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Abstract. Emergent behaviour—system behaviour not determined by the behaviours of system compo-
nents when considered in isolation—is commonplace in multi-agent systems, particularly when agents adapt
to environmental change. This article considers the manner in which Formal Methods may be used to au-
thenticate the trustworthiness of such systems. Techniques are considered for capturing emergent behaviour
in the system specification and then the incremental refinement method is applied to justify design decisions
embodied in an implementation. To demonstrate the approach, one and two-dimensional cellular automata
are studied. In particular an incremental refinement of the ‘glider’ in Conway’s Game of Life is given from
its specification.
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1. Introduction

As information systems become even more distributed, interactive and adaptive to uncertain environments,
their engineering becomes more subtle. The InterLink programme [WBHR08], for example, has identified an
important class of such systems it calls ‘ensembles’ and has highlighted the need to be able to engineer them
in an accountable manner. The difficulty arises because such systems exhibit emergent behaviour : system
behaviour that is not inferred from the behaviours of system components when considered unilaterally.

‘Formal Methods’ may be seen as the study of rigorous techniques to account, mathematically and hence
with a high degree of trust, for system behaviour. But to date they have not been exercised on the class
of systems exhibiting emergent behaviour. Part of the reluctance has no doubt arisen from experience with
Complex Systems in which research has focussed on the analysis of existing systems (both natural, like
the mind, and man-made, like the Internet), rather than the synthesis of new ones, to predict their global
properties. Firstly, it may be unclear what precisely constitutes the emergent behaviour (like consciousness,
in the case of the mind). Secondly, when modelling an existing system, ‘discontinuities’ in behaviour may
not be known and hence may not be modelled; so proof techniques may not successfully reveal emergent
behaviour. Thirdly, it has been claimed that some complex systems exhibit strong emergence [Bed03] (e.g.,
the mind) and therefore, by definition, proofs cannot be constructed of how their behaviour arises.
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But when we engineer new systems, we are not trying to prove the existence of emergent behaviours.
Rather we start with the emergent behaviour we require (which may include the avoidance of undesirable
behaviours), and develop a valid implementation. An implementation may in general contain many local
variables not present in the specification, and the manner in which they are used may be far from clear.
Hence some form of authentication is required. One method is a proof of correctness: a proof that the
implementation refines its specification. However a method that uses more of the software engineer’s work,
and so provides much more information, is an incremental refinement from specification to implementation
(since refinement is transitive, correctness is a special case of incremental refinement). Intermediate steps
correspond to the engineer’s design decisions, like the introduction of local variables, data refinements and
algorithms for achieving parts of a computation. Each appears as a refinement step, justified formally by
a (mathematical) reason annotating the refinement. Different design decisions lead (in general) to different
implementations. For example a sort procedure is specified as permuting its input array so that finally it is
(weakly) increasing. But different refinement decisions lead to quite different kinds of sorting algorithms.

Thus it is the chain of reasons for the refinements that authenticate the implementation. By spanning
specification to implementation they also authenticate each design decision made in development. So if
maintenance, for example, necessitates reworking the development from some point on, only from that point
need the designs and their justifications be changed. An incremental refinement can be seen as a way of
structuring a correctness proof to reflect engineering practice. Even better, it provides a way to understand
an implementation at any level of abstraction in the hierarchy of refinements, by following the refinements
to just that level.

In spite of all its benefits, incremental refinement does not explain where the design steps ‘come from’. It
states each step formally and justifies the refinement mathematically, but does not motivate it. In that way
it is (like) a mathematical proof. When teaching program development using refinement, steps are typically
motivated by (informal) appeals to computational complexity (time, space) and to the goal-directed nature
of the implementation being code. For example, for evaluation of a polynomial

∑
0≤j<n aj x j at a given

point x0, the specification would assign to the final variable the value
∑

0≤j<n aj x j
0 . A refinement step might

bracket that sum so as to use only a linear, rather than a quadratic, number of multiplications (Horner’s
rule). Justification for the step is trivial: distributivity of multiplication over addition. But motivation comes
from the desire for a program whose asymptotical complexity is linear rather than quadratic.

A further part of the reluctance to use Formal Methods for systems exhibiting emergence may well be
the seeming inconsistency between emergence and reductionism: how can an incremental refinement from a
specification containing emergent behaviour result in an implementation whose components have unilateral
behaviours that are insufficient to account for the emergent behaviour? The resolution is simple: the emergent
behaviour results from inter-component interactions. But, as already stated, the synthesis of such systems is
far from simple: the emergent behaviour must be shown to be a consequence of those interactions. Computer
Science, and this paper in particular, is interested in systems where that is the case, i.e., systems which
exhibit weak emergence [Bed03]. Note that many classic examples of emergence from the field of Complex
Systems, such as ant-foraging and bird-flocking behaviours, are examples of weak emergence.

So: is Formal Methods, and in particular the technique of incremental refinement, applicable to the
engineering of systems with (weak) emergent properties? There are claims that it is not; they are discussed
in Section 6. One paper, [PS05], posits that the emergent behaviour of the ‘glider’ pattern of Conway’s Game
of Life3 [Gar70, BCG82] cannot be authenticated by incremental refinement. The present paper shows that
it can.

Conway’s Game of Life is a 2-dimensional cellular automaton which simulates the evolution of an infinite
grid of cells. The cells evolve according to the following four rules, where the neighbours of a cell are the
eight cells surrounding it.

1. A live cell with less than two live neighbours dies (of isolation).

2. A live cell with more than three live neighbours dies (of overcrowding).

3. A live cell with two or three live neighbours remains a live cell.

4. A dead cell with exactly three live neighbours becomes a live cell.

3 An executable version can be found at http://www.math.com/students/wonders/life/life.html.
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Many different patterns can be formed in the Game of Life including dynamic patterns such as the glider
which translates itself across the grid.

In this paper we show how the abstract behaviour of the glider may be specified and subsequently refined
to an array of cells following the rules of the Game of Life, using the simplest possible standard refinement
techniques. A less-complete version has appeared in [SS09a]. The refinement calculus [Mor94] that we use to
affect the incremental refinements is summarised in Section 2. The refinement calculus provides a formalism
(i.e., notation and laws) for performing incremental refinements. But before it can be applied to the glider
in the Game of Life the glider’s emergent behaviour must be specified. In Section 3 we consider techniques
to achieve that, both in general and in the Game of Life in particular. Then, to demonstrate our approach
on an example with fewer distracting details than the 2-dimensional Game of Life, in Section 4 we first
consider a 1-dimensional cellular automaton and an emergent behaviour it exhibits. To show that in making
that simplification we have not inadvertently brought together the two levels of abstraction, in Section 5 we
provide a specification and refinement of the glider in the full 2-dimensional Game of Life. The approach is
the same; only the complexity of the detail is increased. In Section 6 we discuss work related to the question
of refining emergent properties and in Section 7 conclude.

