
Refactoring object-oriented specifications with
inheritance-based polymorphism

Graeme Smith
School of Information Technology and Electrical Engineering

The University of Queensland, Australia
Email: smith@itee.uq.edu.au

Steffen Helke
Software Engineering Group

Berlin Institute of Technology, Germany
Email: helke@cs.tu-berlin.de

Abstract—Specification notations such as JML and Spec#
which are embedded into program code provide a promising
approach to formal object-oriented software development. If the
program code is refactored, however, the specifications need also
to be changed. This can be facilitated by specification refactoring
rules which allows such changes to be made systematically along
with the changes to the code.

A set of minimal and complete set of refactoring rules have
been devised for the Object-Z specification language. This paper
reviews these rules as a basis for a similar approach for languages
like JML and Spec#. Specifically, it modifies the rules for
introducing and removing inheritance and polymorphism from
specifications. While these concepts are orthogonal in Object-Z,
they are closely intertwined in the other notations.

I. INTRODUCTION

A number of formal specification languages exist for speci-
fying systems in an object-oriented style. These include high-
level (programming-language independent) notations such as
Object-Z [15] , VDM++ [9] and Alloy [8], as well as notations
which are embedded in actual programs such as JML [3] and
Spec# [1]. While well established notions of data refinement
enable the incremental development of individual classes in
such specifications, they do not support changes to the object-
oriented structure. This has led to a number of approaches to
refactoring formal specifications — in particular, to refactoring
their structure [2], [6], [9], [10], [12]–[14].

McComb and Smith [14] present a set of structural refactor-
ing rules for Object-Z specifications which are both minimal
(in the sense there is no overlap in the type of changes the
rules allow) and complete (in the sense that any reasonable
design1 can be derived from any specification).

The rules of McComb and Smith treat inheritance and
polymorphism as orthogonal concepts. This is because not all
inheritance hierarchies in Object-Z introduce polymorphism,
and conversely polymorphism is not restricted to being a
by-product of inheritance. In object-oriented programming
languages such as Java and C#, however, inheritance and
polymorphism are closely intertwined. When we introduce in-
heritance, we also introduce (potential) polymorphism. Hence,
the relationship between the concepts needs to be catered for
in the refactoring rules.

1By reasonable design, we mean any in which the outermost class defining
the interface to the specified system does not allow public access to its state
variables.

In this paper as a first step towards extending the results of
McComb and Smith towards specification languages like JML
and Spec#, we present an alternative set of refactoring rules
for Object-Z. In Section II we present the rules for Object-
Z developed by McComb and Smith, and explain why these
are not appropriate for use with languages with inheritance-
based polymorphism. We then present an alternative rule for
introducing inheritance in Section III and illustrate how it
can be used together with other refactoring rules to add (and
remove) inheritance hierarchies within a specification. The
approach is illustrated on a case study in Section IV before
we conclude in Section V.

II. OBJECT-Z RULES

McComb and Smith [14] present three refactoring rules
for Object-Z which deal with orthogonal concepts in the
language. These rules allow a specification to be refactored by
the introduction (and removal) of (i) generic parameters, (ii)
inheritance and (iii) polymorphism. It is shown how, together
with a rule for introducing (and removing) object instantiation,
the refactoring rules are complete allowing a specification to be
refactored to any reasonable design. The latter rule is defined
by McComb [12] based on the “annealing” rule for VDM++
defined by Goldsack and Lano [9], [10].

The rules are each semantics-preserving, i.e., when a rule is
applied to a specification, it produces a semantically equivalent
specification. Two Object-Z specifications are semantically
equivalent when their system classes, i.e., those defining the
interface to the specification, have operations with identical
names and behaviours. We assume that the state variables of
such system classes are not publically accessible. The fact that
the rules are semantics-preserving, allows them to be applied
in a forward direction (to introduce structure) and a backward
direction (to remove structure). This is central to the proof of
completeness of the rules which relies on the ability to remove
all structure from a specification (via backward application
of the rules) before introducing the structure of the desired
refactored design (see [14] for details).

