Reasoning about Adaptivity of Agents and Multi-Agent Systems

Graeme Smith*, J.W. Sanders' and Kirsten Winter*

*School of Information Technology and Electrical Engineering, The University of Queensland, Australia

TAfrican Institute for Mathematical Sciences (AIMS), South Africa

iDepartment of Mathematical Sciences, Stellenbosch University, South Africa

Abstract—Although adaptivity is a central feature of agents
and multi-agent systems (MAS), there is no precise definition
of it in the literature. What does it mean for an agent or for a
MAS to be adaptive? How can we reason about and measure
the ability of agents and MAS to adapt? In this paper, we
provide a formal definition of adaptivity of agents and MAS
aimed at addressing these issues.

The definition is independent of any particular mechanism
for ensuring adaptivity. It is qualified by the environmental
actions to which the agents adapt, and quantified by the
number of actions needed for adaptivity. It is formalised using
a simple extension to labelled transitions systems allowing it to
be applied to specifications of MAS in a wide range of existing
formal notations. We show by a simple example how it can be
used to detect design flaws which lead to situations in which a
system is unable to adapt.

Keywords-adaptivity, multi-agent systems, formal methods,
team automata

I. INTRODUCTION

In Biology, adaptivity refers to the long-term gradual
adjustment of a species to cope better with its environment.
In Informatics, it can mean also an abrupt system change in
response to disruption from the environment, or failure of
one of the system’s components. Multi-agent systems (MAS)
exhibit both forms of adaptivity. Agents adapt gradually
to their environment using, for example, machine learning
techniques, and the distributed nature of MAS is exploited
to make them robust against both external disturbances and
agent failures.

To arrive at a definition of adaptivity for agents and MAS,
we begin by asking what is the fundamental feature of an
adaptive system. One suggestion is its ability to “change
its behaviour” to suit its environment [10]. This notion of
changing behaviour at first conjures up visions of systems
which are somehow more advanced than standard computer
programs. It must be pointed out, however, that changing
behaviour is illusory since a system, when viewed at a
certain level of abstraction as a simple state machine, does
not actually change what it is capable of doing. As shown
in [10], it simply moves to a new state in which different
actions and environmental interactions are possible. This is
true even of approaches to evolutionary computing [6] and

17th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS 2012)

machine learning [16]: underlying such a system is just a
computer program.

So rather than changing behaviour we could focus on a
system’s ability to produce different behaviour based on its
interactions with its environment. However, this ability is
common to all systems which we would regard as reactive.
For example, a thermostat which turns a heater on when
the temperature drops below 20 degrees Celsius and turns
it off when the temperature rises above 24 degrees Celsius
fits this definition. However, we would not generally regard
a thermostat-controlled heater as an adaptive system.

To see what distinguishes an adaptive system from a
merely reactive one, we appeal to the notion of legitimate
states of a system introduced by Dijkstra [3]. In this work,
‘legitimacy’ is defined by a state invariant capturing those
states in which the system behaves as it was intended. Dijk-
stra’s paper is concerned with self-stabilisation of distributed
systems. His examples consist of token ring networks in
which a legitimate state is one in which there is exactly one
token present. He presents several algorithms which, given
an arbitrary number of tokens initially, end up in a legitimate
state.

Dijkstra’s systems are closed in the sense that they do
not interact with an external environment. The notion of
legitimate states must for our purposes be extended to open
(or reactive) systems by considering the state to include both
that of the system and its environment. Under this definition,
a legitimate state of the thermostat-controlled heater would
be any in which the environment is such that the thermostat
and heater could operate correctly, e.g., an environment in
which power is supplied to the heater.

An important feature of Dijkstra’s self-stabilising net-
works is that even if they start in states which are not
legitimate states, they are guaranteed to reach legitimate
states after a finite number of system actions. A reactive
system such as the thermostat may not operate at all when
not in a legitimate state. Importantly, it does not perform
actions which allow it to reach a legitimate state. An adaptive
system, on the other hand, is a reactive system which, like
Dijkstra’s self-stabilising token rings, is always able to reach
legitimate states from illegitimate ones.

In other words, an adaptive system is one which, when

(©IEEE, 2012

placed in a particular environment, has a defined set of
legitimate states and when in an illegitimate state reaches a
legitimate state again. Indeed, the period before the system
reaches the legitimate state is the time when the system is
adapting.

Following Dijkstra’s definition, a system in a legitimate
state is not able to enter an illegitimate state on its own
accord. That is, defined transitions of the system from
legitimate states enter only other legitimate states. A system
is placed in an illegitimate state by an external action,
i.e., an action that is not regarded as part of the system’s
specification. This action may represent a change in the
environment due to an unforeseen disturbance, or the passing
of a threshold point in an environment that is gradually
changing over time. Alternatively, an external action may
represent a change to the system itself. In the case where
the system is an agent, this may be caused, for example, by
the action of a software virus changing internal data. In the
case where the system is a MAS, it may be caused by the
failure of a component agent.

In each case we can reason about adaptivity as the ability
to “recover” from the external event, i.e., the ability of the
system to reach a legitimate state. Since systems will, in
general, be adaptive to only a subset of all possible external
events, we qualify our definition of adaptivity with respect
to an external event. We also quantify our definition of
adaptivity with respect to the number of actions required
for the system to adapt. This provides us with a metric for
comparing different adaptivity mechanisms.

