
Incremental Development of Multi-Agent Systems in Object-Z

Graeme Smith and Kirsten Winter

School of Information Technology and Electrical Engineering,
The University of Queensland, Australia

Abstract—The complexity of multi-agent systems (MAS)
demands a formal and incremental approach to their devel-
opment. Such an approach needs to take into account issues
specific to the development of MAS. In particular, methods
are required for incrementally introducing agent decision-
making procedures, and inter-agent negotiation mechanisms.
This paper introduces an approach to modelling MAS and a
definition of action refinement in Object-Z aimed at addressing
these issues.

Keywords-multi-agent systems, action refinement, Object-Z

I. INTRODUCTION

Due to the intrinsic complexity of multi-agents systems
(MAS), it has been foreseen that formal methods will
play an increasing and fundamental role in supporting their
development [4]. To date, however, the work in this area
is quite limited. Formal frameworks for categorising agents
and specifying MAS have been proposed using existing
state-based formal notations such as Z [6] and Object-
Z [10]. However techniques for incrementally developing
specifications, from abstract specifications capturing basic
system functionality to more concrete specifications cap-
turing implementation details, have not been considered.
We regard such techniques as the key to coping with the
complexity of MAS.

While Z and Object-Z have well defined notions of data
refinement supporting incremental development [16], [5],
these notions are not ideal for dealing with the specific
issues that arise in the development of MAS. The complexity
of individual agents largely arises from their “intelligent”
decision-making procedures. These procedures determine
whether an agent performs a particular action in a given
context. At a high-level of abstraction, we would like to
ignore such procedures by leaving the choice of actions
nondeterministic. Adding them at a lower level of abstraction
would then require that the occurrence of certain actions be
restricted. Restricting when an action can occur, however, is
not supported by data refinement in either Z or Object-Z:
if an action can occur in a given situation in the abstract
specification, it must also be able to occur in the same
situation in the concrete specification.

Additionally, the complexity of a MAS arises from the in-
teractions between its agents. These interactions capture ne-
gotiations between agents which must cooperate to perform
tasks. At a high-level of abstraction we would like to ignore

such negotiations, focussing instead on their outcomes.
Adding the negotiations at a lower level of abstraction
would then require the addition of further actions modelling
the sending and receiving of messages. Adding actions,
however, is not supported by standard data refinement in
either Z or Object-Z: there must be exactly one concrete
action corresponding to each abstract action.

These issues with refinement can be overcome using
action refinement as defined by Back for action systems [2].
Action refinement allows the occurrence of actions to be
restricted, provided this doesn’t result in the overall system
deadlocking, and new actions to be added to a specification,
provided they do not introduce additional transitions of
the global, i.e., externally observable, system state. In this
paper, we define a notion of action refinement for Object-
Z and demonstrate its utility on a case study from the
MAS literature. We choose to use Object-Z, rather than
action systems or other notations such as Event-B [1] which
already support action refinement, due to its explicit support
for classes and objects which facilitate the specification of
agents and MAS.

In Section II, we overview Object-Z and our approach
to using it to model MAS. We also present our definition
of action refinement for Object-Z building on that of action
systems. In Section III, we present an abstract specification
of a multi-agent system proposed by Excelente-Toledo and
Jennings [8]. We then use action refinement to introduce an
agent decision-making procedure and agent negotiations in
Sections IV and V respectively. We conclude in Section VI
by considering future work.

II. ACTION REFINEMENT IN OBJECT-Z

A. Object-Z

Object-Z [12] is an object-oriented extension of Z [15],
[16], a state-based formal specification language in which
system states, initial states and operations are modelled
by schemas comprising a set of variable declarations con-
strained by a predicate. A class in Object-Z encapsulates
a state schema, and associated initial state schema, with
all the operation schemas which may change its variables.
Classes have been shown useful for modelling the behaviour
of agents in multi-agent systems (MAS) [10], [14]. For
example, consider the following specification of a simple

35th Annual IEEE Software Engineering Workshop (SEW-35) c©IEEE Computer Society Press, 2012



agent which has an identifier and may become leader of a
group of similar agents.

Agent

id : Identifier
leader : B

INIT

¬ leader

BecomeLeader
∆(leader)

¬ leader ∧ leader′

The class has two state variables, id of a type Identifier
and leader of type Boolean. Initially, the agent is not a
leader and the operation BecomeLeader allows it to become
a leader. The lower part of the operation is a predicate
describing the operation’s effect in terms of the values of the
state variables before and after the operation; those after the
operation are decorated with a prime, e.g., leader′. When the
predicate cannot be satisfied, e.g., because leader is already
true, then the operation cannot occur. This is in contrast to
Z operations which can occur at any time but may have
undefined behaviour [16]. The upper part of the operation
contains a ∆-list indicating which variables the operation
may change; all other variables are implicitly unchanged,
e.g., id′ = id in the above operation. This part of the
operation may also include declarations of variables local
to the operation (such as inputs and outputs).

In this example, we might want our agent to become a
leader only when no other agent in its neighbourhood is a
leader. Hence, we need to constrain when the BecomeLeader
action can occur. In the interest of keeping the specification
abstract (and hence easy to understand and reason about),
we can specify such inter-agent constraints (and environ-
mental constraints on the agent in general) in another class
describing the entire MAS.

