to maintain its
current speed. The controller reverts to rest mode when the brake is applied.
While in set point mode, the controller provides the throttle component with a
desired value of the throttle setting. This is initially the current throttle setting
and is updated periodically. The updated values of this setting are calculated
from four parameters

– the current speed of the car,
– the desired speed (set by the driver),
– the speed of the car at the last calculation, and
– the current value of the throttle.

We abstractly specify this calculation by the function desired throttle.

desired throttle : Speed × Speed × Speed × R → R

The controller class is specified as follows.

Controller

speed? : T → Speed

throttle? : T → R

mode! : Mode

control ! : R

desired speed : Speed

previous speed : Speed

INIT

mode! = rest

Set

∆(mode!, desired speed , previous speed , control !)

mode!′ = set point

desired speed ′ = speed?(τ)
previous speed ′ = speed?(τ)
control ! = throttle?(τ)

Control

∆(control !, previous speed)

mode! = set point

τ ′ − τ < 0.1
control ! = desired throttle(speed?(τ), desired speed ,

previous speed , throttle?(τ))
previous speed ′ = speed?(τ)

Brake

∆(mode!)

mode!′ = rest

true

〈mode = set point ∧ δ = 0.2〉 ⊆ 〈true〉 ; 〈Control〉 ; 〈true〉

The timed refinement calculus predicate states that, when in set point mode,
the Control operation occurs in every 0.2 second interval. Since the duration of
this operation is less than 0.1 seconds (as specified by its second predicate),
this ensures that the operation occurs repeatedly with a period of less than 0.3
seconds (see Figure 2).

Time
ControlControl

< 0.3 s

< 0.2s< 0.1s

Figure 2: Occurrence of Control .

Throttle The throttle incrementally adjusts its output to reach a desired target
output. This target depends on the mode of the controller. If its mode is rest the
target output is equal to the input from the accelerator, otherwise it is equal to
the control input from the controller. The throttle class is specified as follows.

Throttle

throttle adjust : R

mode? : T → Mode

accelerator? : T ; R

control? : T → R

throttle! : T → R

INIT

throttle! = 0

UpdateThrottle

∆(throttle!)

τ ′ − τ < 0.1
∃ t : R •

(mode?(τ) = rest ⇒ t ∈ accelerator?(| τ . . . τ ′ |)) ∧
(mode?(τ) = set point ⇒ t = control?(τ)) ∧
(throttle! < t − 0.5 ∗ throttle adjust ⇒

throttle!′ = throttle! + throttle adjust) ∧
(throttle! > t + 0.5 ∗ throttle adjust ⇒

throttle!′ = throttle! − throttle adjust) ∧
(throttle! ∈ t ± 0.5 ∗ throttle adjust ⇒ throttle!′ = throttle!)

true

〈δ = 0.1〉 ⊆ 〈true〉 ; 〈UpdateThrottle〉 ; 〈true〉

The timed refinement calculus predicate states that the UpdateThrottle op-
eration occurs repeatedly with a period of less than 0.2 seconds.

4.2 Composing the components

When composing the components of the cruise control system we need to ensure

– that the corresponding inputs and outputs (e.g., speed ! of Speedometer and
speed? of Controller) are identified and equated, and

– that operations which use inputs, do not do so at a time when another
component is updating the corresponding output.

The second condition is necessary since the value of a variable updated by an
operation is undefined for the duration of the operation. This may be, for ex-
ample, because in an implementation the value is stored as a sequence of bytes
which are updated one at a time. At any time during the operation, some of the
bytes may be updated and others not.

In this section we consider two approaches to composing real-time Object-Z
classes: object instantiation and parallel composition.

Object instantiation In standard Object-Z, systems are composed from in-
stances of classes called objects [?]. Given an object a, we can refer to a variable
or constant x of the object’s class by the notation a.x . Similarly, we can refer
to the initial condition or an operation Op of the object’s class by a.INIT and
a.Op respectively. Adopting this approach, we might specify the cruise control
system as follows.

CruiseControl

s : Speedometer

c : Controller

t : Throttle

s .speed ! = c.speed?
c.mode! = t .mode?
c.control ! = t .control?
t .throttle! = c.throttle?

INIT

s .INIT ∧ c.INIT ∧ t .INIT

CalculateSpeed =̂ s .CalculateSpeed

TimeOut =̂ s .TimeOut

Set =̂ c.Set

Control =̂ c.Control

Brake =̂ c.Brake

UpdateThrottle =̂ t .UpdateThrottle

CruiseControl comprises an object of each component class and explicitly
equates their corresponding inputs and outputs. The initial condition and oper-
ations of CruiseControl are constructed explicitly from those of the component
classes. We assume that the real-time predicates of the component classes are im-
plicitly maintained for each of the objects. We also assume a common τ variable
for each object and CruiseControl .

The condition that inputs are not used when they are being updated holds
automatically in this case since the semantics of real-time Object-Z does not
allow operations within a single class to overlap in time [?] (see Appendix A).
This means, however, that our system as specified exhibits no concurrency. Con-
currency can be specified explicitly. For example, the concurrent occurrence of
operations CalculateSpeed and Brake could be specified by adding an additional
operation to CruiseControl of the form

CalculateSpeed&Brake =̂ CalculateSpeed ∧ Brake

However, this is an undesirable approach for two reasons.