To formalise our definition of adaptivity we begin by
presenting a formal model of agents and MAS in Section II.
This model is based on a simple extension of labelled
transition systems which has been advocated for modelling
reactive systems. It is independent of any specific formal
notation, yet can be readily mapped to, and hence used
with, a wide range of existing formal notations. Section III
provides our formal definition of adaptivity for agents and
MAS. It builds on a definition of adaptivity for closed
systems presented in [17]. We show by a simple example
how it can be used to detect design flaws which lead
to situations in which a system is unable to adapt. In
Section 1V, we demonstrate the use of the definition with
Object-Z [18], a formal notation that has been advocated for
modelling MAS [11]. We relate our definition of adaptivity
to a range of informal definitions occurring in the literature
in Section V before concluding with a discussion of related
work in Section VI.

II. AN AGENT MODEL

In order to present a formal definition of adaptivity, we
begin by providing formal representations of agents and
MAS. Since we consider agents as being artifacts that are
realised by software, they can — on a low level of abstraction
— be represented as labelled transition systems (LTS). An

LTS comprises a (possibly infinite) set of states, a (possibly
infinite) set of initial states, and a collection of actions which
cause (possibly nondeterministic) state transitions. Similar
concepts have been used in the agent literature before. For
example, formalisms with an underlying transition systems
semantics such as Z and Object-Z have been suggested
for modelling agents and MAS [4], [11]. Also, Hunter and
Delgrande [14] use transition systems which they extend
with a metric function to capture “plausibility” amongst
belief states. In this work we assume such a metric can be
encoded in the transitions system.

Definition 1: An LTS is a 4-tuple S = (Q,1, %,) where

o Q is the (possibly infinite) set of states of the agent.

o I C Q is the non-empty set of initial states.

e X is the set of actions (or labels).

e 0 C O x X xQ is the agent’s set of labelled transitions.

A behaviour of an LTS, S, is a possibly infinite sequence
alternating between states and actions go a1 g1 as g2
where for all i > 0, a; € 3 such that (g;_1,a;,¢q;) € 0.

Let B(S) denote the behaviours of S starting from an
initial state of S, i.e., where go € I, and B(S,Q’) denote
behaviour of S starting in a state go € Q' where Q' C Q.
Let s#(b, i) denote the ith state of b, and let act(b, i) denote
the ith action.

To facilitate reasoning about environmental interaction,
we use a simple extension of LTS in which actions are
partitioned into three sets: internal actions, input actions (ex-
ternally observable actions controlled by the environment),
and output actions (externally observable actions controlled
by the component).

Such a partitioning of actions has been proposed for
modelling reactive systems. It is central to the I/O automata
approach of Lynch and Tuttle [15], and interface automata
of de Alfaro and Henzinger [2]. In each of these approaches,
combined automata interact by synchronising on common-
named input and output actions. All automata with a given
action are involved in each synchronisation on that action.

The main difference between I/O automata and interface
automata is that the former are input-enabled meaning that
input actions can never be refused. This is not the case
with interface automata where the restrictions on the type
of input actions and when they can occur is used to model
assumptions on the system’s environment.

An approach similar to interface automata has also been
proposed for modelling groupware systems by Ellis [7].
This approach has been formalised and further developed by
Beek et al. [1]. The automata are referred to as component
automata, and component automata which are formed as the
composition of other component automata as feam automata.
The major difference with the aforementioned approaches
to reactive systems is that in a team automaton not all
of the composed automata with a given action need to be
involved in a synchronisation on that action. This flexibility
has been shown to be well suited to formalising notions of

cs.2 cs.l

request.2

reply.2

Figure 1. Component automaton of the client agent

coordination, cooperation and collaboration in a distributed
setting [1]. In the remainder of this section, we show how
agents and MAS can be modelled using component and team
automata.

A. Agents as Component Automata

Agents are modelled as component automata [1].
Definition 2: An agent is an LTS, A = (Q,I,X = %;,, U
SinpUZous, 8), where X;, X, and X, are pairwise disjoint,
and
e Yy is the set of internal actions. Such actions are con-
trolled by the agent and are not externally observable.
e Yy is the set of input actions. Such actions are
externally observable and are controlled by the agent’s
environment.
o X, 18 the set of output actions. Such actions are
externally observable and are controlled by the agent.

Example 1: Consider an agent Client which is aware of
a number of servers in its environment with which it can
interact. The state of the client includes the set of server
identifiers and the identifier of the server with which it
is currently interacting. It has a set of internal actions
cs.id which allows it to change the server with which it
is interacting to that with identifier id (initially the client is
interacting with any server of which the agent is aware), a
set of output actions request.id representing a request to the
server with identifier id, and a set of input actions reply.id
representing a reply from the server with identifier id.

Assume there are two available servers with identifiers 1
and 2. An LTS that models the client can be depicted as in
Figure 1, where incoming arrows mark initial states. In this
model, the client changes server only when it has not made
a request.

To represent this system as a component automata, we
simply partition its actions as follows.

Siw = {esiliel..2}
Sip = Areplyi|iel..2}
Soww = {requesti|iecl..2} o

Given this partitioning, the fact that the input action reply.id
occurs only after request.id, for id € 1..2, is an assumption

that has been made about the client’s environment. It is not
something the client could itself enforce.