The rules also have specific preconditions for their applica-
tion. Hence, it is often necessary to use them in conjunction
with data refinement of classes to reach a desired design. For
example, the rule for introducing object instantiation splits a

5th IEEE International Symposium on Theoretical Aspects of Software Engineering (TASE 2011) c©IEEE, 2011

A

S
T

OpA =̂ [∆(S) | P(S, S′, T)]
OpB =̂ [∆(T) | Q(S, T, T ′)]

≡
A

S
component : B

OpA =̂ [∆(S) | P(S, S′, T)]
OpB =̂ component.OpB

B

T

OpB =̂ [∆(T) | Q(S, T, T ′)]

Fig. 1. Annealing refactoring

class’s state and operations into two classes — one holding a
reference to an instance of the other as shown in Figure 1.
A precondition of applying this rule is that every local op-
eration in the class explicitly changes, if any variables at all,
either variables declared in S or variables declared in T , but
not both (illustrated by the ∆(S) and ∆(T) notation) — this
determines in which class the operations appear after the rule
is applied.

To achieve this restriction, any operation schema that
changes variables in both S and T must be split such that
the predicates that change variables in S are in a different
operation from those that change a variable in T . This can be
attained through refinement, by promoting logical operators to
schema operators, and moving the schemas into new, separate
operation definitions with fresh names. The new operations
are then referenced from the original one. This very much
resembles the Extract Method [4] refactoring step which
splits a programming language procedure into two, where one
contains a procedure call to the other.

For example, the operation X below refers to the post-state
variables in both S′ and T ′.

X =̂ [∆(S,T) | P(S, S′,T) ∧ Q(S,T,T ′)]

By promoting the logical conjunction to schema conjunction,
it is equivalent to

X =̂ [∆(S) | P(S, S′,T)]∧ [∆(T) | Q(S,T,T ′)]

which, by introducing a fresh operation Y , is equivalent to

X =̂ [∆(S) | P(S, S′,T)]∧Y
Y =̂ [∆(T) | Q(S,T,T ′)] .

Such refinements are semantics-preserving. Application of this
approach to a detailed case study can be found in McComb
[13].

The rule for introducing generic parameters is illustrated
in Figure 2. A class C has a locally defined type L which
is defined to be the actual type T . When the rule is applied,
the class C is replaced with a class C[X], where the name X

(references to C)

C
L == T
...

≡

(references to C[T])

C[X]
L == X
...

where X is fresh

Fig. 2. Introduce generic parameter refactoring

C
F

A1 : PC
...
An : PC

〈A1, . . . ,An〉 partitions C

≡

A1

F

...

An

F

C == A1 ∪ . . . ∪ An

Fig. 3. Introduce polymorphism refactoring

is fresh, and the local definition which previously defined L
as T is changed to define L as X. All references to C in the
specification are replaced with references to C[T], including
references for inheritance.

This refactoring rule only introduces one parameter, but
repeated application can provide as many parameters as nec-
essary.

The refactoring rule for introducing polymorphism is illus-
trated in Figure 3. The class C on the left-hand side has exactly
n+1 means of referencing it: by C, or by n axiomatically de-
fined aliases A1,. . .,An which disjointly partition the references
to objects of C.

The introduction of polymorphism is normally motivated
by the identification of a class (C) that behaves in different
ways depending upon the context in which it is used. The rule
requires that the designer identify the contexts where alternate
behaviours are expected, and divide the references between
A1, . . . ,An accordingly.

Assuming this identification and partitioning of object ref-
erences has occurred, the rule allows for the splitting of
the behaviours into separate class definitions (A1 to An on
the right-hand side of Figure 3). To execute the refactoring
transformation, all of the features of class C are copied
verbatim to define the classes A1 to An. The class C is removed
from the specification, but C is globally defined to be the class
union A1 ∪ . . . ∪ An — thus providing for the polymorphism.
The identical feature sets of the classes are represented with
the symbol F in Figure 3.

The rule for introducing inheritance creates an inheritance
relationship between any two classes in the specification, as
long as the addition of the relationship does not result in a
circular dependency. Figure 4 illustrates the application of the
rule to two classes A and B with features F and G respectively.