In this paper, we adopt conventions for specifying the
class describing a MAS. Its state variables should include
one or more variables representing the agents and zero or
more variables representing other aspects of the environment
in which the agents operate. Each operation is of the form
Select • AgentOp ∧ EnvironmentOp where Select chooses
one or more agents and/or instances of entities in the
environment, AgentOp describes how the agents change, and
EnvironmentOp describes how the environment changes. The
• after Select is an Object-Z operator which introduces the
selected instances into the scope of the operations AgentOp
and EnvironmentOp. The conjunction between the two latter
operations requires both of their effects to be true. When
there is no change to either the agents or the environment,

the associated operation need not appear.
The Select part of the operation generally has two forms:

1. [] x : X; y : Y | p(x, y) when the operations following
the • are to be performed for a particular assignment
of values to variables x and y (representing agents and/or
environmental entities) satisfying the predicate p(x, y), or

2. ∧ x : X; y : Y | p(x, y) when the operations are to be
performed concurrently for all values of x and y satisfying
p(x, y).
As an example, consider the following MAS specification

which ensures an agent only becomes a leader when none
of its neighbours is already a leader. (FX denotes a finite
set of elements of type X, and F1 X denotes a non-empty,
finite set of elements of type X. f : X 7→ Y denotes a partial
function from type X to type Y , dom f the domain of such
a function, and ran f its range.)

System

agents : F1 Agent
neighbours : Agent 7→ (FAgent)

dom neighbours = agents
∀ s : ran neighbours • s ⊆ agents

INIT

∀ a : agents • a.INIT

BecomeLeader =̂
[] a : agents | (@b : neighbours(a) • b.leader) •

a.BecomeLeader

The dot notation familiar from object orientation is used
to reference variables and the initial condition of class
instances, and to apply operations to them. The initial state
of System states that all agents are in their initial states,
i.e., are not leaders. The operation BecomeLeader states that
a single agent a becomes leader provided that none of its
neighbours are already leaders.

B. Action refinement

Data refinement for Object-Z has been defined by Derrick
and Boiten [5]. They provide two sets of simulation rules
which together are complete, i.e., can be used to verify any
data refinement between Object-Z specifications. One set of
rules (the downward, or forward, simulation rules) does not
allow an operation’s guard, i.e., when it can occur, to be
either weakened or strengthened. The other set of rules (the
upward, or backwards, simulation rules) allows the guard of
an operation to be weakened, but not strengthened. Neither
set of rules allows the replacement of a single operation by
a set of operations.

As discussed in the introduction, such a notion of data
refinement is not suited to the incremental development of



MAS. Derrick and Boiten [5] also define a notion of non-
atomic refinement for Object-Z which allows an abstract
operation to be refined to a sequence of concrete ones. It
is not ideal for our purposes, however, as it does not allow
guards to be strengthened. We therefore base our approach
on the simulation rules for action refinement in action
systems by Back and von Wright [3] . Here we consider the
forward simulation rules only, and adapt them for Object-Z.
The backwards simulation rules could be similarly adapted.

An action system has a state comprising global, i.e.,
observable, and local variables, an initialisation condition,
and a set of actions. The actions have guards which deter-
mine when they are enabled but, unlike Object-Z, the guard
being enabled does not guarantee the action’s definition
can be satisfied. This is instead guaranteed by the action’s
precondition. If an action is enabled in a given state but its
precondition is not satisfied, it is said to abort. A state in
which an action can abort is called an aborting state. Action
systems behave by repeatedly executing enabled actions until
none are enabled, or an enabled action aborts. A state in
which no actions are enabled is called a terminating state.

In order to prove refinement using the simulation rules, the
specifier needs to select some of the actions to be stuttering
actions. A stuttering action must leave the global variables
unchanged. All other actions, whether or not they change the
global variables, are called change actions. For an abstract
action system A and a concrete action system C whose states
are related by a retrieve relation R, the forward simulation
rules are then:

Initialisation: Any initialisation followed by stuttering ac-
tions in C simulates (via R) initialisation followed by stut-
tering actions in A.

Forward simulation: Any change action in C followed
by stuttering actions simulates some change action in A
followed by stuttering actions, or begins from a state related
(by R) to an aborting state of A.

Abort: Any aborting state in C is related to aborting states
in A.

Termination: Any terminating state in C is related to
terminating or aborting states in A.

Infinite stuttering: Any state in C from which infinite
stuttering is possible, i.e., an infinite sequence of stuttering
actions can occur, is related to states in A which are either
aborting or from which infinite stuttering is possible.

