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Abstract. In this paper, we present a formalisation of the reference se-
mantics of Object-Z in the higher-order logic (HOL) instantiation of the
generic theorem prover Isabelle, Isabelle/HOL. This formalisation has
the effect of both clarifying the semantics and providing the basis for
a theorem prover for Object-Z. The work builds on an earlier encoding
of a value semantics for object-oriented Z in Isabelle/HOL and a de-
notational semantics of Object-Z based on separating the internal and
external effects of class methods.
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1 Introduction

Isabelle/HOL is an instantiation of the generic theorem prover Isabelle [8] with
a classical higher-order logic based on that of the HOL System [3]. It supports a
large library of definitions and rules including those of set theory, and advanced
facilities for constructing recursive datatypes and inductive and co-inductive def-
initions1. It has proven to be an ideal basis for theorem prover support for formal
specification languages. Existing encodings of formal specification languages in-
clude those of Z [7] and CSP [15].

The Z encoding in Isabelle/HOL, referred to as HOL-Z , has been extended
by Santen [9, 12] to support notions of classes and objects similar to those in
Object-Z [13]. The main difference between the language encoded by Santen’s
approach and Object-Z, however, is that the former adopts a value semantics :
values representing objects are used directly in definitions; in particular, in the
definitions of classes of other objects. Object-Z, on the other hand, has a refer-

ence semantics: values of objects are only referenced from definitions, not used
directly. The inclusion of object references in Object-Z facilitates the refinement

1 An inductive definition specifies the smallest set consistent with a given set of rules.
A co-inductive definition specifies the greatest set.



of specifications to code in object-oriented programming languages, which also
have reference semantics.

Object references also have a profound influence on the structuring of spec-
ifications. When an object is merely referenced by another object, it is not en-
capsulated in any way by the referencing object. This enables the possibility of
self and mutually recursive structures. While these can be very useful in specifi-
cations, reasoning about them is not always straightforward. For example, when
an object calls a method (i.e., invokes an operation) of another object, the called
object may in turn call a method on an object, and so on. In specifications in-
volving recursive structures, such sequences of method calls may repeat (when
one of the calls is identical to an earlier call in the sequence). The semantics
of method calls needs to account for this possibility and hence is most easily
defined in terms of fixed points [14].

In this paper, we build on the work of Santen, modifying and extending it
to support Object-Z’s reference semantics. Our approach is based on a notion
of “messages” which define an object’s interaction with other objects in the
specification. This approach, inspired by the denotational semantics of Object-
Z defined by Griffiths [5, 4], supports a modular approach to reasoning about
encoded specifications. It also enables us to utilise Isabelle/HOL’s inductive
definition facility in order to avoid the need for explicitly calculating fixed points
of recursively defined method calls.

In Section 2, we outline the general approach and discuss how object ref-
erences and recursion are handled. In Section 3, we discuss the Isabelle/HOL
encoding of classes and objects and, in Section 4, we show how collections of
these are used to define specifications and (object) environments respectively.
Section 6 sketches some technicalities of the encoding that, for the sake of read-
ability and conciseness, we ignore throughout the rest of the paper. In Section 7,
we conclude with a brief discussion of future work.

2 References and Recursion: A Message-Based Approach

An Object-Z class typically includes a state schema, initial state schema and one
or more methods (i.e., operations) defined by schemas or operation expressions
(which are similar to schema expressions in Z). An example is class C shown in
Fig. 1.

The state schema of class C declares a variable n of type naturals and a
reference a to an object of class A. It constrains the variable x of the object
referenced by a to be less than or equal to n. Initially, n is zero and the object
referenced by a satisfies the initial condition of class A. The class has two meth-
ods: Inc n increases the state variable n of an object of class C by an amount
input as n?; Inc n and x increases n in the same way and simultaneously applies
the method Inc x of class A to the object referenced by a.

The method Inc n affects the state of an object of class C only. The method
Inc n and x , on the other hand, may have a wider effect: the method Inc x of A

may affect the state of the object referenced by a, or may call further methods.



C

n : N

a : A

a.x 6 n

INIT

n = 0
a.INIT

Inc n
∆(n)
n? : N

n ′ = n + n?