The rule not only adds the inheritance relationship (indi-
cated in Figure 4 by the inclusion of A in B) but also hides

A
F

B
G

≡

A
F

B
A[H/F]
G

where H are fresh

Fig. 4. Introduce inheritance refactoring

every feature of the superclass by assigning them a fresh
name (the notation ‘H/F’ indicates that all features F of the
superclass A are hidden by assigning fresh names H for the
features). The combination of inheritance and hiding makes
the refactoring rule an equivalence transformation, so long as
we assume we do not have inheritance-based polymorphism.
To use the features inherited from the superclass, the designer
must make refinements local to the subclass to reference the
features in H.

The rules for introducing object instantiation, generic pa-
rameters and polymorphism are readily adapted to specifi-
cation notations such as JML and Spec#. In the latter case,
Object-Z’s notion of class union can be captured by the use
of a Java or C# interface.

The same is not true, however, of the rule for introducing
inheritance. This rule is inappropriate for specification nota-
tions supporting inheritance-based polymorphism, i.e., where
an object declared to be of class A may actually belong to class
A or any subclass B of class A. In Figure 4, if F and G both
contained a method named m, then given an instance a of class
A a method call a.m would result in the behaviour of A’s m
in the specification on the left-hand side of the rule. It would,
however, possibly result in the potentially different behaviour
of B’s m in the specification on the right-hand side of the rule.
Hence, the rule is not an equivalence transformation.

Furthermore, the signature, i.e., the names of the (visible)
features, of class B is not necessarily wider than that of class
A. This can result in a specification that is not well-defined.
For example, if F contained a method m that was not in G then
if the specification on the left-hand side of the rule contained
a method call a.m, where a was declared to be an instance of
class A, then the specification on the right-hand side would
not be well-defined since a’s actual class might be B.

In the next section, we present an alternative refactoring rule
for introducing inheritance which overcomes these problems.
Additionally, we show how this new rule can be used to
introduce and remove inheritance hierarchies with the aid of
three additional simple refactoring rules which allows features
to be added to a class, invariants to be moved between classes,
and inherited features to replace identically defined features in
a subclass.

III. REVISING THE INHERITANCE RULE

Specification notations such as JML and Spec# have
inheritance-based polymorphism like the programming lan-

A
F

B
F

≡

A
F

B
A

Fig. 5. Revised introduce inheritance refactoring

guages with which they are used. In this setting, a refactoring
rule which introduces inheritance between two existing classes
A and B is semantics-preserving precisely when the class
which becomes the subclass, B say, is a subtype of of A in the
sense that it has a wider signature and all its methods satisfy
the methods rule of Liskov and Wing [11]. That is, each sub-
class method has a weaker precondition than its same-named
counterpart in the superclass and, when the precondition of
the superclass method holds, a stronger postcondition.

Checking whether the methods rule holds is, in general,
non-trivial. An important property of the Object-Z refactoring
rules is that they are largely syntactic and hence potentially
automatable. In keeping with this, we define a less general
rule for introducing inheritance, but one that is readily checked
syntactically.

The rule, shown in Figure 5, allows an inheritance relation-
ship to be added between classes A and B only when A and B
have identical features (denoted by F in the figure). Unlike the
existing rule for inheritance (Figure 4), the inherited features
are not hidden in B.

The rule is obviously sound, i.e., the left and right-hand
sides of the rule are equivalent. However, the precondition
is quite strong since A and B have to have identical features.
Below we provide a general strategy for achieving this precon-
dition. This strategy can be used to add inheritance between
any two classes in a specification. Of course, this won’t always
lead to an improved design; as with any refactoring strategy,
it is the specifier’s responsibility to decide when to use it.

Let us assume we have two classes A and B whose features
are unrelated except that they have one similarly named
operation Op2. This operation has definition OpA in class A
and OpB in class B.

A
. . .
Op1

Op2 =̂ OpA

B
. . .
Op2 =̂ OpB
Op3

First we extend each class with the features from the
other class apart from Op2. Since these features will not be
referenced in the specification, this results in an equivalence
transformation. To allow this step in our framework, we
introduce the following refactoring rule for adding features
to a class.

