
Assuring adaptive behaviour in
self-organising systems

J.W. Sanders
International Institute for Software Technology

United Nations University
Macao SAR China

Email: jeff@iist.unu.edu

Graeme Smith
School of Information Technology and Electrical Engineering

The University of Queensland
Australia

Email: smith@itee.uq.edu.au

Abstract—The important notion of adaptivity of a distributed
information system is formalised, extending Dijkstra’s idea of
self stabilisation. The formalisation quantifies the extent to
which a system adapts, enabling degrees of adaptivity to be
specified and hence assured in an implementation. The ideas
are expressed without commitment to any particular formal
notation and demonstrated on a cluster formation algorithm
for mobile ad hoc networks.

Keywords-adaptivity, self-organising, self-∗, formal methods.

I. INTRODUCTION

Many contemporary distributed systems are required to be
‘self-∗’: able autonomously to configure, organise, manage
and repair in response to change or disturbance either from
the environment or internally, caused by malfunction or
failure. In some cases, this is done through machine learning
techniques such as genetic algorithms or reinforcement
learning. In others, the adaptivity mechanisms are explicitly
engineered into the system. It is this latter case that is of
primary interest in this paper.

The global behaviour of such systems depends on certain
constraints being met. For example, if the components can
communicate to only immediate neighbours then broadcast-
ing a message (to all components in the system) requires that
all components be (transitively) connected. Such constraints
do not correspond to the global behaviour desired from the
system, but are sufficient for it to hold.

The ability to adapt to a given change or disturbance
depends on (a) whether these constraints hold after the
change or disturbance and, if not, (b) the ability of the
system to restore the constraints via a finite number of
system actions. In fact, adaptivity can be quantified; firstly
with respect to the functionality of the disturbance and
secondly with respect to the number of actions it takes for
the system to restore the constraints.

Similar observations have been made before. Dijkstra [4]
uses them to capture the notion of self stabilisation and
shows that it is possible to have distributed self stabilisation.
For the enormous impact of Dijkstra’s ideas we refer to
Schneider’s survey [15] and Herman’s bibliography [9].

Güdemann et al. [7] present an architecture for Organic
Computing [18] which divides a system into a collection
of agents and an observer/controller (OC) which monitors
the agents and tells them when to reconfigure. Although the
approach is not completely decentralised, it is argued that the
OC could be distributed amongst the agents. In this specific
context, the authors introduce a notion of invariant which is
basically an assignment of roles to agents taking into account
agent capabilities. The OC monitors this invariant and when
it no longer holds (e.g., because an agent loses a particular
capability), calculates a new configuration to make it hold.
A SAT solver, i.e., an automatic constraint solving tool, is
proposed to calculate the new reconfiguration [14].

This differs from our approach by concentrating on only
a certain kind of invariant (role allocation) for a specific ar-
chitecture. It also defines an implementation strategy which
explicitly checks the invariant in order to invoke an explicit
reconfiguration. We, on the other hand, are not interested
in defining an implementation strategy for adaptivity but
reasoning about arbitrary implementations.

Georgiadis et al. [5] use constraints on the system ar-
chitecture to reconfigure a system when a component is
added, removed or changed. Again the idea is to restore
certain constraints (this time on the architecture) to ensure
the system functions correctly. It is closer to the approach
of Güdemann et al. than our work since it relies on explicit
monitoring of the constraints and explicit invocation of
reconfiguration in the implementation.

The aim of our work is to provide formal assurance that
a proposed system design adapts to particular changes and
disturbances. While the approaches of Güdemann et al. and
Georgiadis et al. provide a level of confidence that a system
will adapt, they do not provide guarantees. In Section II
we provide a formal definition of adaptivity based on those
ideas. In Section III, we introduce a case study based on
a passive clustering algorithm for a mobile ad-hoc network
[6]. We formally derive results concerning the ability of the
algorithm to adapt to new connections being formed, and
existing connections being broken, in Sections V and VI
respectively. We conclude in Section VII.

4th IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshop c©IEEE, 2010

II. A FORMAL NOTION OF ADAPTIVITY

A. Systems

The systems targeted in this paper are multi-agent systems
and their abstractions. A multi-agent system is viewed as
a distributed system whose components, the agents, are
autonomous in the sense of being responsible for the actions
on their own state: the only actions that directly change an
agent’s state are the actions invoked by that agent. There
are no system actions other than those of the agents. Agents
communicate with each other by either shared variables or
agent-to-agent channels.

In summary, system state comprises the states of the
agents together with a global component (reflecting ei-
ther shared variables or channel communication), and each
agent’s state is accessed (read and written) by only that
agent, using invocation of named actions. However such a
system is conveniently specified using actions that change
the states of several agents. So this paper considers more
general distributed systems, even when the eventual target
of a formal analysis using these techniques is a multi-agent
system.

A system consists of a quadruple S = (S, S0, S1,A) in
which: S is the type of states; S0 ⊆ S are the initial states;
S1 ⊆ S, such that S0 ⊆ S1, are the states satisfying the
system invariant; and A is an indexed family of actions,
called system actions, each of which maintains the system
invariant S1. If a system action is enabled in some state
then it may accept input (either by reading global variables
or from its input channels) and, if it does not diverge,
terminates (nondeterministically, in general) in some final
state, delivering output (either by writing to global variables
or outputting on its output channels).

Actions in the distributed system may be concurrent, but
they are assumed to be atomic so that from the point of
view of functional behaviour it suffices to consider a linear
semantics of behaviours, in which concurrency is captured
by interleaving.