Inc n and x =̂ Inc n ∧ a.Inc x

Fig. 1. Example class specification.

Since methods in other classes may have references to objects of class C , there
is potential for recursion.

The obvious approach to handling this recursion in Object-Z is through fixed
points. The schemas and expressions modelling the state, initial state and meth-
ods of objects in a specification can be defined as the fixed point of characteristic
functions based on their syntactic definitions [14]. A specification can be defined
as a fixed point on the classes of the specification where classes are ordered
according to the orders on their constituent schemas.

This approach, however, ignores the modularity in the specification: the
meaning of a schema is given in terms of its effect on the whole system and
not just the state of the class to which it belongs. This is not ideal for reasoning
about specifications where we would prefer to take advantage of the specifica-
tion’s modularity. Instead, we want an approach where the effect of a schema is
separated into its effect on the state of its class and its effect on the rest of the
system.

Following a similar argument, Griffiths [5] developed a denotational seman-
tics for Object-Z in which operation schemas are modelled as having two parts:
a relation on the state of their class, and a “message” which defines their in-
teraction with the rest of the system. Our approach to encoding Object-Z in
Isabelle/HOL adopts this approach and extends it to state and initial state
schemas, which may also affect the rest of the system (as in the example above).

A message encodes an Object-Z operation expression. Syntactically, such
an expression comprises names (of methods and object references) and various



operation operators. We encode a message in Isabelle/HOL using the recursive
datatype facility as follows. (α is a polymorphic type representing method names.
ι, ω and υ are polymorphic types representing tuples of inputs, outputs and
hidden variables respectively. These polymorphic types appear as parameters to
the type definition.)

datatype (α, ι, ω, υ) Message =
name α

| call α α

| and (α, ι, ω, υ) Message (α, ι, ω, υ) Message

([ι ∗ ω, ι ∗ ω] → ι ∗ ω ∗ υ)
| choice (α, ι, ω, υ) Message (α, ι, ω, υ) Message

| sequence (α, ι, ω, υ) Message (α, ι, ω, υ) Message

([ι ∗ ω, ι ∗ ω] → ι ∗ ω ∗ υ)

Such a datatype is similar to a free-type in Z, but more restrictive, because
the parameters to the definition are types, which correspond to maximal sets in
Z, whereas the parameters to a free-type definition in Z can be arbitrary sets.
The above definition defines five kinds of messages. The constructor and serves
to encode the Object-Z operation operators ∧ and ‖. The operators choice and
sequence correspond to the Object-Z operation operators [] and o

9 respectively.
Each combine two messages. The functions of type [ι ∗ ω, ι ∗ ω] → ι ∗ ω ∗ υ

associated with the and and sequence messages are isomorphisms [11] used to
combine the input and output tuples of component messages to form those of the
composite message. For ‖ and o

9, the third result type υ represents those inputs
and outputs hidden in the composite message. The use of these isomorphisms is
explained in Section 4 and illustrated by the example in Section 5. Other uses
of isomorphisms in our embedding, which for reasons of conciseness are largely
ignored in this paper, are briefly discussed in Section 6.

The other two kinds of messages, name and call represent the base cases of
the recursive definition. A name message is used to refer to a method within the
class in which the message occurs. This method may be another message or a
schema defining an effect on the state of the class. A call message is used to refer
to a method of another object. It comprises two names: the first is of the object
reference of the object, and the second of the method from that object’s class.
For example, the message corresponding to the method Inc n and x above is
and (name Inc n) (call a Inc x ) IO , where the function IO determines the
inputs and outputs of Inc n and x from those of Inc n and a.Inc x .