Applying this rule to classes A and B results in the follow-
ing.

C
F ≡

(no references to G)

C
F
G

Fig. 6. Introduce features refactoring

A
. . .
Op1

Op2 =̂ OpA
Op3

B
. . .
Op1

Op2 =̂ OpB
Op3

Next, again using the rule for introducing features, we
extend each class with a visible constant t whose value is
either tA or tB.

A
t : tA | tB

. . .
Op1

Op2 =̂ OpA
Op3

B
t : tA | tB

. . .
Op1

Op2 =̂ OpB
Op3

Then we perform a refinement on each of the classes so
that the value of t is tA in class A and tB in class B, and use
the value of t to redefine Op2 to be identical in each class.
Since the constant t of A and B is not referenced anywhere in
the specification at this point, the refinements are semantics-
preserving.

A
t : tA | tB

t = tA

. . .
Op1

Op2 =̂ [t = tA] ∧ OpA
[]
[t = tB] ∧ OpB

Op3

B
t : tA | tB

t = tB

. . .
Op1

Op2 =̂ [t = tA] ∧ OpA
[]
[t = tB] ∧ OpB

Op3

The resulting classes are now identical apart from the in-
variant on t. To remove this, we introduce a further refactoring
rule. This rule allows us to introduce an invariant P to a
class when all instances and subclasses of that class within
the specification are already specified to satisfy P.

Applying this rule to both A and B in the backward
direction, results in the classes being identical. To meet the
condition on the left-hand side of the rule, we would need to,
when applying the rule, add the appropriate constraint on t
to any classes or operations which instantiated classes A and
B. That is, where we had a declaration a : A (meaning a is

(all instances and subclasses
of C satisfy P)

C
F

≡

C

P

F

Fig. 7. Introduce invariant refactoring

A
F

B
A
F

≡

A
F

B
A

Fig. 8. Use inherited features refactoring

an object of class A) we would add the constraint a.t = tA,
where we had a declaration b : B (meaning b is an object of
class B) we would add the constraint b.t = tB, and where we
had a declaration a : ↓A (meaning that a is an object whose
class may be A or any subclass of A) then we would add the
constraint a.t = tA. The latter constraint is necessary since
before applying the rule, B is not a subclass of A and hence
a : ↓A cannot behave as an object of class B. The constraint
ensures this is the case after the rule is applied. Similarly, for
any class which inherits A or B we would need to add the
constraint t = tA or t = tB respectively.

The rule for introducing inheritance could then be applied to
classes A and B. At this stage, we have an inheritance relation
between two identical classes and invariants on all instances
of those classes. We can then simplify the classes to reach our
desired specification. This will be illustrated on a concrete case
study in the next section. It is straightforward to generalise the
strategy to cases where there is more than one operation, or
other feature, with a common name in the two classes.

To remove an inheritance relationship between a class A
and its subclass B, the strategy is similar (it is illustrated
in Section IV). Classes A and B are transformed to be
identical using the rules for introducing features and invariants
described above. In this case, when the invariant from A is
removed, an invariant a.t = tA is not added where there is
a declaration of a : ↓A in the specification. This is because
objects of type ↓A can behave according to the definitions in
either class A or B before the rule is applied.

Once the classes are identical, the features of the subclass
are removed using one further refactoring rule shown in
Figure 8.

Application of this rule sets up the precondition for the
backward application of the introduce inheritance rule (Fig-
ure 5) allowing the removal of the inheritance relation.

IV. CASE STUDY

In this section we illustrate the use of the refactoring rules
of Section III on a simple case study: the well known game of
Nim. In this game there are two players and a pile of sticks.

Each player in turn removes one, two, or three sticks from the
pile. The player who removes the last stick loses.

We define two classes of players to represent different
game strategies. The state of a player comprises a boolean
variable turn indicating whether it is the player’s turn. It can
be switched using the operation changeTurn. This operation is
identical for both classes. The operation makeMove captures
the player’s strategy. It has an input pnum? denoting the
number of sticks in the pile, and an output num! denoting
the number of sticks the player chooses to remove.