B. Multi-agent systems as Team Automata

When component automata are composed, they potentially
synchronise on common-named actions. Hence to prevent
unwanted synchronisations, a precondition for composing a
group of agents is that no internal action of one agent is
present as an action (internal or external) of another agent.

Let A; denote the agent (Q;,[;,%; = X U Xiimp U
Yiou;0:), for i € 0..n. A composition of the agents
Ao, ...,A, is possible if

Vic0.ne(Zmn U %) = 2. (1)
Jj:0..n\{i}

Given such a composable set of agents, a multi-agent
system (MAS) is modelled as a special kind of component
automaton called a team automaton [1]. A state g of the
team automaton is a tuple of the possible states of the agents,
q €< 'g[Q;. We let g;, for j € 0..n, denote the jth element
of tlié .fﬁple q.

Definition 3: A MAS comprising agents Ag,...,A, is an
LTS, M = (Q, I, Y= Z,‘m U Einp U Zouta 6), where Einta Zinp
and ¥,,, are pairwise disjoint, and

* Q - i:l()_.[.nQi.
1= 111
i:0..n

o Yy = U Zi,inl'
i:0..n

o Your = U Ei,om-
i:0..n

. Einp == (i_ynzi,inp) \ Eour
e 0 C QXX x Q such that

— for all (q,a,q’) € ¢, there exists a j € 0..n such
that (gj,a,q;) € ¢; and for all i € 0..n with i # j,
(gi,a,q;) € 6 or q; = q;

— for all ¢,¢' € Q and a € Xy, if there exists a j €
0..n such that (g;,a,q;) € 9, then (g,a,q") € 0.

The internal and output actions of M are those of the
agents. The input actions are those of the agents which are
not also output actions. In the case where an input action of
one agent is the same as that of an output action of another
agent, the input is assumed to be caused by the output action
and hence is not an input action for the MAS. The fact
that the output action is not also removed from the system
allows team automata to be further composed with other
component or team automata, e.g., to act as the environment
of a component in a further composition.

The transitions of M are such that the following hold.

(1) Each transition involves a non-empty subset
of agents engaging in the action a. The state of
each agent not involved in the action remains
unchanged.

(i) There is a MAS transition for each agent
transition corresponding to an internal action.

Not all agents with action a need to be involved in a
system transition corresponding to a. This allows different
interaction strategies to be captured [1]. However for con-
sistency, we require that any output action of the system
involve at least one agent output action, i.e., there should
not be a system action a involving only an agent which has
a as an input action when there are other agents which have
a as an output action. More formally

V(q,a,q') €5 ®a e Xy, =
3je0..neacTuh(g,a,q)€d (2

Furthermore, given a transition (g, a,q’) of a MAS such
that g; = qj’. for some j € 0..n, if the jth agent has a
transition (gj,a,q;) then the agent undergoes this action,
otherwise (i.e., if (g;,a,q;) ¢ 0;) it undergoes no action.
This maximal interpretation suggested by Beek et al. [1]
removes any ambiguity concerning which agents participate
in a particular MAS transition.

Example 2: To continue Example 1 above we assume that
each server is defined as Server; = (Q;, I, i jnt U Zj jp U
Ei,outy (5,) with E,’Jm =, Ei,out = {replyl | iel.. 2} and
Yiinp = {request.i | i € 1..2}. The behaviour of the two
servers is modelled abstractly in Figure 2. (For simplicity,
we assume that a server deals with only one client at a time).

reguest.1 request.2

reply.1 reply.2

Figure 2. Component automata of the server agents

The agents Client, Server; and Servers can be composed
since (1) holds.

Given Client = (Qclient, Ictient; Sciient; Ociient), ONE team
automaton that can be composed from Client and the servers
Servery and Servers is M = (Q, 1, Xy U X, U X0y,) with

o Q= Oclient X '}—IQQi-

i,

o I = Igiien X H I.

i:1..2

o YNy ={csi|iel..2}.

o Yip = 2.

o Yo = {reply.i,request.i|i€1..2}.

« 0= {(q,CZ,q,) € Q X 3 % Q | (C]O,Cl»%) € 6Client A

(3j€1..20
(g5a,q;) €N (Vi#jegi=q;))}

Since all common-named actions synchronise, and all
actions which are enabled in a component can occur, the
definition satisfies (2).

It is possible, by restricting J in such compositions, to
limit when operations are enabled, or to limit the agents
which synchronise on an action. For example, if we had

included two client agents, then we would expect only one to
be involved in each request, reply and change-server action.
<

III. ADAPTIVITY

In this section we provide formal definitions of adaptivity
for agents and MAS based on their team automata represen-
tations as defined in Section II. We base our definitions on
Dijkstra’s notion of legitimate states [3] which we extend
to include both the state of the system under consideration
(agent or MAS) and its environment. The definitions qualify
adaptivity with respect to the external action to which the
system adapts, and quantify it with respect to the number of
actions required to adapt.

Since agents and MAS are represented by automata, the
definition of adaptivity for each of them is identical. We
begin by defining adaptivity in the special case of closed
systems, i.e., where the system does not interact with its
environment, in Section III-A. This definition is applicable
to MAS which do not rely on environmental interaction for
their operation. It is based on a definition in [17]. We then
extend the definition to open systems, i.e., where interaction
with the environment is central to the system’s operation, in
Section III-B. This definition is applicable to agents as well
as MAS that interact with their environment.