3 Classes and Objects

Building on the approach of Santen [9, 12], we encode an Object-Z class in Is-
abelle/HOL as a tuple. (γ is a polymorphic type representing object identifiers

which are used to reference objects. κ and σ are polymorphic types representing
tuples of constants and tuples of state variables respectively.)



typedef (γ, α, κ, σ, ι, ω, υ) classschema

= {(C ,S , I ,Mths ,Msgs ,Refs) |
(C :: κ constschema)
(S :: (κ, σ) stateschema)
(I :: (κ, σ) initschema)
(Mths :: (α, (κ, σ, ι, ω, υ) methodschema) finmap)
(Msgs :: (α, (α, ι, ω, υ) Message) finmap)
(Refs :: (α, ω → γ) finmap).
domm Refs ⊆ domm Mths}

The first three elements of a class tuple, C , S and I , are HOL-Z schemas,
i.e., functions from tuples to Booleans [7], defining the allowable tuples of con-
stants, state variables and initial state variables respectively2. They represent
the specified conditions on the state of an object of the class only. That is, for
the example class of Section 2, the predicates S and I represent the following
schemas.

n : N

a : A

∃ a x : N • a x 6 n

INIT

∃ a init : B •
n = 0
a init

These schemas facilitate a modular approach to reasoning. They enable rea-
soning about objects of the class in isolation from any specified system in which
they may occur. For reasoning about complete specifications, however, the global
effects implied by a specified class’s constant definitions, state schema and initial
state schema need also to be captured by the class encoding. For the constants
and state schema, the effect is captured by a message State. For the example
class, this message corresponds to the operation expression a.X ‖ St where St

is a method schema

St

x? : N

x? 6 n

and X is an observer, i.e., a method schema which outputs the value of a state
variable,
2 The actual definitions of the types constschema, stateschema, initschema, as well as

that of methodschema, can be found in Santen [12, Chapter 5]



X

x ! : N

x ! = x

in class A. In general, the message State includes one observer for each state
variable of a referenced object referred to in the constant definitions or state
schema.

The global effect of the initial state schema is captured in a similar way by a
message Init . For the example class, this message corresponds to the operation
expression a.INIT ‖ In where In is a method schema

In

init? : B

n = 0
init?

and INIT is a method schema in A which outputs init ! : B whose value is true
precisely when the initial condition of A is true.

The next two elements of a class tuple, Mths and Msgs , are finite partial
functions (encoded using the type finmap of finite mappings [12, Appendix B.1])
between names and method schemas, and names and messages respectively. The
method schemas capture all the ways in which the class can affect the state
of its objects. They include an observer for each state variable and constant
(including the implicit constant self which is the identifier of a given object)
and the method schemas St and In. The messages capture the ways in which
objects of the class can interact with other objects in a specified system. They
include the messages State and Init .

The final element of a class tuple is a function Refs that maps all observers
which output an object identifier to the identifier they output. This is necessary
as the strong typing of Isabelle/HOL will not allow an output of generic type ω

to be identified with an object identifier of generic type γ. The only constraint
on a class tuple ensures that the domain of Refs is a subset of that of Mths ,
i.e., all observers which output an object identifier are also methods. (This is
encoded using the function domm which returns the domain of a finite mapping
[12, Appendix B.1]).

Given this encoding of a class, we can encode the notion of objects in a way
suggested by Santen [12]. Firstly, we encode an object state as a cross product
of two tuples, corresponding to the values of the object’s constants and variables
respectively.

types (κ, σ) objstate = κ ∗ σ

Then, the object states belonging to objects of a given class are returned by a
function ObjsS (cma and sma return the Boolean-valued functions representing
the constant and state schemas of a class respectively).



constdefs ObjsS :: (γ, α, κ, σ, ι, ω, υ) classschema → (κ, σ) objstate set

ObjsS Cls == {(c, s) | c s . (cma Cls) c ∧ (sma Cls) c s}

Given this definition, an object is encoded as an ordered pair where the first
element is the class of the object and the second element is the object’s state,
which must be an object state of its class.

typedef (γ, α, κ, σ, ι, ω, υ) object

= {(Cls , obj ) | obj ∈ ObjsS Cls}

Based on the definition in Santen [12, Chapter 6], we define method invoca-
tion as follows. (obj denotes the ordered pair representing an object obj . mths

returns the set of methods associated with a class. �1
c is the method selector for

classes, i.e., Cls �1
c
n returns the method of class Cls named n. Meth returns the

boolean-valued function associated with a method schema. This function takes
as arguments a constant tuple c, two variable tuples s and s ′ denoting the pre-
and post-states, an input tuple i and an output tuple o.)