A CleverPlayer knows the strategy for winning the game.
One stick left is clearly a losing situation. But 2, 3, or 4 sticks
left are winning situations, since by making an appropriate
choice, the player can leave the other player with the last
stick. If there are 5 sticks left, it is a losing situation since
no matter what the player does, the other player is left with
a winning situation. Continuing in this manner, we see that
when the number of sticks divided by 4 has a remainder of 1,
we are in a losing situation. A CleverPlayer will endeavour
to put, and keep, their opponent in a losing situation.

A SimplePlayer chooses the number of sticks to take on
each turn completely at random, unless there are 4 or less
sticks left when the player will take all the sticks but one. We
define SimplePlayer (naively) as a subclass of CleverPlayer
to reuse the declaration of turn and the changeTurn
operation which are identical in both classes. The notation
[makeMove0/makeMove] renames the inherited makeMove
operation so that it can be overridden in class SimpleMove.

CleverPlayer

turn : B

makeMove
pnum? : N
num! : 1 . . 3

turn
pnum? mod 4 = 0⇒ num! = 3
pnum? mod 4 = 2⇒ num! = 1
pnum? mod 4 = 3⇒ num! = 2
pnum? mod 4 = 1⇒ num! = 1

changeTurn
∆(turn)

turn′ = ¬ turn

SimplePlayer
CleverPlayer[makeMove0/makeMove]

makeMove
pnum? : N
num! : 1 . . 3

turn
pnum? = 1⇒ num! = 1
(1 < pnum? ∧ pnum? ≤ 4)⇒

num! = pnum?− 1

The game is modelled in Object-Z by the class Nim. For
brevity, we provide only the state declarations here. The state
of the class consists of a variable pile, denoting the number
of sticks in the pile, and two players: player1 and player2.
player1 is declared to be of type ↓CleverPlayer which means
that the player can be an object of the class CleverPlayer or
alternatively an object of a direct or an indirect subclass of
CleverPlayer. In contrast, player2 is defined to be of class
CleverPlayer. The invariant of the state schema ensures that
the players do not have a turn simultaneously.

Nim

pile : N
player1 : ↓CleverPlayer
player2 : CleverPlayer

player1.turn 6= player2.turn

. . .

A. Removing the inheritance relation

The inheritance relation between CleverPlayer and
SimplePlayer is not a subtype relation. The postcondition of
makeMove in SimplePlayer is weaker that in CleverPlayer
violating Liskov and Wing’s methods rule [11]. To remedy
this undesirable situation, we remove the inheritance relation
using the strategy of Section III.

Figure 9 shows the first two steps2. In step 1, using the
refactoring rule for introducing features (Figure 6) we extend
class CleverPlayer by adding a public constant t, which
will be directly inherited by class SimplePlayer. Furthermore,
we refine class CleverPlayer so that t = tCP allowing us
to redefine its makeMove operation. Note that this step is
semantics-preserving because t is not used in other parts of
the specification. In step 2, we remove the invariant from
CleverPlayer by applying the refactoring rule for introducing
invariants (Figure 7) backwards. This introduces the state
invariant t = tCP in class SimplePlayer and the state invariant

2In this and subsequent figures, ellipses (. . .) are used to hide parts of the
classes that are unchanged.

. . . 1.©
⇒

CleverPlayer

t : tCP | tSP

t = tCP

makeMove =̂

[t = tCP] ∧ cleverMove
[]

[t = tSP] ∧ simpleMove
. . .

SimplePlayer
. . .

Nim
. . .

2.©
⇒

CleverPlayer

t : tCP | tSP

makeMove =̂

[t = tCP] ∧ cleverMove
[]

[t = tSP] ∧ simpleMove
. . .

SimplePlayer
. . .

t = tCP

. . .

Nim

player2.t = tCP

. . .

Fig. 9. Redefining makeMove in CleverPlayer

player2.t = tCP in class Nim (but no invariant on player1 which
can be instantiated by an object of either class).