2. Stepwise refinement

The purpose of this section is to summarise standard material used later in the paper to perform incre-
mental refinements, and to emphasise how the notation handles the distinction between functional and
non-functional properties.

The specification statement (see Morgan’s textbook [Mor94]4)

x : [pre(x ), post(x , x ′)]

denotes a computation that by changing only variables in the list x terminates, whenever begun in a state
satisfying the predicate pre, in a state satisfying the binary predicate post . The postcondition, with free
variables x for initial state and x ′ for final state, need not be executable. Indeed the purpose of a specification
is to describe succinctly the result of the computation and not the manner in which it is executed; that is
the purpose of the implementation. For example if variable n is an integer then

n : [n ≥ 0,n ′ > n] (1)

is satisfied by just those computations that terminate when begun in a state for which n ≥ 0, and do so
in a state having a greater value of n than initially. It is guaranteed to terminate only if n ≥ 0; and the
postcondition is nondeterministic, satisfied by any larger final value of n.

A computation refines another iff it is at least as deterministic. Recall that weakening of the precondition
pre and strengthening of the postcondition post ensures refinement between specification statements:

x : [pre, post ] v x : [pre1, post1] if pre ⇒ pre1 and pre ∧ post1⇒ post .

For example the statement (1) is refined by both n : [true,n ′ = n + 1] and n : [n ≥ −1,n ′ = n + 2], but by
neither n : [true,n ′ = n − 1] nor n : [n > 0,n ′ = n + 1].

Recall that the semantics of assignment yields the law by which assignments are introduced into an
incremental refinement. In its simplest form, for an expression e that is always well defined

x : [true, x ′ = e] = x := e .

An implementation describes the manner in which a computation is to be executed. In this paper par-
ticularly simple cellular automata are considered, which it suffices to describe using nonterminating loops of
assignments to the variables local to each cell; initialisation is achieved again by assignment to all local vari-
ables. To describe such assignments we use the guarded-command language, although the loops containing
them are nonterminating, reflecting the unending action of the automaton.

Of particular importance in this paper is the special case of an initialised loop that governs the unending
behaviour of a cellular automaton. If the loop invariant is given at one level of abstraction, a refinement is

4 We differ slightly by writing x rather than x0 for initial values and x ′ rather than x for final values.
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required at the next level in which the loop body is refined closer to code. If the invariant is deterministic
then the loop body is determined by having to maintain it.

A simple example is provided by repeated addition to sum the numbers in an array. For a natural number
N , an array a : array [0,N ) of integers, and an integer s, this specification results in s equalling the sum of
the values in a

s : [true, s ′ =
∑

0≤j<n

a[j ]] .

The postcondition is not code if that sum is not atomically evaluated. But code may be achieved by repeatedly
adding elements of the array. Such a refinement may be achieved by introducing a local variable i of natural
number type to be the array index, and requiring a loop with guard i < N to maintain the invariant
inv := (0 ≤ i ≤ N ) ∧ (s =

∑
0≤j<i a[j ]). It then follows that with i initially 0, for the invariant to be

established s must also initially be 0 (because the empty sum is 0). The refinement step is justified because
the negation of the guard and the invariant together imply the specification’s postcondition. Writing inv ′

for the predicate inv [i ′, s ′/i , s],

var i : N ·
i , s := 0, 0 o

9

do i < N →
i , s : [inv ∧ i < N , inv ′]

od

rav

We suppose that progress is to be achieved in the loop by incrementing i . Then the body of the loop is
refined by strengthening its postcondition

i , s : [inv ∧ i < N , inv ′ ∧ i ′ = i + 1]]

(where termination is guaranteed by the strict decrease, on each iteration, of the variant function N − i).
Predicate calculation then shows that refinement holds provided

i , s := i + 1, s + a[i ] ,

which completes an outline of an incremental refinement to code. The steps are collected to provide an
incremental refinement in the Appendix. Further examples appears in Sections 4 and 5.

If, alternatively, initialisation were i := N −1 and the invariant were (0 ≤ i ≤ N ) ∧ (s =
∑

i≤j<N−1 a[j ])
then progress would be achieved by decrementing i and a different implementation would result. Naturally
the collection of terms in other ways leads to other designs.

In our case, the refinements start from a specification that includes a description of emergent behaviour,
and from there progress to an implementation by using laws of the refinement calculus. The approach succeeds
because the emergent behaviour is captured functionally (as described in Section 3). Many treatments of
emergence in the History and Philosophy of Science require that the emergent behaviour be attended by
some extra-functional ‘element of surprise’ (see, for example, the editorial [Dam00] by Damper). Here we
follow the standard Scientific approach in ignoring that aspect, which depends on the state of mind of the
observer. That is why incremental refinement, using just functional properties, suffices.

Can the two approaches (Scientific and Philosophical) be reconciled? A treatment incorporating that less
quantifiable ‘element of surprise’ would have to be couched in terms of motivations for the various refine-
ment steps, requiring the inclusion of a motivation for each step. In the example of polynomial evaluation
(from Section 1), for instance, the motivation is the complexity advantage provided by Horner’s rule. The
augmented incremental refinement would make it clear what each step contributes by way of ‘surprise’.
Emergence predicates in adaptive multi-agent systems (AMAS) often require intricate designs in their in-
cremental refinement, as do efficient distributed systems in general. If a system specifier is over-optimistic
then the emergence-enriched specification will be infeasible: not refineable to code. Thus the identification
of an emergence predicate is by itself not enough to guarantee that an implementation exists. Incremen-
tal refinement establishes it, and if steps are augmented with extra-functional motivations (like complexity
arguments) then it also highlights designs of ‘surprise’. We do not pursue this further.

However even in purely functional form, the incremental refinement of systems exhibiting emergence is
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of interest because of claims that it is impossible. To achieve an incremental refinement, the first step must
be the capturing of the emergent behaviour in the specification. We turn to that now.

3. Specifying emergence

The purpose of this section is to consider what is required in enriching a specification to capture emergent
behaviour.

A typical situation seems to be a multi-agent system (MAS) whose emergent behaviour results from
inter-agent interactions that are not predictable from consideration of the agents in isolation. Suppose that
each agent i (0 ≤ i < n) has unilateral specification Ai . Then a ‘naive’ specification for the system is the
conjunction∧

0≤i<n

Ai .

It is naive by being restricted to unilateral behaviours only: each conjunct is expressed entirely in terms of its
own local state. However it is made realistic by enriching it with emergent behaviour, done by using global
variables to express what interagent interactions achieve. That extra conjunct, emerge, has been called an
emergence predicate [HLRS08] and results in the emergence-enriched specification

emerge ∧
∧

0≤i<n

Ai .