constdefs

( )
−→:: [(γ, α, κ, σ, ι, ω, υ) object ∗ ι, α, (γ, α, κ, σ, ι, ω, υ) object ∗ ω] → bool

oi
n

−→ oo == (let (obj , i) = oi ;
(Cls , objst ) = obj ;
(c, s) = objst ;
(obj ′, o) = oo;
(Cls ′, obj ′

st
) = obj ′;

(c′, s ′) = obj ′st
in c′ = c ∧ Cls ′ = Cls ∧ n ∈ mths Cls ∧

(Meth (Cls �1
c n)) c s s ′ i o)

4 Specifications and Environments

An Object-Z specification comprises a set of classes each with a unique name
and a set of unique object identifiers. We encode it as a tuple comprising two
finite mappings as follows. (β is a polymorphic type representing class names).

typedef (β, γ, α, κ, σ, ι, ω, υ) spec

= {(CMap, IdMap) |
(CMap :: (β, (γ, α, κ, σ, ι, ω, υ) classschema) finmap)
(IdMap :: (β, γ set) finmap).
domm CMap = domm IdMap ∧
(∀ c1 c2.

c1 ∈ domm CMap ∧ c2 ∈ domm CMap ∧ c1 6= c2

⇒ IdMap c1 ∩ IdMap c2 = ∅)}

The first mapping CMap relates class names in the specification with classes.
The second IdMap associates class names with sets of identifiers. The constraint



ensures that each class in the specification is associated with a set of unique
identifiers.

To reason about specifications using the message-based approach, we need
to introduce the notion of an environment . An environment is an instance of a
specification (in much the same way that an object is an instance of a class).
It associates each object identifier with an object in a way which satisfies the
specification, i.e., each identifier belonging to a class in the specification maps
to an object of that class.

We encode the notion of an environment as a function from identifiers to ob-
jects. The identifier mapping to a given object must be the same as the constant
self of that object. (cls of is a function which returns the class component of
an object. refs is a function which returns the finite mapping Refs of a class. �m

is the application operator for finite mappings.)

typedef (γ, α, κ, σ, ι, ω, υ) Env

= {e :: γ → (γ, α, κ, σ, ι, ω, υ) object .

∀ id . (∃ out . (refs (cls of (e id))) �m self ) out = id)}

The environments which are valid for a specification are given by the function
spec envs . (classes of is a function which returns the finite mapping CMap of a
specification. ids of is a function which returns the finite mapping IdMap of a
specification).

constdefs spec envs :: (β, γ, α, κ, σ, ι, ω, υ) spec → (γ, α, κ, σ, ι, ω, υ) Env set

spec envs == (λ S .

{e. (∀ cn : domm (classes of S ). (∀ id : (ids of S ) �m cn.

cls of (e id) = (classes of S ) �m cn))})

To determine the effect on an environment of a particular event, we introduce
an effect as a tuple comprising a pre-environment, a post-environment, an object
identifier, a message and a tuple of inputs and output parameters.

types (γ, α, κ, σ, ι, ω, υ) Effect

= ((γ, α, κ, σ, ι, ω, υ) Env ∗ (γ, α, κ, σ, ι, ω, υ) Env

∗γ ∗ (α, ι, ω, υ) Message ∗ ι ∗ ω)

The set Effects denotes all possible effects, i.e., all changes to environments
caused by sending a message to one of their constituent objects.

consts Effects :: ((γ, α, κ, σ, ι, ω, υ) Effect) set

It can be defined using Isabelle/HOL’s inductive definition facility. It is the
smallest set satisfying the following rules. (msgs returns the finite mapping Msgs

of a class. e denotes the function representing an environment e. �2
c

is the message
selector for classes, i.e., Cls �2

c
n returns the message of class Cls named n.)



inductive Effects

intrs

n ∈ domm (mths (cls of (e id)))

((e id), i)
n

−→ ((e ′ id), o)
[ nameImth ]

(e, e ′, id ,name n, i , o) ∈ Effects

(refs (cls of (e id)) �m n) o′ = id ′

(e, e ′, id ′,name m, i , o) ∈ Effects
[ callI ]

(e, e ′, id , call n m, i , o) ∈ Effects

(e, e ′, id ,m1, i1, o1) ∈ Effects

(e, e ′, id ,m2, i2, o2) ∈ Effects

(i , o, h) = IO (i1, o1) (i2, o2)
[ andI ]