A. Adaptivity of closed systems

A closed MAS M can be modelled by a team automata
with no input actions. The team automata of Example 2 is
an example of such a closed system. Let Q(M) denote the
set of legitimate states of M. By definition, all transitions
from legitimate states lead to legitimate states. That is, given
M=(0,1,%,0)

(¢:a,4") €3 N g€ QM) = ¢' € Q(M). 3)

A MAS is well-formed if the initial states of M are
legitimate states, or if M is guaranteed to reach a legitimate
state in a finite number of actions. That is,

ICOM)V (Vbe B(M)e3Ji>0est(b,i) e QM)).
“)
In the case where a finite number of actions are required
to reach a legitimate state, the MAS undergoes an initial
(self-)configuration process.'

Let Q be the set of states of M and Z be an external action
defining the set of transitions ¢ C Q X Z x Q on M. Such an
external action can move the MAS from a legitimate state
to an illegitimate one. M can adapt to the external action, if
it can return to a legitimate state.

Definition 4: A closed MAS M is Z-adaptive if, after an
occurrence of Z which places the MAS in an illegitimate
state, the MAS is guaranteed to reach a legitimate state in

ISelf-configuration can itself be viewed as a type of adaptivity in which
the external action is the system initialisation.

a finite number of transitions under the assumption of no
further occurrences of Z.

That is, for all b € B(M) such that there exists an i > 0
such that st(b,i) = ¢ and for all illegitimate states ¢’ such
that (¢,Z,q') € ¢ the following holds.

Vb € BMM,{q'}) e3j>0est(b,j)c QM) (5)

Note that we are concerned only with cases where Z
places the MAS in an illegitimate state. If Z places the MAS
in a legitimate state, the MAS is robust against Z, but we
do not regard this as adapting (since there is no deflection
from its normal behaviour).

A closed MAS M is n-Z-adaptive for some n > 0, if it can
adapt within at most n transitions. That is, for all b € B(M)
such that there exists an i > 0 such that st(b, i) = ¢ and for
all illegitimate states ¢’ such that (¢, Z, q') € ¢ the following
holds.

Vb € BMM,{q'})e3jel..nest(t,j)e QM) (6)

The following theorems follow directly from these defi-
nitions.

Theorem 1: If M is n-Z-adaptive, it is also m-Z-adaptive
for any m > n.

Theorem 2: If M is n-Z-adaptive for some n > 0, then it
is also Z-adaptive.
Note that the inverse of Theorem 2 does not hold. It is
possible, due to nondeterminism in a MAS, that there is
no minimum number of transitions required to reach a
legitimate state. For example, consider a MAS that after
Z is repeatedly able to choose between two actions a and
b, and reaches a legitimate state after choosing b. If we
assume fairness (so that b must eventually be chosen) the
MAS is Z-adaptive. However, there is no n for which it is
n-Z-adaptive.

B. Adaptivity of open systems

An agent provides an example of an open system since its
behaviour typically depends on its environment. The envi-
ronment controls the agent’s input actions, and may restrict
the occurrence of its output actions when synchronisation is
required. Similarly, a MAS can be an open system. In this
section we will discuss adaptivity of agents, although the
results are also directly applicable to open MAS.

To reason about an agent, we need to model the inter-
actions with its environment. In interface automata, this
is taken care of by the restrictions placed on the types
of observable (input and output) actions and when they
can occur [2]. The same is true for component and team
automata.

With open systems, there are two kinds of external actions.
The first change the state of the agent. They are identical
to the external actions of closed systems and adaptivity to
these actions can be reasoned about in the same way.

The second kind of external actions change the state of the
system’s environment, and possibly also the system’s state.
In the setting of component automata, this would manifest
itself as (possibly) different restrictions on the observable
actions.?

To facilitate modelling such an external action, we need to
extend the agent’s state with one or more auxiliary variables
which the external action changes. These auxiliary variables,
representing some facet of the environment, can be used to
restrict when particular observable actions can occur. They
are also used in defining the legitimate states.

Example 3: Consider the client agent of Section II. A
possible external action that could occur in its environment is
a server going down. Let Z; be the external action that causes
a server with which the client is interacting to go down when
the client is in the state where it has not performed a request.
Let Z5 be an external action similar to Z; which occurs when
the client has performed a request and is waiting for a reply.

To reason about the adaptivity of the client, we extend it
with an auxiliary variable down which is the set of servers
which are currently down. This set is initially empty. The
transitions are restricted such that if the extended client is
in a state where server i is down, transitions corresponding
to cs.i, request.i and reply.i cannot occur. If it is in a state
where server i is not down, the transitions can occur. The
transitions do not change whether a given server is up or
down.

Figure 3 shows part of the restricted client automaton. We
show the states in which both servers are up, and also the
states in which server 1 is down. We choose the legitimate
states to be those where the client can perform request and
reply actions. These states are shaded in the figure. The
external actions are shown using dotted arrows between
states.