For Object-Z, there are no aborting states (since the guard
of an operation guarantees that the operation’s definition can
be satisfied). It has been suggested that Object-Z be extended
to include both guards and preconditions to allow abstraction
from exceptional behaviour (which is modelled, at a high
level of abstraction, by the system aborting) [9], [11]. In
this paper, however, we use standard Object-Z. Hence, the
above rules can be defined (in the absence of aborting states)

as follows.
Let A be an Object-Z class with state schema AState,

initial state schema AInit, and operations partitioned into
change actions AChange0, . . . ,AChangen and stuttering ac-
tions AStutt0, . . . ,AStuttm for some n,m : N. The choice of
stuttering actions must be made by the specifier based on
which variables they regard as being observable. Similarly,
let C be an Object-Z class with state schema CState,
initial state schema CInit, and operations partitioned into
change actions CChange0, . . . ,CChangel and stuttering ac-
tions CStutt0, . . . ,CStuttk for some l, k : N.

Let AStutt = (AStutt0 ∨ . . . ∨ AStuttm) and CStutt =
(CStutt0 ∨ . . . ∨ CStuttk). A is refined by C when there
exists a retrieve relation R (modelled by a Z schema as in
[5]) which relates the states of C to those of A such that
the following hold. (A o

9 B is the sequential composition of
operations A and B, and An is the iteration of operation A n
times, e.g., A3 = Ao

9Ao
9A. pre A returns the guard of operation

A, and S′ is schema S with all free variables x replaced by
x′.)
Initialisation: Any initialisation followed by stuttering ac-
tions in C simulates initialisation followed by stuttering
actions in A. (Schemas are used below as declarations and
predicates as in Z [15].)

∀CState; CState′; i : N • CInit ∧ CStutti ⇒
(∃AState; AState′; j : N • AInit ∧ AStuttj ∧ R′)

Forward simulation: Any change action in C followed
by stuttering actions simulates some change action in A
followed by stuttering actions.

∀AState; CState; CState′; c : 0 . . l; i : N •
R ∧ CChangec

o
9 CStutti ⇒

(∃AState′; a : 0 . . n; j : N •
AChangea

o
9 AStuttj ∧ R′)

Termination: Any terminating state in C is related to
terminating states in A.

∀AState; CState •
R ∧ ¬ pre(CChange0 ∨ . . . ∨ CChangel ∨ CStutt)⇒
¬ pre(AChange0 ∨ . . . ∨ AChangen ∨ AStutt)

Infinite stuttering: Any state in C from which infinite
stuttering is possible is related to states in A from which
infinite stuttering is possible.

∀AState; CState •
R ∧ (∀ i : N • ∃CState′ • CStutti ⇒ (pre CStutt)′)⇒

(∀ j : N • ∃AState′ • AStuttj ⇒ (pre AStutt)′)

III. ABSTRACT SPECIFICATION

Excelente-Toledo and Jennings [8] have presented a
framework for agents accomplishing tasks, both unilaterally
and in cooperation with other agents, on a two-dimensional
grid. In this framework, an agent is assigned a specific task



(ST) which lies at a given position on the grid. The agent
must move to its ST and accomplish it. Such an agent is
said to be in state Agent-in-ST (AiS). On the way to its ST,
an agent may come across a cooperative task (CT). Such
tasks generally require more than one agent to accomplish
them. On finding a CT, the agent needs to decide whether
or not it should attempt to accomplish the CT, and if so,
negotiate with other agents to come to the task and cooperate
in accomplishing it. An agent which decides to coordinate a
CT is said to be in state Agent-in-Charge (AiC) and one that
decides to cooperate on a CT in state Agent-in-Cooperation
(AiCoop). After this negotiation phase, all agents which
intend to move take one step synchronously.

The framework is interesting as it could be used for a
variety of agent-based applications, and is substantial enough
to provide a non-trivial case study for our approach to formal
incremental development. In this section, we formalise an
abstract version of this framework using Object-Z. In our ab-
stract specification, we ignore the details of the reward-based
decision-making procedure and inter-agent negotiations.

A. Agent specification

We model the grid abstractly by a set of positions,
Position, and a function, dist : Position × Position → N,
which returns the distance between any two positions, i.e.,
the minimum number of moves an agent would need to make
to go from one of the positions to the other.

An agent has a state (modelled by variable state), a
position in the grid (position), the position of its specific task
(st), the position of its cooperative task (ct) when not in state
AiS, and the agent is either ready, or is evaluating its current
situation (modelled by Boolean variable ready which is true
iff the agent has considered its current situation). The latter
variable is required to ensure that all agents synchronise
on their moves as required by the framework of Excelente-
Toledo and Jennings [8]. Initially, an agent is in state AiS
and is evaluating its current situation.

State ::= AiS | AiC | AiCoop

Agent

state : State
position : Position
st : Position
ct : FPosition
ready : B

state = AiS⇒ ct = ∅
state ∈ {AiC,AiCoop} ⇒ #ct = 1

INIT

state = AiS ∧ ¬ ready

. . . (operations detailed below)

An agent in state AiS which is at the same position
as its ST accomplishes the ST before becoming ready to
move. When this happens, Execlente-Toledo and Jennings
[8] require that a new ST is placed in the grid and allocated
to the agent. We model this abstractly by including st in the
operation’s ∆-list, but not constraining its post-state value
in the operation’s predicate.

AccomplishST
∆(st, ready)

state = AiS ∧ position = st ∧ ready′

An agent in state AiS which is not at the same position as
its ST may do one of three things before becoming ready.
1. If it is at the same position as a CT, it may change to state

AiC. At this level of abstraction, we ignore the reasons
for this decision. We will examine them in Section IV.