. . . 3.©
⇒

CleverPlayer
. . .

SimplePlayer
. . .

t = tSP

makeMove =̂

[t = tCP] ∧ cleverMove
[]

[t = tSP] ∧ simpleMove

Nim
. . .

4.©
⇒

CleverPlayer
. . .

SimplePlayer
. . .
makeMove =̂

[t = tCP] ∧ cleverMove
[]

[t = tSP] ∧ simpleMove

Nim

player1.t = tSP

. . .

Fig. 10. Redefining makeMove in SimplePlayer

. . . 5.©
⇒

CleverPlayer
. . .

SimplePlayer
CleverPlayer

Nim
. . .

6.©
⇒

CleverPlayer
. . .

SimplePlayer
(same as CleverPlayer)

Nim

pile : N
player1 : ↓SimplePlayer
player2 : CleverPlayer

. . .

. . .

Fig. 11. Removing the inheritance relation

In step 3 (see Figure 10), we redefine the invariant in
SimplePlayer to t = tSP. This is semantics-preserving since
there are no references to SimplePlayer’s t in the specification.
This allows us to redefine makeMove to be identical to that
in CleverPlayer. (We use simpleMove and cleverMove to
denote the original makeMove operations of SimplePlayer and
CleverPlayer respectively.)

In step 4, we remove the invariant from SimplePlayer by ap-
plying the refactoring rule for introducing invariants (Figure 7)
backwards. This introduces the state invariant player1.t = tSP

in class Nim

In step 5 (see Figure 11), we use the rule for using
inherited features (Figure 8) to remove all explicit features
from SimplePlayer. We then remove the inheritance relation
in Step 6. In this final step, since the two classes are now
identical, we refine the declaration player1 : ↓CleverPlayer in
class Nim to player1 : ↓SimplePlayer. This is in preparation
for introducing a new inheritance relation between the player
classes (which we do next).

7.©
⇒

CleverPlayer
SimplePlayer

SimplePlayer
. . .

Nim
. . .

8.©
⇒

CleverPlayer
SimplePlayer
. . .

t = tCP

makeMove =̂ cleverMove

SimplePlayer
. . .

t = tSP

makeMove =̂ simpleMove
. . .

Nim

pile : N
player1 : ↓SimplePlayer
player2 : CleverPlayer

player1.turn 6= player2.turn

. . .

Fig. 12. Establishing the new inheritance hierarchy

B. Adding a new inheritance relation

Since after step 6 the player classes of our specification are
identical, we can apply the rule for introducing inheritance
(Figure 5). This allows us to build a new inheritance hierarchy
which is also a subtype hierarchy. Specifically, we make
CleverPlayer a subclass of SimplePlayer. This is shown in
step 7 of Figure 12.

Next, in Step 8, we apply the rule for using inherited fea-
tures (Figure 8) to reintroduce makeMove into CleverPlayer,
followed by the rule for introducing invariants (Figure 7) to
both SimplePlayer and CleverPlayer. The latter removes the
invariants from Nim and allows us to simplify the makeMove
operation in both of the player classes.

In a final step, we remove the constants t and their invari-
ants from both player classes, as they are no longer used.
The resulting refactored specification is shown in Figure 13.
The sequence of refactoring rules and semantics-preserving
refinements to reach this point provide a strategy that could
be more widely applied. An important area of future work is to
formalise such strategies in order to perform more substantial
changes to a design in one step. The application of such
strategies, rather than the many steps required with individual
refactoring rules, is essential to the practicality of the proposed
approach.

V. CONCLUSIONS

The refactoring rules for Object-Z proposed by McComb
and Smith [12], [14] treat inheritance and polymorphism as
orthogonal concepts. Hence, they are not directly applicable to
specification languages with inheritance-based polymorphism
such as JML and Spec#. This paper proposes alternative rules
for introducing and removing inheritance in Object-Z which
overcomes this problem.