1. Explicitly stating all combinations of operations which can occur concur-
rently may become unwieldy for large systems comprising many components.
Indeed, even the explicit identification of corresponding inputs and outputs
and construction of individual operations can be verbose when using object
instantiation.

2. The conjoined operations must have the same start and finish times. While
this allows us to specify synchronising events, it does not allow us to specify
events which partially overlap.

Parallel composition To overcome the problems with specifying concurrency,
we introduce a parallel composition operator “‖” for classes. The idea of this op-
erator is that it allows each component to satisfy its specified behaviour over time
synchronising with other components on environmental variables with common
basenames (i.e., apart from the “?” and “!”) and on common-named operations.
Since operations may in general overlap, if we require that two (or more) opera-
tions should be mutually exclusive in time, this needs to be explicitly specified.

One way to do this is to specify monitor classes which are composed with the
components. A monitor class has a set of “dummy” operations (i.e., operations
which perform no function). These operations comprise a subset of the total
operations of the specified system which are not allowed to overlap in time.
Due to the semantics of real-time Object-Z classes, these operations do not
overlap within the monitor class. Due to synchronisation with the common-
named operations of the component classes, these operations also cannot overlap
in time.

For example, since the Controller operations Set and Control utilise the out-
put speed ! of Speedometer , they should not occur at times when the Speedometer

operation CalculateSpeed , which changes speed !, occurs. The required monitor
class is as follows.

MonitorSC

CalculateSpeed =̂ [true]
Set =̂ [true]
Control =̂ [true]

Similarly, since the Set and Control operations of Controller utilise the out-
put throttle! of Throttle, we need a monitor class with the operations Set , Control

and UpdateThrottle. This class also ensures that the mode! and control ! outputs
of Controller are not updated when used by Throttle.

MonitorCT

UpdateThrottle =̂ [true]
Set =̂ [true]
Control =̂ [true]

By having two separate monitor classes we do not preclude the possibility
of CalculateSpeed and UpdateThrottle occurring concurrently. The cruise control
system is specified as follows.

CruiseControl = Speedometer ‖ MonitorSC ‖ Controller

‖ MonitorCT ‖ Throttle

The definition is both concise (due to implicit modelling of concurrency) and
allows more general modelling of concurrency (by allowing partially overlapping,
as well as synchronising, operations). The semantics of the parallel operator is
discussed in Section 5.

5 Semantics of parallel composition

Appendix ?? gives the semantics of a real-time Object-Z class as developed in
our previous work [?]. A class C is represented by a set of real-time histories.
These consist of the signature of the class, i.e., its sets of input, output and
local variables and set of operations, together with traces of the variables and
the occurrences of operations. A trace is the value of a variable over time. It is
represented by a total function from time to value.

Trace == T → Value

An operation is represented by an identifier corresponding to its name.

Operation == Ident

From this semantics, we extract a model of a class which we use to define refine-
ment and parallel composition. This model separates the class’s signature from
its set of traces and operation occurrences. A signature of a class is specified as:

Signature

inputs , outputs , locals : F Ident

opids : F Operation

and a history as:

RTHistory

trace : Ident 7 7→ Trace

occurs : Operation 7 7→ P I

where I is the set of all time intervals.

A class is then modelled as follows.

RTClass

sig : Signature

histories : P RTHistory

∀ h : histories •
dom h.trace = sig .inputs ∪ sig .outputs ∪ sig .locals ∧
dom h.occurs = sig .opids

Since the only communication mechanism between classes is environmental
variables, and environmental inputs cannot be constrained by a class [?], all
information about when operations can be refused by a particular class are
captured by its histories. Hence, a class, C , is refined by a class, D , if C and D

have the same signatures and the histories of C contain the histories of D .

v : RTClass ↔ RTClass

C v D ⇔ C .sig = D .sig ∧ D .histories ⊆ C .histories

When two classes are composed, the signature of the resulting composite
class has those inputs of either class which are not also an output of the other
class. That is, inputs which have the same name as an output in the other class
are semantically identified with this output and no longer appear as an input to
the composite class. This models the output’s value being communicated to the
input.

The outputs, local variables and operations of a composite class are those
from either class. The outputs and operations which are common to the com-
ponent classes must satisfy the constraints of both classes within the composite
class. (We assume that the local variables of the component classes are distinct.
Our semantics could be made more general by adding some form of renaming to
ensure this, thus removing the need for this assumption.)

The binary operator comp composes the signatures S and T of two classes.

comp : Signature × Signature 7→ Signature

(S ,T) ∈ dom(comp) ⇔ S .locals ∩ T .locals = ∅ ∧
(S comp T).inputs = (S .inputs \ T .outputs) ∪ (T .inputs \ S .outputs) ∧
(S comp T).outputs = S .outputs ∪ T .outputs ∧
(S comp T).locals = S .locals ∪ T .locals ∧
(S comp T).opids = S .opids ∪ T .opids

The comp operator is commutative and associative.
The history of a component class can be derived from a history of a composite

class by restricting the history of the composite class to the component class’s
signature.