After a single occurrence of Z;, the client is able to
perform the change-server action restoring it to a legitimate
state. Hence, the client is Z;-adaptive. In fact, since it
requires only one action to reach a legitimate state, it is
1-Z,-adaptive. In a more detailed specification where, for
example, the client was required to log in to the new server,
the client would be n-Z;-adaptive for some n > 1. Hence,
the quantification of adaptivity with respect to number of
actions is dependent on the level of abstraction. It should,
therefore, be used only for comparing adaptive responses at
the same level of abstraction.

In the case of Zy, there is no possibility of performing the
change-server action. The client is therefore not Z,-adaptive.
This may correspond to a design flaw which our reasoning
allows us to detect and rectify if desired, e.g., by introducing
a timeout when waiting for a response. <&

2We assume all input actions possible in the environment are included
in the agent automaton, as are all of the agent’s possible output actions.
Hence, no observable actions will be introduced or removed by such an
external action.

. reply.2
71\ Z2 Z1 Z2 \
X] Ll]

both servers up server 1 down

Figure 3. Team automata of the restricted client

As can be seen from Example 3, the specifier must, based
on an understanding of the system and its environment,
determine the available transitions from states corresponding
to different values of the auxiliary variables. It is possible
that these transitions change the values of the auxiliary
variables. Although the agent cannot change these variables
directly, it can interact with its environment to instigate their
change. For example, if the agent of the above example was
able to call a maintenance agent to fix the server, then as a
consequence of this call it would return to a state where the
server was no longer down. Whether the agent can do this
and how the environment responds is up to the specifier.

To be adaptive to an external action Z, an agent must (i)
be guaranteed to reach a legitimate state in a finite number
of transitions, and (ii) have at least one behaviour which
reaches a legitimate state without the auxiliary variables
being changed. The second condition precludes agents which
rely on the auxiliary variables changing to reach a legitimate
state. For example, an agent may call a maintenance agent
but have no other strategy for dealing with a server that is
down. We would not regard such an agent as adaptive.

The approach is formalised as follows. We enhance the
agent A = (Q,1,X = X U Ejyp U Xour,0) with a set of
auxiliary variables of type E. The cross product Q x E
captures the state space of A extended with these auxil-
iary variables. Thus, the enhanced version of the agent is
defined as A’ = (Q x E,I x Ig,%,8") where I C E and
§ C(QXE)x X x(QxE). We require that the behaviours
of A’ when restricted to Q correspond to behaviours of the
original agent A. That is,

Vb e B(A) o bloe B(A))

where b | denotes the behaviour b restricted to the state Q
of the original agent A. Hence, A’ behaves identically to A
in the absence of external actions. This is true in Example 3
since initially no servers are down.

Let Z be an external action defining the set of transitions
CC(OXE)XxZx(QxXE)onA

Definition 5: An agent (or open MAS) A is Z-adaptive,
if its enhancement A’ on which Z is defined is, after an
occurrence of Z which places it in an illegitimate state, able
to reach a legitimate state in a finite number of transitions,
and at least one behaviour reaches a legitimate state without
changing the extension to the state of A.

That is, for all b € B(A’) such that there exists an i > 0
such that st(b,i) = q and (¢,Z,q’") € ¢ the following holds.

Vo' € B(A',{q'}) e 3j>0est(t,j) € Q") (8)
and
b € B(A',{q'}) o
Jj>0est(b,j) € QA") A
(Vk <jest(t',k)|e=q|E) ©)

where s|g restricts a state s of A’ to the variables of E.

An agent (or open MAS) A which is Z-adaptive is n-Z-
adaptive for some n > 0, if it can adapt within at most n
transitions. That is, for all b € B(A’) such that there exists an
i > 0 such that st(b,i) = q and (¢,Z,q") € ¢, the following
holds along with condition (9) above.

Vo' e B(A,{q'}) e Jje1..nest(b,j)c Q") (10)

Theorems 1 and 2 of Section III-A remain true and follow
directly from these definitions.

IV. REASONING ABOUT ADAPTIVITY USING OBJECT-Z

The notions of component and team automata introduced
in Section II have provided a convenient setting for the
definition of adaptivity but they are inconvenient for express-
ing any but non-trivial examples. Fortunately several formal
notations have been developed over the years for the purpose
of expressing state-based examples of realistic proportions.
The fact that our agent and MAS models are LTS makes it
straightforward to use our definitions with such notations.

In this section we consider the Object-Z specification
language [18] as an example; other notations could also be
used. Object-Z is an object-oriented extension of the well
known Z specification language [20]. Its notions of classes
and objects are ideal for capturing descriptions of agents.
Both Z and Object-Z have been advocated for the description
of agents by other researchers in the field [4], [11].

A. Overview of Object-Z

Classes in Object-Z are represented by a named box which
has a state schema, and zero or more operations. They may
also have an initial state schema describing the class’s initial
states. In the absence of such a schema, all states allowed
by the state schema are potential initial states.

For example, given a type ID of server identifiers and
ClientState = {idle, waiting}, we can define the Client of
Section II-A by the following class.

The state schema of class Client declares a variable server
of type ID denoting the current server being used, and a

variable state denoting the client’s current state. The initial
state schema states that initially the state is idle. This schema
does not restrict the variable server which may be any value
from the type ID.