SimplePlayer

turn : B

makeMove
pnum? : N
num! : 1 . . 3

turn
pnum? = 1⇒ num! = 1
(1 < pnum? ∧ pnum? ≤ 4)⇒

num! = pnum?− 1

changeTurn
∆(turn)

turn′ = ¬ turn

CleverPlayer
SimplePlayer

makeMove
pnum? : N
num! : 1 . . 3

turn
pnum? mod 4 = 0⇒ num! = 3
pnum? mod 4 = 2⇒ num! = 1
pnum? mod 4 = 3⇒ num! = 2
pnum? mod 4 = 1⇒ num! = 1

Nim

pile : N
player1 : ↓SimplePlayer
player2 : CleverPlayer

player1.turn 6= player2.turn

. . .

Fig. 13. Final specification after refactoring

In related work, Goldstein, Feldmann and Tysberowicz [7]
address transformations of object-oriented programs using
formal contracts, but in a rather informal way. Similarly
to our work, they describe a pragmatic procedure in which
inheritance can be added between two classes. Freitas et al.
[5] provide a more formal approach, but focus on refactoring
rules to move invariants, attributes or redefined methods from
a class to its superclass.

The next step for extending our approach to a set of JML
or Spec# refactoring rules would be to adapt the Object-Z
rules to the required syntax of the other notations. It is also
necessary to formally prove that the rules are sound, and

highly desirable to prove that they are complete. To enable
these tasks we are working on a formal meta-model of object-
oriented specifications in which we can express and reason
about the rules. The meta-model will be general enough to
map to concrete rules in any of the considered specification
languages: Object-Z, JML and Spec#.

REFERENCES

[1] M. Barnett, K. R. M. Leino and W. Schulte. The Spec# programming
system: An overview. In Construction and Analysis of Safe, Secure and
Interoperable Smart devices (CASSIS), Springer LNCS, 3362, 2004.

[2] P. Borba, A. Sampaio, A. Cavalcanti and M. Cornelio. Algebraic
Reasoning for Object-Oriented Programming. Science of Computer
Programming, 52(1-3):53–100, 2004.

[3] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens,
K. R. M. Leino and E. Proll. An Overview of JML tools and applications.
International Journal on Software Tools for Technology Transfer (STTT),
7(3):212–232, 2005.

[4] M. Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[5] G. F. Freitas, M. Cornelio, T. Massoni and R. Gheyi. Object-oriented
Programming Laws for Annotated Java Programs. In Tenth International
Workshop on Rule-Based Programming (RULE), pages 65–76, Electronic
Proceedings in Theoretical Computer Science (EPTCS), 21, 2009.

[6] R. Gheyi and P. Borba. Refactoring Alloy specifications. Electronic Notes
in Theoretical Computer Science, 95:227–243, 2004.

[7] M. Goldstein, A. Feldmann and S. Tyszberowicz. Refactoring with
Contracts. In Proceedings of the conference on AGILE, IEEE Computer
Society, pages 53–64, 2006.

[8] D. Jackson. Alloy: a lightweight object modelling notation. Software
Engineering and Methodology, 11(2):256–290, 2002.

[9] K. Lano. Formal Object-oriented Development. Springer-Verlag, 1995.
[10] K. Lano and S. Goldsack. Refinement of distributed object systems.

Workshop on Formal Methods for Open Object-based Distributed Sys-
tems, pages 99–114, Chapman and Hall, 1996.

[11] B. Liskov and J. Wing. A behavioral notion of subtyping. ACM Trans-
action on Programming Languages and Systems (TOPLAS), 16(2):1811–
1841, 1994.

[12] T. McComb. Refactoring Object-Z specifications. In Fundamental
Approaches to Software Engineering (FASE), Springer LNCS, pages 69–
83, 2984, 2004.

[13] T. McComb and G. Smith. Architectural design in Object-Z. In
Australian Software Engineering Conference (ASWEC), IEEE Computer
Society Press, pages 77–86, 2004.

[14] T. McComb and G. Smith. A minimal set of refactoring rules for Object-
Z. In International Conference on Formal Methods for Open Object-based
Distributed Systems (FMOODS), Springer LNCS, pages 170–184, 5051,
2008.

[15] G. Smith. The Object-Z Specification Languague. Kluwer, 2000.