ChangeToAiC
∆(state, ct, ready)
p : Position

state = AiS ∧ position 6= st ∧ position = p
state′ = AiC ∧ ct′ = {p} ∧ ready′

This action is only possible when there is a CT at
position p and it is not already being coordinated. These
environmental and inter-agent constraints are captured in
the System class below.

2. An agent may become a cooperating agent for a CT.
Again we abstract away from the mechanism by which
this actually occurs. This will be dealt with in Section V.

ChangeToAiCoop
∆(state, ct, ready)
p : Position

state = AiS ∧ position 6= st
state′ = AiCoop ∧ ct′ = {p} ∧ ready′

This action is only possible when there is a CT at p
which is being coordinated by another agent. Again these
constraints are captured in the System class below.

3. In any situation, the agent may stay in state AiS. This
includes the case where the agent is at the same position
as a CT and decides not to coordinate the CT, and the
case where another agent is in state AiC and the agent
does not become a cooperating agent.

StayInAiS
∆(ready)

state = AiS ∧ position 6= st ∧ ready′

An agent which is ready to move and not already at its
goal may move one step closer to its goal. This is captured



by two operations: one for agents in state AiS, and one for
agents in state AiCoop. Agents in state AiC are required to
remain in their position until their CT is accomplished.

An agent in state AiS may move one step closer to the
position of its ST. After the agent moves, it must re-evaluate
its position.

AiSMove
∆(position, ready)

ready ∧ state = AiS ∧ position 6= st
dist(position′, st) = dist(position, st)− 1 ∧ ¬ ready′

An agent in state AiCoop may move one step closer to
the position of its CT. The agent does not re-evaluate its
position after a move. It stays in state AiCoop until its CT
is accomplished.

AiCoopMove
∆(position)

ready ∧ state = AiCoop ∧ position 6= ct
dist(position′, ct) = dist(position, ct)− 1

An agent in state AiC or AiCoop which is at the same
position as its CT may accomplish the CT. It then returns
to state AiS and is ready to move.

AccomplishCT
∆(state, ct, ready)

ct = {position} ∧ state′ = AiS ∧ ct′ = ∅ ∧ ready′

This action is only possible when all agents cooperating
on the CT are at the position of the CT. This inter-agent
constraint is captured in the System class below. Also,
Excelente-Toledo and Jennings require that a new CT is
placed on the grid [8]. This environmental constraint is also
captured in class System.

B. System specification
The system comprises a finite, non-empty set of agents

(agents), and a finite set of CTs (cts). We assume that there
can be at most one CT at any position and so it suffices to
model the set of CTs by the set of their positions.

System

agents : F1 Agent
cts : FPosition

INIT

∀ a : agents • a.INIT

AccomplishST =̂ [] a : agents • a.AccomplishST

StayInAiS =̂ [] a : agents • a.StayInAiS

. . . (other operations detailed below)

There is a system operation for each agent operation. The
operations AccomplishST and StayInAiS simply promote the
agent operations to system operations. The other operations
involve environmental and inter-agent constraints.

ChangeToAiC models a single agent at the position of a
CT changing to state AiC. It is required that no other agent
is involved with the CT.

ChangeToAiC =̂
[] a : agents; p : cts | (@b : agents • b.ct = {p}) •

a.ChangeToAiC

ChangeToAiCoop models a single agent changing to state
AiCoop. There must be another agent already involved with
the CT.

ChangeToAiCoop =̂
[] a : agents; p : cts | (∃ b : agents • b.ct = {p}) •

a.ChangeToAiCoop

Move models all agents which are able to move (those in
state AiS or AiC and not at their goal) taking a step towards
their goal. (A [] B denotes either A or B occurring.)

Move =̂ ∧ a : agents | a.state = AiS ∧ a.position 6= a.st ∨
a.state = AiCoop ∧ a.ct 6= {a.position} •

a.AiSMove [] a.AiCoopMove

AccomplishCT models all agents involved with a CT
accomplishing the CT. There must be at least one agent in-
volved with the CT which is removed from cts. Furthermore,
a new CT is added to the grid. ([∆(x, y); z : Z | p(x, y)] is
the in-line form of an operation schema.)

AccomplishCT =̂ [] p : cts | (∃ a : agents • a.ct = {p}) •
(∧ a : agents | a.ct = {p} • a.AccomplishCT) ∧
[∆(cts) | ∃ q : Position •

q 6∈ cts \ {p} ∧ cts′ = (cts\{p}) ∪ {q}]

IV. INTRODUCING DECISION MAKING

The heart of the paper by Excelente-Toledo and Jennings
is the definition of the decision-making procedures which
enable agents to decide on whether or not to coordinate and
cooperate on CTs. These procedures are based on rewards
associated with the tasks and a process of bidding and
negotiating contracts for a share in the reward associated
with a CT. An agent’s goal is to maximise its reward per
time step. In this section, we introduce the agent’s decision
making process in terms of rewards. The negotiation of
contracts is introduced in Section V.