___Client

server : ID
state : ClientState

__IniT
state = idle

— ChangeServer
A(server)

state = idle
/
server’ # server

_Request _Reply
A(state) A(state)
id! : ID id? : ID
state = idle state = waiting
server = id! id? = server
state’ = waiting state’ = idle

The class has three operations: ChangeServer, Request
and Reply. Operation ChangeServer allows the value server
to change. This is indicated by including the variable in a A-
list (read “delta-list”). The predicate part of the operation,
i.e., the part below the horizontal line, restricts the values of
the state variables both before and after the operation and
any input and output variables declared in the declaration
part, i.e., the part above the horizontal line. State variables
after an operation are represented by the variable name
decorated with a prime, e.g., server’. The predicate part
of ChangeServer states that the value of server after the
operation is not equal to its value before the operation.
Request changes the state from idle to waiting and outputs
its server’s id (variables ending in ! denote output variables).
Reply changes the state from waiting back to idle and inputs
its server’s id (variables ending in 7 denote inputs).

Operations in Object-Z are guarded, i.e., they can occur
only when the restrictions on the state before the operation
can be met. Hence, ChangeServer and Request can occur
only when state = idle. Similarly, Reply can occur only
when state = waiting and server = id”?.

Given a type ServerState = {idle,processing}, we can
similarly define a class Server. Initially, the server’s state is
idle. In this state it can perform a Request operation, which
corresponds to a client sending a request. This operation
changes the server’s state to processing. In this state, it
can perform a Reply operation corresponding to the server

sending a reply to a client. This operation returns the state
of the server to idle.

—Server
id : ID

state : ServerState

—Inir
state = idle

_ Request _Reply
A(state) A(state)
id? : ID id! : ID
state = idle State = processing
id? =id id! = id
state’ = processing | state’ = idle

The system of one client and a number of servers could
then be defined by a class System. (Note that the actual
number of servers is left unspecified here and can be any
number greater than or equal to 2.)

— System

client : Client
servers : F Server

Fservers > 2
V51,82 @ servers ® 51 % §o = §1.id # so.id

—_IniT
client.INnrt
Vs : servers e s.INIT

ChangeServer = client.ChangeServer

Request = client.Request ||
([s: servers e s.Request)

Reply = (| s : servers o s.Reply) || client.Reply

The state schema declares a single Client object (variable
client) and a finite set of Server objects (variable servers).
The predicate part of the state schema states that each server
has a different id. Initially, the client and each of the servers
are in their initial states (as defined by their classes).

The operation ChangeServer specifies that the client per-
forms a ChangeServer operation. The operation Request
specifies one server s (whose Request operation is enabled
with the server identifier of the client) performing a Request
operation in parallel with the client. The choice operator]
is used to select one of the server objects, and the parallel
operator || to place the client and server operation in parallel.
The latter conjoins its argument operations and removes the

? and ! decorations from common-named inputs and outputs
occurring in different operations. This effectively identifies
these variables and hence equates their values. In this case,
it equates id! of client.Request with id? of s.Request by
renaming them both to id. This restricts the choice of the
server s to the one whose Request operation is enabled with
the server identifier output by the client.

The operation Reply similarly specifies one server s
(whose Reply operation is enabled with the server identifier
of the client) performing a Reply operation in parallel with
the client.

B. Adaptivity in Object-Z

To reason about the adaptivity of a class such as Client,
we follow the approach detailed in Section III.

We begin by enhancing Client with additional state vari-
ables denoting the part of the environment affected by an
external action Z. This can be done using Object-Z’s notion
of inheritance. When a class in Object-Z inherits another,
it merges the definitions in the state schema, initial state
schema and any common-named operations of the inherited
class with its own. By merge, we mean that it forms the
union of the declarations and conjunction of the predicates of
the respective schemas. Hence, we can enhance class Client
as in Example 3 as follows.

__Client’
Client
down : FId
— IniT
down = @

ChangeServer = [id' & down|
Request = [id! & down]
Reply = [id? & down]

An auxiliary variable down is added to model the set
of servers which are currently down. Initially, this set is
empty. We then add constraints to each of the operations.
To ChangeServer we add the constraint that the new server
is not a member of down. To Request and Reply we add
the constraint that the value of the communicated (input or
output) variable is not a member of down.

The action Z; can then be modelled as an operation which

is enabled when the client is idle and results in the server
the client is interacting with being added to the set down.

__Client;
Client’

7
A(down)

client.state = idle
down’' = down U {client.server}

Using Client; it is then possible to reason about the
ability of the client to adapt to an occurrence of Z;. This can
be done using standard reasoning techniques for state-based
specifications, or using tools adapted for use with Object-Z.
For example, we could encode Client in the notation of the
SAL model checking tools as detailed in [19]. To show that
Client is Zy-adaptive, we would check that the following
two Computational Tree Logic (CTL) formulae [8] hold.
(AG p states that p always holds in every behaviour, AF p
states that p eventually holds in every behaviour, and E(p U
q) states that there exist a behaviour during which p holds
until g holds.)

AG((state = idle N server € down) =
AF (server & down))

This formula follows directly from Definition 5. The state
after Z; occurs is state = idle N\ server € down. The set of
legitimate states of Client is captured by server & down.

VielDe
AG((server =i A state = idle N\ i € down) =
E (i € down U i € down A server ¢ down))

This formula states that for all behaviours in which after
Z; (here captured by the predicate server = i A state =
idle N\ i € down for some i € ID), there exists a behaviour
in which i € down until i € down and server & down. This
captures condition (9).