The difficulty lies, of course, in formulating emerge. But once that has been achieved, incremental devel-
opment from the emergence-enriched specification is possible. Let us consider some examples of emergence
predicates, with just enough detail to appreciate the kind of global information they require.

One of the most popular examples of emergent behaviour is the flocking of birds. For most of the day each
bird i functions autonomously, so Ai is expressed in terms of i ’s local state and environmental interactions
(save with other birds). But particular inter-bird interactions are required to form and maintain a flock; so
emerge refers to the states of all birds. It also contains global variables, like the position and velocity of the
flock, that do not appear in the (distributed) ‘implementation’ which consists only of the birds interacting
in parallel (none with global information). Details, with correctness of a design in which each bird interacts
with its nearest neighbours in the flock by adjusting its own position and velocity to the average of those of
its neighbours, are given in [HLRS08] (where a theorem of Cucker and Smale [CS07b] is exploited to ensure
that the design establishes emerge). This example demonstrates that, since the flock parameters are defined
in three dimensional space, emerge may well exhibit both discrete and analogue parts. Furthermore, that
differentiable methods may be required in establishing refinements.

Statistical methods may also be required in expressing emerge. For example each agent i in a MAS may
have a Boolean state component bi . So Ai includes a conjunct constraining bi in terms of the rest of i ’s
state. Suppose that if an agent i is chosen at random then it is equally likely for bi to be true or false.
That behaviour is emergent because it requires particular coordination between the agents (in a distributed
design). Thus emerge refers to each bi and some global tolerance which measures acceptable deviation from
1
2 of the proportion of agents for which bi is true. In general, statistical clichés may be required in emerge,
and results like convergence theorems from Statistics required in establishing refinements. For details we
refer to [HLRS08].

In the present paper, however, implementations are cellular automata. Each i is a cell and Ai describes
the way in which i ’s state changes as a result of the states of i ’s immediate neighbours. The automaton thus
has a clock that ensures each cell changes state at the same time; but it has no notion of global time. In
specifying emergent behaviour, like the movement of shapes, global time is used to constrain local states.
Global time thus plays the part of the global variables used in the previous examples.

There is an interesting analogy between an emergence predicate emerge and the invariant of a loop
in a sequential program. Both use, in general, variables not present in the implementation to express its
behaviour. The incremental refinement of a loop from its invariant, as demonstrated in the example of array
summation in Section 2, is standard. The major contribution of this paper may be viewed as achieving the
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same thing for systems with emergent behaviour. In fact, in the cellular-automaton implementation of the
Game of Life, initialisation is followed by a loop whose invariant is simply emerge. So the methods coincide.5

The claim that an incremental refinement of the glider is not possible thus reduces to the impossibility
of either (a) specifying the emergent behaviour of the glider (achieved here by use of global time), or (b)
an incremental refinement of a loop from its invariant (achieved here in the refinement calculus). We have
indicated why in principle both are possible; we now consider details.

4. One-dimensional cellular automaton

We consider a 1-dimensional cellular automaton on an integer grid of cells. Its evolution rule could involve
more than immediate neighbours, or depend on more than the previous generation. For several nice examples
treated rigorously see [BCF10]. However by analogy with Conway’s 2-dimensional rule we limit the rule to
just immediate neighbours and just the previous generation and choose it, as follows, to capture behaviour
analogous to that in two dimensions.

1. A cell is live in the next generation iff in the present generation exactly one of its two immediate neighbours
is live.

The state of the cell itself in the present generation is irrelevant. There are many alternative rules (for
example that rule could also require that the cell be dead in the present generation) but that one is typical
and satisfies our previous criteria. It is in fact the well known Rule 90 of elementary cellular automata (see
http://mathworld.wolfram.com/Rule90.html).

As in the planar case, all cells are updated synchronously. We consider state to be a function which
assigns a Boolean to each integer: true for live (or ‘occupied’) and false for dead (or ‘vacant’). Let B denote
the type of Booleans. We write state at the current generation as x : Z → B, and its value at the next
generation as x ′ : Z→ B.

To formalise the update rule we let νx denote, pointwise, the number of live neighbours6 of x :

ν : (Z→ B)→ (Z→ N)

(νx )[n] := #{m : Z | x [m] ∧ |m − n | = 1} . (2)

Evidently for any state x , νx takes values between 0 and 2.
Then the rule is

∀n : Z · x ′[n] = (νx [n] = 1) . (3)

Two examples are given in Figure 1.
To emphasise that in each generation the assignments are made simultaneously (for each n) and syn-

chronously, we adopt a functional notation in which the above rule is expressed as

x ′ = (νx = 1) . (4)

That is, a single assignment is made to the function x ; it is interpreted as consisting of the simultaneous and
synchronous assignment to each of its values x [n].

In functional form, the state that is false at each n : N except m, is a translated Dirac delta function:

δm : Z→ B
δm := λn : Z · (n = m) .

The support of state x : Z→ B is defined to consist of those integers at which x takes the value true:

sp x := {n : Z | x [n]} .
The following simple result is used in our development. For a nonempty finite set E of integers we write uE
for the least element of E and tE for the greatest element.

5 It is interesting to observe that, conversely, a loop body may be regarded as an agent that updates its state (determined
by the loop variables). Thus the loop itself can be viewed as a MAS with a varying number of agents (one for each iteration),
depending on the state in which the loop is begun. Then the emergence predicate of the MAS is the loop invariant.
6 The neighbours of a cell x [n] are strictly those cells adjacent to x [n], i.e., x [n− 1] and x [n + 1], and do not include x [n]. This
definition differs from that often used in the cellular automata literature which includes cell x [n] in the set of neighbours.
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Fig. 1. Two examples of the 1-dimensional rule (4). In the first x = (n ≤ 0) and x ′ = (n ∈ {0, 1}). In the second x = (n ∈
{−2,−1, 1}) and x ′ = (n ∈ {−3,−2,−1, 2}). The cell at the origin is depicted with a dot.

Theorem 1. Suppose that state x has nonempty finite support. Then, under Rule (4), the least element of
the support of x ′ is one less than the least element of the support of x . Analogously the greatest element is
one more.

(i) u(sp x ′) = u(sp x )− 1

(ii) t(sp x ′) = t(sp x ) + 1

Proof. By de Morgan’s law for negation and extrema, namely uE = −(t(−E )), it suffices to prove the
first claim. By calculation:

m = u(sp x )− 1

≡ arithmetic

m + 1 = u(sp x )

≡ definition of minimum

x [m + 1] ∧ ∀n ≤ m · ¬x [n]

≡ calculus

x [m + 1] ∧ ¬x [m − 1] ∧ ∀n ≤ m · ¬x [n]

≡ calculus and Definition (2)

(νx )[m] = 1 ∧ ∀n ≤ m · ¬x [n]

≡ Rule (4) and k := n − 1

x ′[m] ∧ ∀ k < m · ¬x [k − 1] ∧ ¬x [k + 1]

≡ Rule (4)

x ′[m] ∧ ∀ k < m · ¬x ′[k ]

≡ definition of minimum

m = u(sp x ′) .