(e, e ′, id , and m1 m2 IO , i , o) ∈ Effects

(e, e ′, id ,m1, i , o) ∈ Effects
[ choiceIleft ]

(e, e ′, id , choice m1 m2, i , o) ∈ Effects

(e, e ′, id ,m2, i , o) ∈ Effects
[ choiceIright ]

(e, e ′, id , choice m1 m2, i , o) ∈ Effects

(e, e ′′, id ,m1, i1, o1) ∈ Effects

(e ′′, e ′, id ,m2, i2, o2) ∈ Effects

(i , o, h) = IO (i1, o1) (i2, o2)
[ sequenceI ]

(e, e ′, id , sequence m1 m2 IO , i , o) ∈ Effects

n ∈ domm (msgs (cls of (e id)))
m = (cls of (e id)) �2

c n

(e, e ′, id ,m, i , o) ∈ Effects
[ nameImsg ]

(e, e ′, id ,name n, i , o) ∈ Effects

The rule nameImth has two conditions which must be met for an effect
(e, e ′, id ,name n, i , o) to be in Effects . The first condition is that n is the name
of a method schema of the object identified by id in environment e. The sec-
ond is that the invocation of this method schema with inputs i and outputs o

transforms the object to that identified by id in environment e ′.



From the base set of effects generated by nameImth, the other rules define
the set of all possible effects. For example, the rule callI states that the effect
(e, e ′, id , call n m, i , o) is in Effects whenever n is an observer of the class of
the object identified by id in e that outputs id ′, and (e, e ′, id ′,name m, i , o) is
a member of Effects . Similarly, the rules andI , choiceIleft and choiceIright , and
sequenceI state when and , choice and sequence messages, respectively, are in
Effects .

The parameter functions IO of and and sequence messages map the inputs
and outputs of the constituent messages to those of the composite messages
and those that are hidden in the composite messages. They model the effect
of building the union of schema signatures and subtracting the hidden part of
the signatures in the schema calculus. The third component h of the result of
applying IO is effectively hidden by the rules andI and sequenceI , because h

does not appear in the conclusion of those rules. Similarly, the environment
e ′′ representing the “intermediate state” of a method sequencing is hidden by
sequenceI .

The final rule nameImsg states that the effect (e, e ′, id ,name n, i , o) is in
Effects whenever n is the name of a message of the class of the object identified
by id in e, and (e, e ′, id ,m, i , o) is in Effects where m is the message associated
with name n.

Each Object-Z specification has a distinguished system class which specifies
the structure of the system and possible interactions between its objects. The
effects which are valid for a specification are those that correspond to methods
and messages of the system class. They are defined by the function spec effects

which takes as parameters a specification and the identifier of its system ob-
ject (an object of the system class). This function also ensures that the state
invariants of all objects are met before and after the effect. This is specified
by showing that the effect corresponding to the message State (see Section 3),
is allowed in the pre- and post-environments of the effect. (Note that State is
simply a condition on the environment and does not change it.)

constdefs

spec effects :: [(β, γ, α, κ, σ, ι, ω, υ) spec, γ] → (γ, α, κ, σ, ι, ω, υ) Effect set

spec effects == (λS id .

{(e, e ′, id ,name n, i , o). e ∈ spec envs S ∧ e ′ ∈ spec envs S ∧
(e, e, id ,name State, (), ()) ∈ Effects ∧
(e ′, e ′, id ,name State, (), ()) ∈ Effects})

To reason in a modular fashion, we can treat any class in the specification as
the system class of a sub-specification. The sub-specification corresponding to a
given class comprises that class and the classes of all objects which it references.

When reasoning about the effect of a particular message or sequence of mes-
sages on an environment, we often wish to limit our attention to those environ-
ments which are initial environments of the specification. That is, those envi-
ronments which satisfy the initial state schema of the system class. The set of



such environments for a given specification and system identifier is encoded in
terms of the Init message (see Section 3) of the system class as follows.

constdefs

initial envs :: [(β, γ, α, κ, σ, ι, ω, υ) spec, γ] → (γ, α, κ, σ, ι, ω, υ) Env set

initial envs == (λ S id .