To model rewards we extend Agent (using inheritance
[12]) to include a state variable reward denoting the reward
associated with its ST. This is updated to the reward of the
new ST when it accomplishes an ST (we abstract from the
actual value) but is otherwise unchanged by any operation.



Agent1
Agent

reward : N

AccomplishST
∆(reward)

When an agent accomplishes its ST, it receives that task’s
reward. When an agent coordinates a CT, it gets a portion of
the CT’s reward, the rest being distributed to the cooperating
agents. It needs to wait while it sets up the cooperative task,
and also for the cooperating agents to arrive. Let the function
surplus : N × Position → N return the average reward per
time-unit the agent can expect from coordinating a task with
a given reward at a given position. The function can be
defined as in [8].

To model the decision process we modify System to
include a reward for each CT, and so that an agent in state
AiS decides to coordinate a CT only if the expected surplus
from the CT’s reward is greater than or equal to the reward
per time-unit of continuing to its ST.

System1

agents : F1 Agent1
cts : FPosition
rewards : Position 7→ N

dom rewards = cts

. . . (INIT and other operations as in System)

ChangeToAiC =̂
[] a : agents; p : cts | (@b : agents • b.ct = {p}) ∧

surplus(rewards(p), p) >
a.reward div dist(a.position, a.st) •

a.ChangeToAiC

AccomplishCT =̂ . . . as in System but with rewards
updated appropriately

Note that the additional condition in ChangeToAiC does
not preclude StayInAiS occurring for an agent for which
the condition is met. This models the case where the
coordinating agent is not able to find suitable cooperating
agents (and so abandons the CT). The contract mechanism
by which cooperating agents are recruited is the subject of
Section V.

The additional condition strengthens the guard of
ChangeToAiC and so, as discussed in Section II-B, System1
is not a data refinement of System. However, it is a sensible
step in the development which can be shown using our
definition of action refinement for Object-Z.

A. Proof sketch

We assume the agent variables state and ready are local,
i.e., non-observable, and all other agent and system variables
are global. We also choose all operations to represent change
actions (i.e., we have no stuttering actions). The retrieve
relation R1 maps each variable in System to the variable in
System1 that has the same name. Using the notation A.STATE

to denote the state schema of class A with all variables x
replaced by A.x, we define R1 as follows.

R1

System.STATE

System1.STATE

System.agents = {a : Agent | ∃ b : System1.agents •
a.state = b.state ∧ a.position = b.position ∧
a.st = b.st ∧ a.ct = b.ct ∧ a.ready = b.ready}

System.cts = System1.cts

Initialisation. Without stuttering actions the initialisation
rule simplifies to the following:

∀CState′ • CInit⇒ (∃AState′ • AInit ∧ R′1)

This obviously holds as the initialisation of System1 (and its
agents) and System (and its agents) are identical on related
variables (i.e., all variables apart from reward of Agent1 and
rewards of System1).

Forward Simulation. Similarly, the forward simulation
rule simplifies. Both models have the same operations on
related variables. The only change is a strengthening of
the guard of the operation ChangeToAiC in System1. A
consequence is that whenever ChangeToAiC is applicable
in System1, operation ChangeToAiC will also be applicable
in System and have the same effect, i.e., the retrieve relation
R1 will relate the post-states of the two operations.

Termination. The termination rule holds if we can be sure
that the modified operation ChangeToAiC in System1 does
not introduce new deadlocking behaviour. A closer look into
the guard of the operation shows that it restricts the state in
which the operation is enabled to a subset of those states in
which operation StayInAiS is enabled. As a consequence the
states in which ChangeToAiC is enabled in System but not in
System1 still satisfy the guard of StayInAiS in System1. Thus,
no deadlock can occur in these states. Any other deadlocking
behaviour in System1 will have a matching deadlocking
behaviour in System, which satisfies the termination rule.

Infinite Stuttering As both system do not contain stuttering
actions this rule is satisfied.

V. INTRODUCING NEGOTIATION

Agents wishing to coordinate a CT send a request for
cooperating agents. The request comprises the (identity of
the) requesting agent, and the position of the CT. Such
communications can be modelled as a record type using a
Z schema.



Request
requester : Agent
position : Position

Agents wishing to cooperate on a CT send the requesting
agent a bid. The bid comprises the (identities of the)
requesting and bidding agents, the distance the bidding agent
is from the CT, and the reward the bidding agent requires
for cooperation.

Bid
requester : Agent
bidder : Agent
distance : N
reward : N

An agent wishing to coordinate a CT sends contracts to
a subset of the agents which have sent it bids. The contract
comprises the (identities of the) coordinating and bidding
agents, and the position of the CT.

Contract
coordinator : Agent
bidder : Agent
position : Position

The class Agent1 is extended with a variable received
representing a coordinating agent’s received bids, and a
variable bidded representing the set of agents to which the
agent has sent a bid.

Agent2

. . . other variables as in Agent1

received : FBid
bidded : FAgent

INIT

. . . as in Agent1

received = ∅ ∧ bidded = ∅

. . . (operations detailed below)

AccomplishST , StayInAiS and AccomplishCT are
defined as in Agent1. Operations ChangeToAiC and
ChangeToAiCoop are replaced by the following five
operations.