The result does not hold if the support is unbounded (with unbounded extrema defined in terms of ±∞
as usual); a counterexample is provided by the first example in Figure 1. Fortunately our application is to
states x having nonempty finite support.

4.1. Specification

To describe 1-dimensional patterns we augment the cellular automaton with a notion of discrete global time
that counts the number of generations since initialisation. It is to be emphasised that global time is a speci-
fication ‘artifact’ and not available to the implementation, which is able merely to update, instantaneously,
from the current generation to the next. Indeed evaluation of the state of any cell at time t : N (after
initialisation at time t = 0) would involve evaluation of the state of cells at distance t away. Since one clock
cycle is needed to evaluate the state of cells each unit away, as t tends to infinity so would the time taken.
As a result, behaviour of the Game of Life which requires evaluation of the state of a cell at an arbitrary
time is not derivable strictly at the implementation level. It is thus, by the definition [HLRS08], emergent
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behaviour. Global time is introduced because it enables us to specify the emergent phenomena of interest,
but must be removed during the derivation of an implementation.

At any time t : N we write the Boolean state at n : Z as

x [n, t ] : B .

A flood consists of two cells moving away from the origin, one in each direction, so that at each time
step t the cells are at locations n = ±t . Between the cells arbitrary behaviour is allowed but beyond them
all cells are dead. It is specified simply using global time t : N as a free variable:

flood := x [−t , t ] ∧ x [t , t ] ∧ ∀m : Z · |m | > t ⇒ ¬x [m, t ] . (5)

Notice that the initial state is given by t = 0, in which just the cell at the origin is live. For t = 1 the cells
at n = ±1 are live but the cell at the origin is undetermined. Specification (5) can be expressed simply in
terms of support: at any time t the support of x (as a function of n, with t fixed) has minimum −t and
maximum t .

flood ≡ usp (λn : Z · x [n, t ]) = −t ∧ tsp (λn : Z · x [n, t ]) = t . (6)

This is the form exploited by Section 4.3 in the guise of Theorem 1.
The stronger specifications in which cells between ±t are all dead, or all live, are infeasible with Rule (4) as

shown by simple calculation. A rule which does make it feasible for all interstitial cells to be dead is studied
in [SS09a]; however it might be argued that it makes the specification and implementation unnecessarily
close, which is why we adopt an alternative here.

4.2. Implementation

The implementation we seek has an initialisation command, init , assumed to be an assignment to the function
x , which corresponds to the specification with t = 0. Subsequently it updates all cells synchronously according
to Rule (4), taking one t-time unit to do so. In the guarded-command language it is expressed

ca := init o
9

do true → x := x ′ od
(7)

where the update is given by (4) and the time constraint on its execution is given by

∀ t : N,n : Z · x [n, t ] = x [n] ⇒ x [n, t+1] = x ′[n] . (8)

That representation of a reactive (nonterminating) program in the guarded-command language abstracts
the command that displays the state x . That command outputs on each iteration and so saves the program
from simply diverging.

4.3. Refinement

Use of the guarded-command language allows us to use the refinement calculus to perform our simple
refinements concisely.

Refinement of init is achieved by substitution of 0 for t in flood :

init

= specification

x : [true,flood [0/t ]]

= definition of flood (5)

x : [true, x [0, 0] ∧ ∀m : Z · |m | > 0 ⇒ ¬x [m, 0]]

= initialisation assumption, t = 0

x : [true,∀n : Z · x [n] = (n = 0)]

= functional notation
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x : [true, x = δ0]

= semantics of assignment

x := δ0 .

It consists, as specified, of the assignment of false to each cell except to that at the origin.
We now use the fact that flood is the invariant of the loop in the implementation ca to infer the loop

body.

x : [flood ,flood [t+1/t ]]

= definition of flood (5)

x : [ x [−t , t ] ∧ x [t , t ] ∧ ∀m : Z · |m | > t ⇒ ¬x [m, t ],
x [−(t+1), t+1] ∧ x [t+1, t+1] ∧ ∀m : Z · |m | > t+1⇒ ¬x [m, t+1] ]

= (8)

x : [ x [−t ] ∧ x [t ] ∧ ∀m : Z · |m | > t ⇒ ¬x [m],
x ′[−(t+1)] ∧ x ′[t+1] ∧ ∀m : Z · |m | > t+1⇒ ¬x ′[m] ]

v laws of the refinement calculus: precondition in postcondition, weaken precondition

x : [ true, x [−t ] ∧ x [t ] ∧ x ′[−(t+1)] ∧ x ′[t+1] ∧
∀m : Z · |m | > t ⇒ ¬x [m] ∧
∀m : Z · |m | > t+1⇒ ¬x ′[m] ]

= definition of sp

x : [ true,usp (λn : Z · x [n, t ]) = −t ∧ tsp (λn : Z · x [n, t ]) = t ∧
usp (λn : Z · x ′[n, t ]) = −(t + 1) ∧ tsp (λn : Z · x ′[n, t ]) = t + 1 ]

v Theorem 1

x : [ true, νx = 1 ]

= semantics of assignment

x := (νx = 1) .

Thus in order for flood to be invariant, iteration of Rule (4) suffices and the refinement is complete.
Although Rule (4) and the implementation ca are simple, they embody the principle being confirmed

here: the implementation may be refined stepwise from the emergence-enriched specification.

5. Two dimensions

In this section we consider the integer plane Z2 and the standard rules for the Game of Life, as given in the
Introduction. The state of the Game of Life consists again of a function, this time x : Z2 → Z2, whose state
pointwise (or cell-wise) is written x [m,n] and whose state pointwise after a transition is written x ′[m,n].

The neighbourhood of a cell (m,n) : Z2 consists of (m,n) and its eight adjacent cells

N (m,n) := {(i , j ) : Z2 | |m − i |< 2 ∧ |n − j |< 2} .

The number of occupied neighbours of a cell (m,n) consists of the number of occupied cells in N (m,n) not
including (m,n) itself

ν(m,n) := #{(i , j ) ∈ N (m,n) | (i , j ) 6= (m,n) ∧ x [i , j ]} .