V. DISCUSSION

Given our formal definition it is prudent to examine
whether or not it does cover the usual (informal) notions
of adaptivity that arise in the literature. The purpose of
this section is to relate a representative selection of them,
particularly those reflecting the agent paradigm, to the
approach and formalisation adopted in this paper.

1. Adaptivity should allow change in system functionality.

The view is that, by adapting, a system or agent may
offer new operations on new states. This is already covered
by any formalism (including the one used here) which
models a system or agent as a state machine. The new
functionality is simply the result of the system moving
to a new state where new operations are enabled. For

example, suppose a system S; = (Q1,11,%1,071) adapts to
behave like the system So = (Q2,l2,Y2,02) as a result
of undergoing an external action Z. The adapting system
consisting of S; and Sy is equivalent to a single system S
whose states are formed by the (discriminated) union of the
states of 7 and S5, whose initial states are /1, and whose
actions are those of the S; and S5. Z is an action which is
enabled in a set of states E C S and results in a state in
RCL.

2. Adaptivity should reflect improved response to change.

The argument is that adaptivity means also that when
subsequently confronted with the same external action
in the future, the system or agent adapts more quickly
and efficiently. Ensuring that repeated occurrences of any
external action Z require fewer steps to stabilisation is
readily incorporated in our definition by conjoining with it
the predicate that says: if a system is n-Z-adaptive (for some
n > 0), then it is n’-Z-adaptive for a second occurrence of Z
for n’ < n. This can be be extended for further occurrences
of Z with the obvious limitation that the number of steps
required to adapt cannot decrease below 1.

3. Adaptivity should include self-organisation.

Self-organisation may be viewed, using the terminology
of complex systems, as the autonomous convergence to
attracting states. For example, an ant colony forages for
food by its ants following a combination of antennation
and pheromone trails, with some random movement built in.
The result is that each trail forms an approximate geodesic
between the nest and food supply. If a is a geodesic path, let
V(a) denote the neighbourhood of paths which approximate
it in the sense that any path lying in V(a) deviates from a by
routine random movements (or ‘noise’). If a trail is broken
(perhaps a rock falls on it) then after some exploration a
new geodesic is established.

If the system states are captured by neighbourhoods of
geodesics between the nest and food supplies, and an exter-
nal action Z removes some area of space (that covered by the
rock) then the colony adapts by converging to the attracting
state consisting of a new geodesic. (Nondeterminism - or
bifurcation as it would be called in this setting - may
occur, since there may be more than one new geodesic.)
Convergence is most certainly not immediate and is not even
easy to estimate.

We capture self-organisation of a system by assuming
that certain of its states, say {a; | 0 < i < a}, are the
attracting states, by which we mean that each has a ‘domain
of convergence’, D(a;): from any state in D(a;) convergence
to a; is automatic. We also assume, as in the example, that
each a; has a neighbourhood V(ag;) of normal activity. Z
changes the current state of a system to some member of
some D(q;). The system then self-organises by ensuring that
paths converge to those in V(q;).

In that setting, with that extra structure on the system,
self-organisation is covered by extending our definition of
adaptivity to require that legitimate states are members of
V(a;) for some q;. (That setting is simplified by assuming
V(a;) = {a;}, though that is unrealistic in the ant example.)

4. Adaptivity should include self-optimisation.

According to one agent-based view, a system is adaptive
if in response to a change in externally-set parameters
(i.e., global variables) the agents are able spontaneously
and autonomously to perform calculations (viewed as
optimising certain local variables) which result in the
system returning to a desired state. This is more a means
to achieve adaptivity than a definition of it. It suffices in
this case to model the system by ensuring that the relevant
local variables are captured when specifying each agent,
and the agents’ optimising calculation is included (perhaps
as part of a cooperative action, or perhaps as an individual
internal action).

5. Adaptivity should reflect evolutionary change.

The interaction between a system and its environment
may be viewed as a two-person game. On its ith turn, the
environment performs an action —according to its (game-
theoretic) strategy— which we view as Z;. There are then
two senses in which the system may be thought to adapt. The
first is that it is always able to respond by performing actions
that return it to a legitimate state before the environment’s
next interaction. That accords with adaptivity as we have
defined it.

The second is a stronger notion, requiring that the system
adapt not merely to individual occurrences of the Z; but
to the strategy of which they are the manifestations over
finite time. That is possible only approximately because in
general the system is not able to learn the environment’s
strategy in only a finite number of interactions. This is
related to learnability, to which we now turn.

6. Adaptivity should include (machine) learning.

Machine learning (see the introductory text by Mitchell
[16] and the book on ‘reinforcement learning’ by Sutton
and Barto [21]) provides an important paradigm of agent
adaptivity. Typically, in supervised learning (positive and
negative) examples of a concept Q are provided to enable
subsequent approximate classification of specimens into
those satisfying Q and those satisfying —Q. In other words,
this kind of adaptivity is of the ‘evolutionary’ kind rather
than of the kind triggered by a specific external event. So
‘learning Q’ can be viewed as an emergent property.