{e. e ∈ (spec env S ) ∧ (e, e, id ,name Init , (), ()) ∈ (spec effects S id)})

In other cases, we need to limit our attention to reachable environments of
the specification. That is, those environments which result from the application
of zero or more valid effects to an initial environment. The set of such environ-
ments for a given specification and system identifier is encoded as an inductive
definition as follows.

consts

reachable envs :: [(β, γ, α, κ, σ, ι, ω, υ) spec, γ] → (γ, α, κ, σ, ι, ω, υ) Env set

inductive reachable envs S id

intrs

e ∈ (initial envs S id)
[ initI ]

e ∈ (reachable envs S id)

e ∈ (reachable envs S id)
(e, e ′, id ,m, i , o) ∈ (spec effects S id)

[ effectI ]
e ′ ∈ (reachable envs S id)

The rule initI states that all initial environments are reachable environments.
The rule effectI states that all environments which result from the application
of a valid effect to a reachable environment are also reachable environments.

5 Example encoding

In this section, we present an example encoding of an Object-Z specification.
The specification is of a simple multiplexer based on that of Smith [13, Chap-
ter 1]. The specification comprises two classes modelling a generic queue and a
multiplexer comprising two input queues and an output queue of messages.

The generic queue in Fig. 2 is modelled with three state variables: items ,
denoting the sequence of items in the queue, in denoting the total number of
items which have ever joined the queue, and out denoting the total number of
items which have ever left the queue. Initially, the queue is empty and no items



Queue[Item]

items : seq Item
in, out : N

INIT

items = 〈 〉
in = out = 0

Join
∆(items, in)
item? : Item

items ′ = items a 〈item?〉
in ′ = in + 1

Leave
∆(items, out)
item! : Item

items = 〈item!〉 a items ′

out ′ = out + 1

Fig. 2. Class Queue.

have joined or left it. Operations Join and Leave allow items to join and leave
the queue respectively.

In Fig. 3, the multiplexer is modelled as having two input queues, input1 and
input2, of a given type Message and an output queue, output , also of the type
Message. The class’s state invariant ensures that the queues are distinct, i.e.,
not aliases for the same queue object, and that the number of items that have
joined the output queue is equal to the sum of the numbers of items that have
left the input queues.

Initially, each queue is in its initial state as defined in class Queue. Opera-
tions Join1 and Join2 allow messages to be joined to queues input1 and input2
respectively. The operation Transfer allows a message from one of the input
queues to be transferred to the output queue and the operation Leave allows a
message to leave the output queue.

To illustrate our encoding, we represent this example of an Object-Z specification
in HOL. Since the class Queue does not contain any messages, its representation
is similar to a representation in Santen’s earlier encoding [12]. We just show the
observer INIT of Queue below; the new aspects of encoding a class are illustrated
by sketching the representation of the class Multiplexer .



Multiplexer

input1, input2, output : Queue[Message]

input1 6= input2 ∧ input1 6= output ∧ input2 6= output
output .in = input1.out + input2.out

INIT

input1.INIT ∧ input2.INIT ∧ output .INIT

Leave1 =̂ input1.Leave
Leave2 =̂ input2.Leave
Transfer =̂ (Leave1 [] Leave2) ‖ output .Join
Leave =̂ output .Leave

Fig. 3. Class Multiplexer .

Assuming the definition of the methods and observers that are needed, we
build the messages State and Init (see Section 3) by composing the corresponding
constituents. For example, the message Init is built using the INIT observer of
class Queue. This is a method schema which returns a boolean value init ! : B

representing whether the initial condition of Queue holds. It is thus defined as:

INIT

∆()
init ! : B

items = 〈 〉
in = out = 0

For each of the three aggregated objects, input1, input2, and output , a call to this
method is issued in the initialisation of Multiplexer . For illustration purposes,
the output variables init ! are all made distinct by renaming them accordingly.
These init observers are composed in parallel with a method schema In of the
class Multiplexer .

In

init1?, init2?, init3? : B

init1? ∧ init2? ∧ init3?

Thus the message Init for the class Multiplexer can be constructed as

input1.INIT ∧ input2.INIT ∧ output .INIT ‖ In.