Evidently 0 ≤ ν(m,n) ≤ 8.7

The state of the Game of Life is a function from locations to Booleans, x : Z2 → B, and its transition

7 In Section 4 (Definition 2) the state argument x of ν was made explicit because we were concerned with conceptual clarity;
here we are more concerned with calculational facility and so it is omitted.
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label x [m,n] ν(m,n) x ′[m,n]

a 6= 2, 3 false
b true 2 true
c true 3 true
b false 2 false
c false 3 true

Fig. 2. Labels for five important types of cell in the Game of Life.
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Fig. 3. An initial configuration of the 2-dimensional glider with cells labelled using the convention of Figure 2.

rules simplify to

x ′[m,n] := ν(m,n) = 3
∨
ν(m,n) = 2 ∧ x [m,n] .

(9)

In functional notation, with operations interpreted pointwise, that becomes

x ′ := (ν = 3) ∨ (ν = 2 ∧ x ) . (10)

For example, if a cell has at most one occupied neighbour then its next state is unoccupied, regardless
of its current state; similarly, if a cell has at least 4 occupied neighbours. Thus

ν(m,n) 6= 2, 3 ⇒ ¬x ′[m,n] .

A cell x [m,n] satisfying ν(m,n) 6= 2, 3 we say is of type a. For the analysis of particular configurations,
it is convenient to document the remaining cases by introducing four further types of cell. Their definition
is given in Figure 2 and an example appears in Figure 3.

We wish to think, as in one dimension, in terms of the movement of shapes with time. If A ⊆ Z2 is the
set of all occupied cells then σA consists of all cells that are occupied after a transition:

σA := {(m,n) | x ′[m,n]} . (11)

The iterate σk of the function σ gives the cells that are occupied after k transitions.
For example we shall see later that with these sets, depicted in Figure 4,

A0 := {(−1, 1), (0, 0), (0,−1), (1, 0), (1, 1)} (12)

A1 := {(−1, 0), (0,−1), (1,−1), (1, 0), (1, 1)} (13)

A2 := {(0, 1), (0,−1), (1, 0), (1,−1), (2, 0)} (14)

A3 := {(0,−1), (1, 1), (1,−1), (2, 0), (2,−1)} (15)

we have

σA0 = A1 (16)

σA1 = A2 (17)

σA2 = A3 . (18)

Note that we have assumed A to be ‘the set of all occupied cells’. Otherwise, although σA is well defined
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Fig. 4. Relationships between glider configurations. The origin, marked as a dot, lies at the centre of each 5× 5 array.

by (11), it need not have an interpretation in terms of movement in the plane. We could have chosen to
impose that condition on A later, but have chosen to facilitate the physical interpretation from the start.

To express the relationship between σA3 and A0 some ‘domain-specific’ (in this case study, geometric)
results are helpful. The need arises simply because of the geometrical complexity of two dimensions compared
with one.

5.1. Helpful geometric results

The function ρ that reflects the plane in the anti-diagonal through the origin is

ρ : Z2 → Z2

ρ(m,n) := (−n,−m)

and it is lifted pointwise to subsets of the plane.
For any (k , l) : Z2, the function τ(k ,l) that translates the plane by (k , l) is

τ(k ,l) : Z2 → Z2

τ(k ,l)(m,n) := (m + k ,n + l)

and again it is lifted pointwise to subsets of the plane.
For example we can now see pictorially, from Figure 4, how to identify σA3 in terms of A0 (a proof is

given in Theorem 2),

σA3 = τ(1,−1)A0 (19)

and observe two further relationships (self-evident because they do not involve state transition) between the
Ai (with ◦ for functional composition):

A2 = (τ(1,0) ◦ ρ)A0 (20)

A3 = (τ(1,0) ◦ ρ)A1 . (21)

Useful straightforward geometric properties are as follows.

Theorem 2. Writing ◦ for functional composition,



12 Sanders and Smith

1. τ(k0,l0) ◦ τ(k1,l1) = τ(k0+k1,l0+l1)

2. σ ◦ τ(k ,l) = τ(k ,l) ◦ σ

3. σ ◦ ρ = ρ ◦ σ

4. τ(k ,l) ◦ ρ = ρ ◦ τ(−l,−k)

5. (ρ ◦ ρ)(m,n) = (m,n) .

Proof. The first property follows straight from the definition:

(τ(k0,l0) ◦ τ(k1,l1))(m,n)

= definition, twice

(m+k1+k0,n+l1+l0)

= arithmetic

(m+k0+k1,n+l0+l1)

= definition

τ(k0+k1,l0+l1)(m,n) .

Since the shape of neighbourhoods, and adjacency, is translation invariant,

τ(k ,l) ◦ σ = σ ◦ τ(k ,l) ,

so the second property holds. The third property is similar.
The fourth property follows by naive calculation:

(τ(k ,l) ◦ ρ)(m,n)

= definition of ◦ and ρ

τ(k ,l)(−n,−m)

= definition of τ

(−n+k ,−m+l)

= arithmetic

(−(n − k),−(m − l))

= definition of ρ

ρ(m−l ,n−k)

= definition of τ and ◦

ρ ◦ τ(−l,−k)(m,n) .

Finally the last property is trivial. 2

5.2. Applying geometry

Let us establish the remaining results of Figure 4: Laws (16) to (19).

Theorem 3. Laws (16) to (19) hold.

Proof. For Law (16) refer to Figure 3, in which cells are labelled using the a, b, c notation from Figure 2.
The subsequent state of each cell labelled either a or b is unoccupied and so, in particular, the complement
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of N (0, 0) remains unoccupied. Furthermore, from Figure 2 and the labels of cells interior to that array, Law
(16) follows.

Similar reasoning establishes Law (17).
For Law (18),

σA2

= Law (20)

σ ((τ(1,0) ◦ ρ)A0)

= Theorem 2 (2),(3)

(τ(1,0) ◦ ρ)(σA0)

= Law (16)

(τ(1,0) ◦ ρ)A1

= Law (21)

A3 .

Finally, Law (19) is roughly similar

σA3

= Law (21)

σ((τ(1,0) ◦ ρ)A1)

= Theorem 2 (2),(3)

(τ(1,0) ◦ ρ)(σA1)

= Law (17)

(τ(1,0) ◦ ρ)A2

= Law (20)

(τ(1,0) ◦ ρ)((τ(1,0) ◦ ρ)A0)

= definition of ◦

(τ(1,0) ◦ ρ ◦ τ(1,0) ◦ ρ))A0

= Theorem 2 (4)

(τ(1,0) ◦ ρ ◦ ρ ◦ τ(0,−1)))A0

= Theorem 2 (5)

(τ(1,0) ◦ τ(0,−1)))A0

= Theorem 2 (1)

τ(1,−1)A0 .