An agent in state AiS which has not already considered
its current position and is not at the position of its ST, but
is at the same position as a CT whose surplus reward is
greater than or equal to the agent’s reward per time-unit for
continuing towards its ST, can send a request for cooperating
agents. The agent changes to state AiC. (Given an instance
of a Z schema modelling a record type, the standard dot

notation is used to access the values of its variables, e.g.,
request!.requester below. self is an implicit variable in all
Object-Z classes denoting the identity of the object at hand
[12].)

SendRequest
∆(state, ct)
request! : Request
p : Position

state = AiS ∧ ¬ ready ∧ position 6= st ∧ position = p
bidded = ∅ ∧ request!.requester = self
request!.position = position ∧ state′ = AiC ∧ ct′ = {p}

The constraints on the CT at the position of the agent are
captured in the class System2 below.

When a request has been sent, other agents in state AiS
can respond by sending bids. Such agents must have already
evaluated their situation and be ready to move (i.e., have
performed operation AccomplishST or StayInAiS).

An agent may only send one bid per request. The bid
includes the distance of the agent from the CT, and the
reward the agent expects if it is chosen to cooperate. This
reward is calculated by multiplying the deviation the agent
would need to make from its current path to its ST by the
reward per time-unit of continuing to its current ST [8].

SendBid
∆(bidded)
request? : Request
bid! : Bid

state = AiS ∧ ready ∧ request?.requester 6∈ bidded
let deviation == dist(position, request?.position)

+ dist(request.position, st)
− dist(position, st) •

bid! = (request?.requester,
self ,
dist(position, request?.position),
(reward div dist(position, st)) ∗ deviation)

bidded′ = bidded ∪ {request?.requester}

An agent which has sent a request receives the bids from
the other agents.

RecieveBid
∆(received)
bid? : Bid

bid? 6∈ received ∧ bid?.requester = self
received′ = received ∪ {bid?}

An agent which has sent a request may choose the
subset of bids it receives which maximises its reward. The
number of bids in this subset will depend on the number
of cooperating agents required for the task. The way the



subset is chosen is detailed in [8]; here we leave the choice
nondeterministic (allowing any strategy to be used in the
implementation). A contract is sent to each agent whose bid
has been chosen. ({x : X • f (x)} denotes the set of elements
f (x) for each value of x in X.)

SendContracts
∆(ready, received)
contracts! : F1 Contracts

received 6= ∅
∀ c : contracts! •

c.coordinator = self ∧
c.bidder ∈ {b : received • b.bidder} ∧
c.position = position

ready′ ∧ received′ = ∅

An agent whose bid has been chosen receives its contract
and then changes state to AiCoop.

ReceiveContract
∆(state, ct, ready, bidded)
contract? : Contract

contract?.coordinator ∈ bidded
contract?.bidder = self
state′ = AiCoop ∧ ct′ = {contract?.position} ∧ ready′

bidded′ = ∅

Note that an agent which has sent a request may also
choose to abandon the CT. This would happen if the re-
sulting bids did not allow the agent to get a large enough
portion of the CT’s reward (see [8]). Here we abstract from
the reason (again leaving any strategy to be used in the
implementation). The agent returns to state AiS and its set
of received bids is deleted.

AbandonCT
∆(state, ready, received)

state = AiC ∧ ¬ ready
state′ = AiS ∧ ready′ ∧ received′ = ∅

The following operation extends AiSMove to delete the
agent’s record of sent bids.

AiSMove2
∆(bidded)
AiSMove

bidded′ = ∅

To model the asynchronous communication between
agents, we add three new variables representing messages in
transit to our system class. Initially, there are no messages
in transit.

System2

agents : F1 Agent2
cts : FPosition
rewards : Position 7→ N
requests : FRequest
bids : FBid
contracts : FContract

dom rewards = cts

INIT

. . . other constraints as in System1
requests = ∅
bids = ∅
contracts = ∅

ReceiveBid =̂ [] a : agents; bid? : bids • a.ReceiveBid

ReceiveContract =̂ [] a : agents; contract? : contracts •
a.ReceiveContract

AbandonCT =̂ [] a : agents • a.AbandonCT

. . . (other operations detailed below)

The ReceiveBid and ReceiveContract operations model an
agent a receiving a bid or contract, respectively, from those
in transit. The predicates of the agent operations ensure only
those bids or contracts specifically sent to a are received.
The AbandonCT operation models an agent abandoning
coordination of a CT.

The AccomplishST and AccomplishCT operations are not
affected by the contract negotiation messages and are spec-
ified as in System1.

SendRequest models an agent sending a request which
is added to the set of request messages in transit. This
operation can occur only when the agent is at the position
of a CT and there is not already an agent involved with the
CT. Furthermore, it requires that the surplus the agent will
receive for coordinating the CT is greater than or equal to
the reward per time-unit of continuing to its ST.

SendRequest =̂
[] a : agents; p : cts | (@b : agents • b.ct = {p}) ∧

surplus(rewards(p), p) >
a.reward div dist(a.position, a.st) •

a.SendRequest ∧
[∆(requests); request! : Request |

requests′ = requests ∪ {request!}]

SendBid models an agent sending a bid which is added
to the set of bid messages in transit. Note that a request for
the bid must already be in requests.