In our setting, the system is open because the training
examples are provided not in advance by the system, but
spontaneously by its environment. The set of legitimate
states expresses approximate classification of Q (for example
as formalised by Valiant in probably approximately correct

(PAC) learnability [22]). An external action Z corresponds
to initialisation of the learning protocol. The agent ‘learns
Q' iff it reaches a legitimate state after such initialisation.

VI. CONCLUSION

In this paper, we have proposed a formal definition of
adaptivity based on behaviour leading to a set of legitimate
states. The definition is general allowing it to be used for a
wide range of system designs and with a variety of modelling
notations.

Most existing work on adaptive systems has concentrated
on implementations. For example, Giidemann et al. [12]
augment a MAS with an observer/controller (OC) to monitor
an invariant that incorporates the agents’ roles. When the
OC detects failure of the invariant it calculates a new
configuration. In our terms, the MAS can be modelled as
a closed system whose legitimate states are those satisfying
the invariant. The action Z is highly nondeterministic and
simply results in the invariant being violated. Calculation of
the new configuration ensures that the augmented MAS is
adaptive to Z. Similarly, the designs proposed in [9], [13],
[5] can be mapped to our approach.

Dolev and Herman [5] additionally consider probabilistic
convergence to a legitimate state expressed in terms of
‘stable’ distribution of states. The consideration of states
represented as distributions, and adaptivity as some form of
probabilistic convergence, constitutes interesting and impor-
tant future work.

ACKNOWLEDGEMENTS

This work was supported by Australian Research Coun-
cil (ARC) Discovery Grant DP110101211 and the Macao
Science and Technology Development Fund under the EAE
project, grant number 072/2009/A3.

REFERENCES

[1] M. Beek, C. Ellis, J. Kleijn, and G. Rozenberg. Synchroniza-
tions in team automata for groupware systems. Computer
Support Cooperative Work — The Journal of Collaborative
Computing, 12(1):21-69, 2003.

[2] L. de Alfaro and T. A. Henzinger. Interface automata. In Ninth
Annual Symposium on Foundations of Software Engineering
(FSE), pages 109-120. ACM Press, 2001.

[3] E. W. Dijkstra. Self-stabilizing systems in spite of distributed
control. Communications of the ACM, 17:643-644, 1974.

[4] M. d’Inverno and M. Luck. Development and application of
a formal agent framework. In Proceedings of the First IEEE
International Conference on Formal Engineering Methods,
pages 222-231. IEEE Press, 1997.

[5] S. Dolev and T. Herman. Dijkstra’s self-stabilizing algorithm
in unsupportive environments. In Proc. Fifth Workshop Self-
Stabilizing Systems (WSS 2001), pages 67-81, 2001.

(6]

[7]

(8]

(91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

[22]

A. E. Eiben and J. E. Smith. Introduction to Evolutionary
Computing. Natural Computing Series. Springer, 2003.

C. A. Ellis. Team automata for groupware systems. In
S. Hayne and W. Prinz, editors, International ACM SIG-
GROUP Conference on Supporting Groupwork: The Integra-
tion Challenge, pages 415-424. ACM Press, 1997.

E. A. Emerson. Temporal and modal logic. In Handbook
of Theoretical Computer Science, pages 995-1072. Elsevier,
1990.

I. Georgiadis, J. Magee, and J. Kramer. Self-organising soft-
ware architectures for distributed systems. In Ist Workshop
on Self-healing Systems (WOSS ’02), pages 33-38, 2002.

M. G. Gouda and T. Herman. Adaptive programming. [EEE
Transaction on Software Engineering, 17(9):911-921, 1991.

P. Gruer, V. Hilaire, A. Koukam, and K. Cetnarowicz. A for-
mal framework for multi-agent systems analysis and design.
Expert System Applications, 23(4):349-355, 2002.

M. Giidemann, F. Nafz, F. Ortmeier, H. Seebach, and W. Reif.
A specification and construction paradigm for organic com-
puting systems. In Second IEEE International Conference
on Self-Adaptive and Self-Organizing Systems (SASO 2008),
pages 233-242. IEEE Computer Society Press, 2008.

T. Hayes, N. Rustagi, J. Saia, and A. Trehan. The forgiv-
ing tree: A self-healing distributed data structure. CoRR,
abs/0802.3267, 2008.

A. Hunter and J. P. Delgrande. Iterated belief change: A tran-
sition system approach. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAIOS), pages
460-465, 2005.

N. Lynch and M. Tuttle. An introduction to Input/Output
Automata. CWI Quarterly, 2(3):219-246, 1989.

T. Mitchell. Machine Learning. McGraw Hill, 1997.

J. W. Sanders and G. Smith. Assuring adaptive behaviour in
self-organising systems. In Self-Organising and Self-Adaptive
Systems Workshop (SASOW 2010), pages 172-177. 1EEE
Computer Society Press, 2010.

G. Smith. The Object-Z Specification Language. Kluwer
Academic Publishers, 2000.

G. Smith and L. Wildman. Model checking Z specifications
using SAL. In H. Treharne, S. King, M. Henson, and
S. Schneider, editors, International Conference of Z and B
Users (ZB 2005), volume 3455 of LNCS, pages 87-105.
Springer-Verlag, 2005.

J. M. Spivey. The Z Notation: a reference manual, second
edition. Prentice-Hall International, 1992.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

L. Valiant. A theory of the learnable. Communications of the
ACM, 27, 1984.