2

5.3. Specification

Following the approach of Section 4, for (m,n) : Z2 we let

x [m,n, t ] : B

denote the state of a cell at time t : N.
We use time t to specify desired behaviour, but use cells updated by transition rules (i.e., cellular

automata) for implementations. Refinement reasoning leads us from the former to the latter. The following
notation suffices to describe the simple temporal behaviours we are concerned with here.
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1. A rectangle in the plane is a Cartesian product of two finite intervals [m0,n0) and [m1,n1):

[m0,n0)× [m1,n1) = {(i , j ) : Z2 | m0 ≤ i < m1 ∧ n0 ≤ j < n1} .
A subset B of the plane is said to be bounded iff it is contained in some rectangle.

If B ⊆ Z2 is bounded then rect(B) denotes the smallest rectangle containing B . A containing rectangle
exists because B is bounded, and the smallest one exists because the set of all rectangles containing any set
is closed under intersection.

For example from their definitions (12) to (15) we see

rect(A0) = rect(A1) = N (0, 0) = [−1, 2)× [−1, 2)
rect(A2) = rect(A3) = N (1, 0) = [0, 3)× [−1, 2) .

Also, from the definition of τ we have

rect(τ(1,−1)A0) = N (1,−1) = [0, 3)× [−2, 1)

and so infer a property that is useful for our refinement in Section 5.4:

A1 ∪A2 ∪A3 ⊆ rect(A0 ∪ τ(1,−1)A0) = [−1, 3)× [−2, 2) . (22)

2. A bounded subset A (of occupied cells) is said to have heading h(n, k , l), where n : N and k , l : Z, iff
for each t : N, after nt time steps A has ‘moved’ by vector (kt , lt), and moreover at intermediate times
u ∈ (nt ,n(t + 1)), σuA lies within the smallest rectangle containing σntA and σn(t+1)A:

σntA = τ(kt,lt)A (23)

nt < u < n(t + 1)⇒ σuA ⊆ rect(σntA ∪ σn(t+1)A) . (24)

In that case we write A ∈ h(n, k , l).
This definition is important because (23) relates the n-fold transition (on the left) to a simple translation

(on the right). As a result, the union on the right of (24) can also be rewritten as a union of translations.
Typically n is the (finite) period of the finite state machine formed by A, in which case it suffices to replace
that implication in (24) by its special case t = 0.

The usual glider of the Game of Life (whose first four steps are given in Figure 4 and to which we come
next) is stationary every second time step, and when it moves does so alternatively (say) right and down; it
thus has heading h(4, 1,−1). Evidently such a glider can be rotated to produce gliders with the other three
diagonal headings of ‘magnitude’ 4.

Not all headings are feasible for the Game of Life whose rules ensure that a cell cannot move further than
one position each time step. (That does not hold for variants in which, for example, the next state of a cell
depends on the current states of cells more distant than its immediate neighbours.) For example h(1, 2, 2) is
not feasible. A necessary condition for h(n, k , l) to be feasible is that

|k/n|, |l/n| ≤ 1 .

Sufficiency is more subtle; for instance h(1, 1, 1) does not seem possible for a 3× 3 set A.

5.3.1. Glider specified

In two dimensions, shapes that move diagonally are called ‘gliders’. Our specification of a glider is a little more
abstract than its implementation, because of the actual—at first sight, slightly erratic—stepwise behaviour
of the implementation. However we follow the methodology of Section 4 to reach an implementation by
refinement.

A glider is defined to consist of a subset A of N (0, 0) with a positive number of occupied cells and heading
h(n, k , l) for some n ∈ N and k , l ∈ Z:

glider(A) :=

(
{ } ⊂ A ⊆ N (0, 0)
∃n : N; k , l : Z · A ∈ h(n, k , l)

)
. (25)

The parameter A is the glider’s initial state, made explicit for convenience. Global time t , although it is
implicit, is essential to that definition by virtue of (23) and (24). Its purpose, just as in the 1-dimensional
case, is to express the emergent behaviour required of the cellular automaton.
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The definition allows A, σ1A, σ2A and σ3A to have different numbers of occupied cells, provided they
lie within the rectangle rect(A ∪ σ4A).

5.4. Refinement

As for one dimension we seek an implementation that is a cellular automaton in which each cell obeys the
transition rules; but now the automaton is two dimensional and the rules are those of the Game of Life, (9).

Initialisation in glider(A) corresponds to a choice of A in (25) satisfying { } ⊂ A ⊆ N (0, 0). Evidently
that is satisfied by (the characteristic function of) A0 from (12):

init := x = ((m,n) ∈ A0) .

Next, calculus helps us to establish glider thus initialised.

Theorem 4. The specification glider(A0) is satisfied provided

∀ t : N · ∀ i : [0, 4) · σ4t+iA0 = τ(t,−t) Ai , (26)

a condition that holds under Rule (9).

Proof. First we calculate sufficiency of (26).

∃n : N; k , l : Z · A0 ∈ h(n, k , l)

⇐ choice of h, k and l to reflect target implementation

A0 ∈ h(4, 1,−1)

= Definitions (23, 24)

∀ t : N ·
(
σ4tA0 = τ(t,−t)A0

4t < u < 4(t + 1) ⇒ σuA0 ⊆ rect(σ4tA0 ∪ σ4(t+1)A0)

)
= calculus, noting that (σ4tA0 = τ(t,−t)A0)[0/t ] is true

∀ t : N ·
(
σ4tA0 = τ(t,−t)A0

∀ i : {1, 2, 3} · σ4t+iA0 ⊆ rect(σ4tA0 ∪ σ4(t+1)A0)

)
= Laws (16) to (19)

∀ t : N ·
(
σ4tA0 = τ(t,−t)A0

∀ i : {1, 2, 3} · σ4t+iA0 ⊆ rect(τ(t,−t)A0 ∪ τ(t+1,−(t+1))A0)

)
⇐ calculus, with (22)

∀ t : N ·
(
σ4tA0 = τ(t,−t)A0

∀ i : {1, 2, 3} · σ4t+iA0 = τ(t,−t)Ai

)
= calculus

∀ t : N · ∀ i : [0, 4) · σ4t+iA0 = τ(t,−t) Ai .

Secondly we show that Condition (26) follows from Rule (9), using induction on t . When t = 0, (26) is
established by initialisation. Assuming (26) with arbitrary t and i , for the case t + 1 we have

σ4(t+1)+iA0

= calculus

σ4 ◦ σ4t+iA0

= induction hypothesis (26)

σ4 ◦ τ(t,−t)Ai

= Theorem 2 (2)

τ(t,−t) ◦ σ4Ai
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= Laws (16) to (19)

τ(t,−t) ◦ τ(1,−1)Ai

= Theorem 2 (1)

τ(t+1,−(t+1))Ai

as required for (26) with substitution of t+1 for t . 2

Now we use the fact that glider(A0) is invariant in the loop of ca to infer the loop body, using exactly
the same method as in Section 4.

x : [ glider(A0), glider(A0)[t+1/t ] ]

v definitions, precondition in postcondition, weaken precondition, strengthen postcondition and Theorem 4 (26)

x : [ true,∀ i : [0, 4) · σ4(t+1)iA0 = τ(t+1,−t−1) Ai ]

v timing assumption, corresponding to the 1-dimensional case (8), and (9) and (11)

x : [ true, x ′ = (ν = 3) ∨ (ν = 2 ∧ x ) ]

= semantics of assignment

x := (ν = 3) ∨ (ν = 2 ∧ x ) .