SendBid =̂ [] a : agents; request? : requests •
a.SendBid ∧
[∆(bids); bid! : Bid | bids′ = bids ∪ {bid!}]



SendContract models an agent sending a set of contracts
which are added to the set of contract messages in transit.

SendContracts =̂ [] a : agents • a.SendContracts ∧
[∆(contracts); contracts! : F1 Contract |

contracts′ = contracts ∪ contracts!]

An agent must coordinate a CT it comes across if this
will increase its reward per time-unit. Hence, for an agent
at a non-coordinated CT to stay in state AiS, the surplus
from the CT must be less than the reward per time-unit of
continuing to its ST. This is captured by the constraint in
StayInAiS below.

StayInAiS =̂ [] a : agents |
a.position ∈ {p : cts | @b : agents • b.ct = {p}} ⇒

surplus(rewards(a.position), a.position) <
a.reward div dist(a.position, a.st)) •

a.StayInAiS

Operation Move models all agents which are able to move
taking a step towards their goal. All messages in transit are
removed from the system in anticipation of the next round.

Move =̂ ∧ a : agents | a.state = AiS ∧ a.position 6= a.st ∨
a.state = AiCoop ∧ a.ct 6= {a.position} •

a.AiSMove2 [] a.AiCoopMove ∧
[∆(requests, bids, contracts) |

requests′ = ∅ ∧ bids′ = ∅ ∧
contracts′ = ∅]

A. Proof sketch
We assume that all of the new agent and system variables

are local, and that the new operations SendRequest, SendBid,
ReceiveBid and AbandonCT are stuttering actions. All other
operations are change actions. The retrieve relation R2 maps
a System2 agent in state AiC to a System1 agent in state AiS
when the agent has not sent any contracts in the current
round, and to a System1 agent in state AiC when it has sent
contracts. All other variables in System2 are mapped to the
same-named variables in System1.

R2

System1.STATE

System2.STATE

System1.agents = {a : Agent1 | ∃ b : System2.agents •
a.reward = b.reward ∧ a.position = b.position ∧
a.ready = b.ready ∧ a.st = b.st ∧ a.ct = b.ct ∧
b.state = AiS⇒ a.state = AiS ∧
b.state = AiC⇒

((@c : contracts • c.coordinator = b)⇒
a.state = AiS ∧

(∃ c : contracts • c.coordinator = b)⇒
a.state = AiC) ∧

b.state = AiCoop⇒ a.state = AiCoop}
System1.cts = System2.cts
System1.rewards = System2.rewards

Initialisation. All common-named variables in System1
and System2 are initialised to the same values, and since
each agent is initially in state AiS, contracts does not
affect the relation between abstract and concrete states.
Hence, the concrete and abstract systems are related by R2

after initialisation. Furthermore, any sequence of stuttering
operations in System2 will maintain R2 as they do not alter
the related variables, apart from state being updated to AiC
in stuttering action SendRequest. However, this operation
does not add any contracts to contracts which is intially
empty and thus R2 is satisfied.

Forward Simulation. The observable operations in
System1 are all simulated (via R2) by an observ-
able operation in System2: AccomplishST , StayInAiS, and
AccomplishCT are defined the same, ChangeToAiC is
simulated by SendContracts, and ChangeToAiCoop by
ReceiveContract. Furthermore as argued above, SendRequest
is the only stuttering operation that changes a related variable
by modifying state, but does not change contracts. To prove
that R2 is maintained by stuttering, it is sufficient to show
that an agent in state AiS (the state in which SendRequest
is enabled) is never the coordinator of a contract: something
easily proved to be an invariant.

Termination. To prove the termination rule we again
show that with the new operations in System2 we have not
introduced deadlocking behaviour. In every possible scenario
there is at least one operation enabled. Since there is at least
one agent in the system (agents : F1 Agent2), we reason
about enabledness of the operations in the following way.

• If an agent is in state AiS and ¬ready then either
AccomplishST , StayInAiS or SendRequest is enabled. If
all agents that are in state AiS are also ready then Move
is enabled (since agents in state AiCoop are always
ready and hence able to move).

• If none of the agents is in state AiS then any agent
that is in state AiCoop and has not reached its goal
ct can perform operation AiCoopMove. Hence, Move
is enabled. If all agents in state AiCoop have reached
their ct then AccomplishCT is enabled (since agents in
state AiC are already at the position of their ct).

• If no agent is in state AiS or AiCoop then any agent
in state AiC can perform the operation AccomplishCT
(since it must be at the position of the ct to become a
coordinator).

This shows that in every possible situation there is at least
one operation enabled for at least one agent and thus no
deadlock can occur.

Infinite Stuttering We show that System2 cannot perform
an infinite sequence of stuttering actions which in turn
proves this condition. Our argument is based on the fact
that the system comprises only a finite number of agents
(agents : F1 Agent2). We consider each stuttering action in
isolation:



• SendRequest can only happen once per agent as the op-
eration invalidates its own precondition (state = AiS).