In our encoding, this Init message is represented as

constdefs

MultiplexerInit ==
and (and (and (call ”input1” ”INIT”)(call ”input2” ”INIT”) . . .)

(”output” ”INIT”) . . .)
(name ”In”)
λ
iso

((i1, o1), (i2, o2)).(i1, o2, o1) |{((i1,o1),(i2,o2)).o1=i2} .

Using and and hiding, we can model the parallel composition operator ‖:
we build the conjunction of the first three init observers and the method In

and use the function that is a further argument to the constructor of an and

message to express the amalgamation and hiding of the parameters. The λ
iso

term identifies o1 and i2 by using a domain restriction, and maps the result to
the third position in the image — the hiding position. Evaluating the effects of a
specification (see Section 4, rule andI ) discards the element of an and message.
For clarity, we omit the functions to compose the inputs and outputs of the first
two and submessages. They are similar to the last function, but simpler as they
neither identify parameters nor hide them.

The State message that comprises observers and methods for the internal
and external effects of the state schema of the class Multiplexer is built in a very
similar fashion. The messages for Leave1, Leave2, and Leave are left out here as
they are simple call messages to the respective objects.

The message Transfer is constructed as

constdefs

MultiplexerTransfer ==
and (choice (name ”Leave1”)(name ”Leave2”))

(call ”output” ”Join”)
(λ

iso
((i1, o1), (i2, o2)).(i1, o2, o1)) |{((i1,o1),(i2,o2))|o1=i2}

Similar to the Init message, the parallel composition is achieved by a cor-
responding function that identifies the inputs and outputs of the submessages
and maps elements that have to be hidden to the third position of the resulting
triple.

After these preparations, we can build the representation of the class Multiplexer

by adding all the constructed observers, methods and messages to a starting ele-
ment — basicclass . The operators �r and � add observers (the former, observers
which return an object reference), � adds methods, and �m adds messages to



a class.

constdefs

MultiplexerCls ==
((basicclass MultiplexerConstSchema

MultiplexerStateSchema

MultiplexerInitSchema)
�r (”self ”,MultiplexerselfObs)
�r (”input1”,Multiplexerinput1Obs)
�r (”input2”,Multiplexerinput2Obs)
� (”INIT”,MultiplexerinitObs)
� (”State”,MultiplexerStateOp)
� (”In”,MultiplexerInitOp)
�m (”Leave1”,MultiplexerLeave1)
�m (”Leave2”,MultiplexerLeave2)
�m (”Leave”,MultiplexerLeave)
�m (”Init”,MultiplexerInit)
�m (”Transfer”,MultiplexerTransfer))

In a final step, the representations for the classes Queue and Multiplexer are
used to form a specification which is accessible as a single HOL object.

6 A Note on HOL Technicalities

In order to concentrate on the semantic issues that form the core of the encoding
of the reference semantics of Object-Z outlined in this paper, we left out some
technical details concerning the types of methods and messages. However, having
made the essentials clear, we will now discuss a few specialities of the encoding
that are particularly interesting from the theorem proving perspective of this
work. Naturally, they are relevant for the value of our approach as well, as they
determine the applicability of the encoding.

As a major design decision for the mechanical support of Object-Z in Isabelle,
we have adopted the approach to formalisation that has previously been taken
by Santen [12]: our encoding uses a so-called shallow embedding of Z and a deep

embedding of Object-Z on top of it. In this final section, we will briefly describe
these technical terms in order to lead on to an informal discussion of the problems
we have encountered with the way we chose to encode Object-Z.

6.1 Shallow Versus Deep Embedding

The terms shallow and deep [2] refer to the style chosen for the formalisation of a
formal language, say Object-Z, in the logic of a theorem prover. The depth of an
embedding describes to what extent the encoded language is made a first class
citizen of the logic. That is, are the objects of the language all explicitly described



as terms in the logic — then we have deep embedding — or are some concepts
of the language identified with concepts of the logic — a shallow embedding?
For example, in the shallow embedding of Z the input and output types of
operations are identified with types of higher-order logic (HOL). This is sound
as the semantics of Z and HOL are very similar in particular with respect to the
type system [10].