The binary operator restrict extracts, from a real-time history h, a history
corresponding to the signature S of a component class.

restrict : RTHistory × Signature → RTHistory

(h restrict S).trace = (S .inputs ∪ S .outputs ∪ S .locals) C h.trace ∧
(h restrict S).occurs = S .opids C h.occurs

The parallel combination of two classes, C ‖ D , has a signature which is the
composition of the signatures of C and D . Each of the histories of the parallel
combination, if restricted to the signature of C (respectively D), is a trace of C

(D).

‖ : RTClass × RTClass 7→ RTClass

(C ,D) ∈ dom(‖) ⇔ (C .sig ,D .sig) ∈ comp ∧
(C ‖ D).sig = C .sig comp D .sig ∧
(C ‖ D).histories = {h : RTHistory |

h restrict C .sig ∈ C .histories ∧
h restrict D .sig ∈ D .histories}

Parallel composition of classes is commutative and associative. Furthermore, it
is monotonic with respect to refinement in both its arguments.

6 Conclusion

In this paper, we have shown how Object-Z’s class and inheritance constructs
can be used to structure specifications in real-time Object-Z: an integration
of Object-Z with the timed refinement calculus. In particular, for composing
Object-Z classes to form multi-component systems, we have introduced a par-
allel composition operator similar to those found in process algebras. This op-
erator provides a means of composition which is both concise (due to implicit
modelling of concurrency) and allows more general modelling of concurrency (by
allowing partially overlapping, as well as synchronising, operations). The exist-
ing semantics of real-time Object-Z was extended to accommodate the parallel
composition operator in such a way that the operator is commutative, associative
and monotonic with respect to refinement.

Acknowledgements

This work is funded by Australian Research Council Large Grant A49801500, A

Unified Formalism for Concurrent Real-Time Software Development .

A Semantics of real-time classes

To provide a semantics for our integrated notation, we show how to map the
standard Object-Z semantics to timed traces. Smith [?, §2.3] gives a history
model for an Object-Z class in terms of sequences of states and operations. We
introduce that semantics and then show how to relate it to timed traces.

A.1 Histories

Let Ident denote the set of all identifiers, and Value the set of all values of any
type. A state is an assignment of values to a set of identifiers representing its
attributes. It can be defined by a finite partial function from identifiers to values:

State == Ident 7 7→ Value.

An operation can be defined as an identifier corresponding to the operation’s
name (since operations do not have input and output parameters in real-time
Object-Z):

Operation == Ident

The history of an object consists of (possibly infinite) sequences of states
and operations. The sequence of states is non-empty as there must be at least
an initial state. The set of attributes of every state in the sequence comprises
the state variables of the object’s class2 and hence must be the same. If the
sequence of operations is finite, then the sequence of states has the initial state
plus an element corresponding to the final state of every operation. Hence the
sequence of states is one longer than the sequence of operations. If the sequence
of operations is infinite, then so is the sequence of states.

These conditions are captured by the following schema where seq∞ X ==

seqX ∪ (N1 → X). For state variables corresponding to environmental outputs,
attributes contains their names without the “!” decoration. The fact that they
are environmental outputs is captured in TraceHistory (Section A.3).

2 In Smith’s model [?] the attributes of states include, as well as state variables, all
constants the object’s class can refer to. Here we take an alternative view that the
values of such constants are parameters to the semantics.

History

states : seq∞ State

ops : seq∞ Operation

attributes : F Ident

opids : F Operation

states 6= 〈〉
∀ i : dom states • dom(states i) = attributes

ran(ops) ⊆ opids

∀ i : N1 • i ∈ dom ops ⇔ i + 1 ∈ dom states

A.2 Start and finish times

To map histories to timed traces, we extend the standard definition of an Object-
Z history given above. The first extension is to allow for the start and finish
times of each operation. The variable start denotes the sequence of start times
of operations, and the variable finish denotes a sequence, with indices starting
from 0, of finish times. We use finish(0) to represent the time at which the
initialisation completed, and if the sequence of operations is finite we add an
extra start time, with value ∞, representing that after the last operation, the
state is stable forever.

TimedHistory

History

start : seq∞ T

finish : N 7→ T

∀ i : N • i ∈ dom ops ⇔ {i , i + 1} ⊆ dom start

dom start 6= N1 ⇒ last(start) = ∞
domfinish = {0} ∪ dom ops

∀ i : dom ops • start(i) ≤ finish(i)
∀ i : domfinish; j : dom start • i < j ⇒ finish(i) ≤ start(j)

A.3 Timed traces

The next extension is to add timed traces of variables. The timed trace of a
variable is a mapping from time to the value of the variable at that time.

Trace == T → Value

We add a timed trace for every environmental variable and each state vari-
able of the class. The names of environmental variables appear in the semantics
without their “?” or “!” decorations. This information is captured instead by
three sets of identifiers: inputs for environmental inputs, output for environmen-
tal outputs, and locals for local state variables. The local state variables are a