• SendBid can only happen once per agent for
each request as is enforced by the precondition
request?.requester 6∈ bidded. As there are only a finite
number of requests (produced by a finite number of
agents performing SendRequest) we know that this
operation only occurs finitely often.

• ReceiveBid occurs once per sent bid as is enforced by
the precondition bid? 6∈ received. With a finite number
of bids this operation can occur only finitely often.

• AbandonCT can only occur once per agent for any CT
since ready becomes true. This disables SendRequest
which is the only operation which places the agent in
state AiC, required for AbandonCT .

VI. CONCLUSION

This paper has presented a formal approach to the mod-
elling and incremental development of multi-agent sys-
tems (MAS) using Object-Z. Specifically, it has intro-
duced a notion of action refinement for Object-Z allowing
agent decision-making procedures and inter-agent negotia-
tion mechanisms to be introduced via refinement steps. The
approach was illustrated on a case study from the MAS
literature.

The definition of action refinement was based on that of
Back’s action systems, but simplified due to the lack of
aborting states in Object-Z. Such states allow abstraction
from exceptional behaviour in action systems, as well as
in other formalism such as Z. We plan to extend Object-
Z to allow the specification of systems with aborting states
to allow both for more abstract specification and a more
flexible notion of action refinement.

We also plan to extend Object-Z to deal with fairness.
While not an issue with the case study in this paper, fairness
is often required when modelling distributed systems such
as MAS to capture the fact that actions on one part of the
system are not continually ‘on hold’ in order to let actions on
other parts of the system occur. In particular, without fairness
concrete specifications introducing inter-agent negotiations
are prone to introducing infinite stuttering.

Finally, we would also like to explore the use of our
approach in moving from abstract specifications of global
system behaviour to specifications in terms of local agent
behaviour. The ability to introduce additional actions (cor-
responding to local agent and inter-agent actions) has been
shown to be well suited to this task [13], [7].

VII. ACKNOWLEDGMENTS

The authors would like to thank Jeff Sanders for many
insightful discussions on the ideas that have led to this paper.
This work is supported by Australian Research Council
(ARC) Discovery Grant DP110101211.

REFERENCES

[1] J. R. Abrial. Modelling in Event-B. Cambridge University
Press, 2010.

[2] R. J. R. Back. Refinement of parallel and reactive programs.
Technical Report Caltech-CS-TR-92-23, Computer Science
Department, California Institute of Technology, 1992.

[3] R. J. R. Back and J. von Wright. Trace refinement of action
systems. In B. Jonsson and J. Parrow, editors, Concurrency
Theory (CONCUR ’94), volume 836 of LNCS, pages 367–
384. Springer-Verlag, 1994.

[4] L. Cernuzzia, M. Cossentino, and F. Zambonelli. Process
models for agent-based development. Engineering Applica-
tions of Artificial Intelligence, 18:205–222, 2005.

[5] J. Derrick and E. Boiten. Refinement in Z and Object-Z,
Foundations and Advanced Applications. Springer-Verlag,
2001.

[6] M. d’Inverno and M. Luck. Development and application of
a formal agent framework. In Proceedings of the First IEEE
International Conference on Formal Engineering Methods,
pages 222–231. IEEE Press, 1997.

[7] S. Eder and G. Smith. An approach to formal verification of
free-flight separation. In Self-Organising and Self-Adaptive
Systems Workshop (SASOW 2010), pages 166–171. IEEE
Computer Society Press, 2010.

[8] C. B. Excelente-Toledo and N. R. Jennings. The dynamic
selection of coordination mechanisms. Autonomous Agents
and Multi-Agent Systems, 9:55–85, 2004.

[9] C. Fischer. CSP-OZ - a combination of CSP and Object-
Z. In H. Bowman and J. Derrick, editors, Formal Methods
for Open Object-Based Distributed Systems (FMOODS’97),
pages 423–438. Chapman & Hall, 1997.

[10] P. Gruer, V. Hilaire, A. Koukam, and K. Cetnarowicz. A for-
mal framework for multi-agent systems analysis and design.
Expert System Applications, 23(4):349–355, 2002.

[11] B. Mahony and J. Dong. Blending Object-Z and Timed CSP:
An introduction to TCOZ. In 20th International Conference
on Software Engineering (ICSE’98), pages 95–104. IEEE
Computer Society Press, 1998.

[12] G. Smith. The Object-Z Specification Language. Kluwer
Academic Publishers, 2000.

[13] G. Smith and J. W. Sanders. Formal development of self-
organising systems. In International Conference on Auto-
nomic and Trusted Computing (ATC’09), volume 5586 of
LNCS, pages 90–104. Springer-Verlag, 2009.

[14] G. Smith, J. W. Sanders, and K. Winter. Reasoning about
adaptivity of agents and multi-agent systems. In International
Conference on Engineering of Complex Computer Systems
(ICECCS 2012). IEEE Computer Society Press, 2012.

[15] J. M. Spivey. The Z Notation: a reference manual, second
edition. Prentice-Hall International, 1992.

[16] J. Woodcock and J. Davies. Using Z: specification, refinement,
and proof. Prentice-Hall, 1996.