6. Related Work

6.1. Definition of emergence

Philosophers have been debating the definition of emergence for well over a century [OW05]. Originally
this debate focussed on emergence in the natural world, but in more recent years, with the increasing
complexity and interconnectivity of devices, emergence in man-made systems has become a pressing topic.
Much of the debate has centered around the functionalist claim, e.g. [Fod74, Fod97], that emergent properties
arise autonomously at the higher levels at which they are observed, versus the reductionist position, e.g.
[Wei95, Wei01], that they are the consequence of, and hence can be reduced to, lower-level properties or
laws. In other words, functionalists claim that the emergent behaviour of a system or entity cannot be
understood and explained in terms of its components and their interactions. The emergence of consciousness
from the workings of the human mind is often used to support this view. Reductionists, on the other hand,
argue that all emergent properties of a system or entity, including those of the human mind, can ultimately
be explained in terms of its components and their interactions.

Anderson [And72], a reductionist, attempts a reconciliation of the differing points of view by distin-
guishing reductionism from constructivism. The latter, with which Anderson disagrees, argues that if we
can reduce complex systems to simple laws then we should be able to reconstruct them from those laws.
Anderson points out that this is not true in the face of scale and complexity.

This debate on the nature of emergence has led to the definition of notions of weak and strong emer-
gence by Bedau [Bed97, Bed03]. Strong emergence is the type of emergence of the functionalists, and weak
emergence that of the reductionists. Many of the recurring examples of emergence discussed in the Complex
Systems literature are in fact weak emergence. These examples include birds flocking, ants foraging for food,
and gliders in the Game of Life. Each of these can be understood in terms of its components and component
interactions.

To rule out trivial properties as being weakly emergent, Bedau requires that, while weakly emergent
properties of a system can be derived from its components and interactions, this derivation can be carried
out only using simulation.

Since our approach aims to relate emergent properties with component behaviour, we are concerned only
with weak emergence. However, we believe Bedau’s requirement that only simulation can be used to show
such a relation is too strict. Bedau’s primary example of weak emergence is the glider pattern of the Game
of Life. Does simulation occur in our development? Defining simulation to be the direct application of the
system’s rules to derive the next system state from the current state, then simulation is used only in part of
the proof: for Laws (16) and (17). The other laws are established by geometric reasoning. It is important to
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note that even in proving (16) and (17), we have done something more abstract than simulation: for example
most cells in the complement of N (0, 0) are reasoned about in the same way; and those within it are divided
into classes to abbreviate the reasoning (Figure 2).

To rule out trivial properties as being weakly emergent, therefore, we take an alternative view to Bedau.
Our view [HLRS08] is that an emergent property is one which cannot be expressed at the level of abstraction
of its components considered unilaterally.

6.2. Engineering emergence

The engineering of systems with emergent behaviour is an active area of research in the field of MAS. Jennings
et al. [JSW98] describe how “one must use a laborious process of experimentation, trial and error” to engineer
MAS. The state-of-the-art is systematically to run experiments via simulations. Specific approaches have
been advocated by Edmonds and Bryson[EB04], Fromm [Fro06] and De Wolf and Holvoet [WH05], among
others.

Edmonds and Bryson [EB04] strongly advocate using only experimentation, even to the extent of stating
that “we will have to give up the illusion that we can fully understand our own code”. This is in stark
contrast to our approach which provides, through refinement steps, a detailed understanding of the way in
which emergence arises.

Other authors realise that experimentation alone is not enough. Fromm [Fro06] suggests combining ex-
perimentation with modelling and top-down analysis in an iterative two-way approach. De Wolf and Holvoet
[WH05] suggest using experimentation together with the current best-practice in requirements analysis and
software design. The experimentation in their case is to provide feedback in an iterative software-development
life-cycle.

Another approach for engineering systems with emergent properties is to use evolutionary algorithms (at
design time) to evolve programs for the system’s agents that result in the required global behaviour [ZW07].
In the Organic Computing community [Wür08], systems are designed to evolve (at run-time) to meet global
requirements. The underlying philosophy is summarised by von der Malsburg [vdM08]:

“Systems are becoming too complex to be programmed in detail any longer. The principles with which
programmers formulate programs in their head have to be installed in the computer, so that it can program
itself such as to conform to abstract, human-defined tasks.”

For example, Nafz et al. [NOS+09] propose the use of a SAT solver to reconfigure automatically the agents
and their roles within a system whenever global properties are not met, e.g., as a result of an agent being
disabled. Those approaches provide a level of confidence that the desired global behaviour will be met but,
unlike ours, cannot guarantee it.

Zambonelli and Omicini [ZO04] define three scales of observation of multi-agent systems and argue that
different engineering techniques, including formal methods, are required at the different scales. At the micro
scale, which is concerned with the internal details of individual agents, they propose incorporating ideas
from Artificial Intelligence into standard software engineering practices, and the use of formal methods to
handle complexity. At the macro scale, which is concerned with the collective behaviour of a system, they
propose the development of a catalogue of reusable global behaviour based on insights from complex natural
and physical systems. At the meso scale which is concerned with agent interaction, they advocate the use
of shared interaction infrastructure (such as a blackboard or tuple space [Omi99]) to limit and coordinate
interactions. They advocate that this shared interaction infrastructure be formalised so that certain system
properties can be guaranteed (as demonstrated in [OOR04]). They stop short, however, of suggesting that
emergent (macro-level) behaviour can be guaranteed based on such a formalisation.

6.3. The case against Formal Methods

Polack and Stepney [PS05] argue that an abstract specification of the movement of a glider cannot be refined
to the rules of the Game of Life. Their justification is that when an implementation exhibits emergence, the
specification and implementation (and even the languages in which they are expressed) must be too disparate.
As we have shown, this is not the case.

Polack and Stepney also argue that the specification of the glider does not provide a way of finding the
starting state of the cellular automaton implementation. As discussed in Section 1, the motivation for the
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steps of an incremental refinement (including the derivation of the initial state of the implementation) are
not part of the formal process. Hence, we would not expect to be able to do such a derivation by refinement.
This would be the case even if our system did not exhibit emergent behaviour.