In general, for reasoning about a language it is advisable to have a deep em-
bedding when the aim is to reason about a language rather than in the language.
In particular, in cases where the encoded language has abstract structures, like
Object-Z classes, it has been illustrated that in order to support modular rea-
soning in a general fashion one needs to represent structures as first class citizens
[6]. When it comes to reasoning about a concrete sentence of the embedded lan-
guage, like the encoding of the class Multiplexer , a deep embedding is not very
efficient. Therefore, the art of designing a feasible and practical embedding lies
in deciding how deep to embed each feature of the language.

6.2 Input and Output Types

Although the shallow embedding of Z is very useful for dealing with concrete
specifications, the level of detail provided by the concrete input and output types
of operations gets in the way when it comes to the level of Object-Z. A class in
Object-Z includes a set of methods, that may in general have arbitrary input
and output types. Since a type of classes is needed to be able to express concepts
like specifications and relations between them, like refinement or behavioral con-
formance, it is necessary to unify all the different types of inputs and outputs
of methods of a class. The unified input and output types are then used in the
definition of the class type (cf. Section 3). In other words, at the Object-Z level,
we need a deep embedding (in which we explicitly describe the unified input and
output types of methods) to be able to achieve the right level of abstraction.

The type system of Isabelle/HOL has been chosen in such a way that type
checking and typeability are decidable. In terms of the λ-cube [1], the type system
of HOL corresponds to λ→-Church. More powerful type systems of this cube,
like λ2, have universally quantified type variables, e.g. ∀α.α, that could be used
to express unified types for inputs and outputs of class methods. For example,
(nat ∗ nat) → bool and nat → nat are both instances of (∀α.α) → (∀α.α).

However, in HOL, i.e. λ→-Church, a polymorphic type expression, e.g. α → α

may refer to an arbitrary α but all occurrences of α in instances have to be the
same. In other words, the universal quantification of the type variable α is always
at the beginning of a type expression. Therefore, it is necessary to build unified
input and output types of all class methods in HOL.

One way to do this is to use the binary sum type constructor + that constructs
the sum of two types, i.e., a new type containing two distinguishable copies of
both parameter types. Applying this type constructor in an iterated way to all
the input and output types of methods, a most general type of all inputs and
outputs is created. This provides a means of expressing the type of a class in
HOL in which methods also have a most general type.



However, in order to apply the methods unified in this most general type, we
need to be able to retrieve the original input and output types of the methods.
To that end, we have to administer injections that record the positions where
the concrete input and output types are embedded in the general sum types of
the method types.

These injections have been developed in a general way by Santen [11] as
so-called isomorphisms, as they build bijections on the general sum types that
respect the term structure. In our encoding, not only methods but also the
messages of Object-Z have input and output types. Therefore, we integrate the
existing concept of isomorphisms for methods with the recursive datatype for
messages. The concept of isomorphisms is also used for capturing the internal
relationship of inputs and outputs of the composite and and sequence messages.

The handling of the types of inputs and outputs is manageable in our en-
coding, but it creates a considerable formal overhead. We consider the actual
encoding of the input and output types with isomorphisms an implementation
detail that may be interesting from the theorem proving perspective, but has to
be hidden from the user. We need to implement specially tailored tactics that
exploit internal term structure information of the theorem prover representation
to hide such implementation detail from the user of our encoding. Fortunately,
it is possible to create such additional tactic support in Isabelle. Although we
have not implemented it yet, we will do so in the near future.

7 Conclusions

We have presented a new approach of encoding object-oriented specifications
with reference semantics in higher-order logic. Central to our encoding is the
distinction between the internal state changes and the external effects of method
invocations that Griffiths has proposed. This makes the encoding more modular
than a straightforward fixed point construction of a global environment of objects
would.

Technically, we have built a theory to support our encoding in Isabelle/HOL.
It remains to implement tactics that hide the technicalities of the encoding, in
particular type conversions by isomorphisms, from the users’ view. With those
tactics at hand, we will be able provide a proof environment for Object-Z and
investigate how the modularity of our encoding helps to modularise reasoning
about Object-Z specifications. We feel that only modularisation of proofs will
enable us to verify properties of specifications of realistic size and complexity.
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