Polack and Stepney are not the only authors to have claimed that it is not possible to verify emergent
behaviour using refinement. In the multi-agent systems field, Zambonelli and Omicini [ZO04] as well as
De Wolf and Holvoet [WH05] make similar claims based on arguments of Wegner [Weg97]. Wegner, using
Gödel’s incompleteness theorem, argues that models of interactive systems are necessarily incomplete and
therefore that proofs of the existence of correct behaviour is only sometimes possible, and that proofs of the
nonexistence of incorrect behaviour are generally impossible.

The argument, however, applies equally to single-component reactive systems as it does to multi-agent
systems. Hence, this is not a new problem, and has not precluded the successful use of formal methods for
reactive systems. In such cases, reasonable assumptions are made about the open environments in which
the systems operate [HJJ03]. The consequence is that the behaviour of the system is only guaranteed under
these assumptions. If the assumptions are indeed reasonable, however, this is rarely a problem. In a similar
fashion, we can prove the existence of correct behaviour, and nonexistence of incorrect behaviour, of multi-
agent systems under reasonable assumptions (as is demonstrated in [WLNM08] and [HW08]).

Edmonds and Bryson [EB04] have also argued that formal methods, and in particular refinement, are not
relevant to multi-agent systems. Their argument is based on the undecidability of the refinement process.
They point out that refinement cannot be used to automatically derive implementations, and that refinement
proofs cannot, in general, be automated. Neither of those well known facts preclude the use of refinement
however. Again the argument applies to systems other than multi-agent systems to which formal methods,
including refinement, have been successfully applied.

6.4. The support for Formal Methods

We have previously demonstrated that refinement of emergent properties is possible for both the glider
pattern of the Game of Life [BCG82] and for the self-organising behaviour of an algorithm for modular
robots [SS09b]. In the former case, a formal proof of correctness was provided, and in the latter a strategy
for a formal correctness proof. However, we are not the first to provide such support for the use of formal
methods in the face of emergence.

Cucker and Smale [CS07b, CS07a] have provided a mathematical proof for the emergence of bird-flocking
behaviour. Their comprehensive analysis considers the motion of birds in three dimensions for both discrete
and continuous time.

Winfield et al. [WLNM08] provide a formal model of an ad hoc wirelessly connected swarm of mobile
robots which could be used for validating algorithm correctness. Similarly, Hamann and Wörn [HW08] have
provided a formal model of a swarm of mobile robots. Both of these papers compare predictions from the
formal model with simulation results to show the accuracy of the model despite assumptions made.

Techniques for formally relating emergent properties to component behaviour have also been proposed.
Chen et al. [CNC07] provide a calculus of complex events which can be used to relate high-level behaviours
to component-level rule executions. Zhu [Zhu05] defines the concept of a scenario as a combination of
components’ behaviours that describe a global property. Relations between scenarios are defined for when
a scenario is part of another scenario, or a scenario leads to another via the execution of a component-level
rule. This enables proofs that a particular scenario, such as the initial state of a system, will lead to a another
representing an emergent behaviour.

Our work differs from those approaches in that we use only standard formal techniques: the refinement
calculus, and the modelling of a cellular automaton as an initialised loop, a particularly simple application
of standard techniques from the field of Distributed Systems [BKS88].

7. Conclusion

The purpose of this paper has been to study the role of Formal Methods, and incremental refinement in
particular, in the engineering of systems exhibiting emergent behaviour. There are various (putative) reasons
for which it might previously have been thought impossible to perform incremental refinement of such
systems: (a) emergent behaviour is not able to be captured formally; (b) incremental refinement reduces
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specified behaviour to that of components and by definition emergent behaviour is not so reducible; (c)
incremental refinement does not apply to emergent behaviour because it is in principle different from other
kinds of functionality.

Accordingly, as surveyed in the previous section, opinion has varied as to the use of incremental re-
finement for the class of systems exhibiting emergence. We have established, by considering the popularly
representative example of the glider in the Game of Life, that it is indeed possible. The incremental refine-
ment given here depends on capturing the emergent behaviour, in this case by use of global information in
the form of global time. Thereafter standard techniques of incremental refinement have sufficed.

Thus, in answer to (a), in this example the emergent behaviour has certainly been able to be captured
formally. Can it be captured for an arbitrary information system? At this stage we can merely speculate.
But the success of mathematics in describing observed behaviour over the past 3 centuries provides reason
for optimism.

The apparent paradox of (b) has been resolved above: component interactions lie at a level intermediate
between the (global) specification and the (unilateral) behaviours of component implementations. In our
example the components, the cells, have been uniform and simple so that intermediate-level design has not
been required. Such designs are however of vital importance in general, and their further study is essential.

In answer to (c), incremental refinement of our examples using the refinement calculus has been entirely
routine—even simple. Our treatment has been leisurely largely in order to explore (as summarised in the
previous section) to what degree simulation is required. Naturally, the more complex the system, the more
complex its incremental refinement.

We conclude that the approach taken here makes incremental refinement available for the authentication
of multi-agent systems and other systems exhibiting emergence.8 This is important in view of the subtle
behaviour of such systems. To what extent has the Game of Life been deceptively atypical? Firstly, in the
uniformity and simplicity of its component cells, requiring no intermediate-level structures. Secondly, in the
simplicity of the technique for capturing emergence, when in general (as surveyed in Section 3) hybrid and
statistical methods may be required. Thirdly, in the non adaptivity of the system, so both specification and
design have been straightforward. Further work in all those directions will be of interest. It seems that the
primary task, in more realistic systems, will be in capturing emergence. Adaptive systems are a case in point.
How, for example, is a machine-learning system to be specified, whose behaviour depends on its training set?

But perhaps cellular automata are not as simple as they first seem. Gruner [Gru09] has shown that
generalised cellular automata (GCA) where cells may have differing numbers of neighbours, and more states
than just on and off, can be used to model mobile agent systems. Application of our approach to such systems
is a possible area of future work.
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Appendix

Section 2 contains a sketch of how the refinement calculus may be used to provide an incremental refinement
for array summation. Here the ideas are combined to given an actual incremental refinement.

s : [true, s ′ =
∑

0≤j<n a[j ]]

v refinement calculus: introduction of local block

var i : N ·
s, i : [true, s ′ =

∑
0≤j<n a[j ]]

rav

v refinement calculus: introduction of a loop

var i : N ·
i , s := 0, 0 o

9

do i < N →
i , s : [inv ∧ i < N , inv ′]

od
rav

v refinement calculus: strengthen postcondition

var i : N ·
i , s := 0, 0 o

9

do i < N →
i , s : [inv ∧ i < N , inv ′ ∧ i ′ = i + 1]

od
rav

v predicate calculation

var i : N ·
i , s := 0, 0 o

9

do i < N →
i , s := i + 1, s + a[i ]

od
rav