Each action has two predicates in its initial state: its guard,
which holds at just those states where the action is enabled;
and its termination condition, which holds at just those
states satisfying the guard from which termination is sure
(since the action need not be deterministic, the termination
condition holds at x only if the action terminates whenever
enabled in x). Finally it has a binary predicate in its initial
and final states, its postcondition, describing the effect when
the action is enabled and terminates. Refinement of actions,
α v α′, holds if α′ is less enabled but more terminating and
more deterministic [3].

In this section no particular formalism is presumed for
describing S. It is thus appropriate to capture (linear) system
semantics by sequences of actions and the state transitions
they achieve (as in say [15]). If E ⊆ S and σ is a well-defined
sequence of actions (i.e., each enabled and terminating)

E after σ denotes the states obtainable from those in E by
executing the sequence of actions σ. By S after σ is meant
S0 after σ. Throughout we assume well-defined sequences.

If S and S ′ are systems, recall that S is said to be refined
by S ′, S v S ′, if the behaviours of S ′ are included in
those of S. This includes data refinement [3] but not action
refinement [1] (in which the actions of the concrete system
may be more numerous). The latter is particularly useful
for developing multi-agent systems [16] and we intend to
investigate its relationship to adaptivity in future work.

The after operation is monotonic in several senses.
Theorem 1: Let S,S ′ be systems, let E,F ⊆ S, let σ, τ :

A∗ and let α, α′ be actions. The catenation of σ and τ is
written σ.τ . Then (straight from the above definitions)

1) If σ : A∗ then S after σ ⊆ S1
2) (E after σ) after τ = E after σ.τ
3) If α v α′ then E afterα ⊇ E afterα′

4) If E ⊆ F then E after σ ⊆ F after σ
5) If S v S ′ then S after σ ⊇ S ′ after σ .

B. Adaptivity

Environmental duress on a system S = (S, S0, S1,A) is
captured (and quantified functionally) by an action Z, called
external to distinguish it from the system actions (i.e., the
elements of A, which by definition preserve the system
invariant), whose initial state is in S1 but whose final state
need not satisfy the system invariant and so is merely in S.

A system S is said to be Z-adaptive, for external action
Z, if after an occurrence of Z the system invariant is always
restored by some finite number of system actions, under the
assumption that no further external actions occur during that
time. Writing � for prefix, it is expressed

∀σ : A∗ · ∀ τ : Aω · σ.Z.τ is well defined ⇒
∃ υ : A∗ · υ � τ ∧ S after σ.Z.υ ⊆ S1 . (1)

When we wish to focus on the number of actions required
to restore the invariant, we say instead that the system S is
n-Z-adaptive, where n is the least number of system actions
required to restore the invariant S1, i.e., the length of the
shortest such υ. In particular, if S is 0-Z-adaptive then the
external action Z preserves the system invariant S1, and so
S need do nothing to ‘recover from Z’. The larger the value
of n, the longer (in terms of actions) it takes S to recover
from Z (measured with respect to a linearised semantics).

C. Examples

A comprehensive, rigorous example is provided in Section
III. In this section two informal examples are presented to
show the kind of system to which the ideas apply; both can
be developed in the style of Section III.

Free flight [10] is the term used to refer to the distributed
system of aircraft control in which, rather than having a cen-
tralised control tower, each aircraft is responsible for main-
taining an object-free sleeve around itself in order to avoid

collision. Typical actions Z might consist of injecting a new
airborne object into the system, or instantaneously changing
weather conditions (hence constraining flight paths). The
algorithm being used for free flight is adaptive to such a
Z if after some number of adjustment-actions on the part of
the aircraft, the sleeves are restored.

Self stabilisation [4] is the (extreme) case in which the
external action Z is unconstrained. Continuing with Dijk-
stra’s example, in a token ring Z might add a finite number
of extra tokens to the ring. It is a nice property of Herman’s
probabilistic algorithm [8], [13] that it adapts quickly, with
respect to a probabilistic semantic model: with n processors
it adapts on average in Θ(n2) steps.

D. Results

The notion of adaptivity is monotone under refinement of
the external action.

Theorem 2: If Z v Z′ and S is n-Z-adaptive then S is
n′-Z′-adaptive for some n′ ≤ n.

Proof: By definition (1), for any σ : A∗ and τ : Aω such
that σ.Z.τ is well defined, there is some υ � τ of length n
for which S after σ.Z.υ ⊆ S1. So

(S after σ.Z′) after υ

⊆ Theorem 1, parts 2, 3 and 4

S after σ.Z.υ

⊆ assumption

S1 .

Hence n′ is at most n.
A system that is adaptive to a given external action at

one level of abstraction may not be adaptive to it at a more
abstract level. However adaptivity is monotone under system
refinement:

Theorem 3: If S is n-Z-adaptive and S v S ′ then S ′ is
n′-Z-adaptive for some n′ ≤ n.
The proof follows that of Theorem 2. This result shows that
the method of top-down incremental development can be
used for adaptive systems.

III. CLUSTER-BASED ROUTING

As a typical example of an adaptive self-organising sys-
tem, we consider the cluster-formation process in a cluster-
based routing protocol designed for use in mobile ad hoc
networks (MANETs) [12], [11], [6].

MANETs have a dynamically changing topology due to
the movement of mobile nodes. Hence, message routing
protocols need to be able to dynamically discover routes.
A naı̈ve approach is to use a flooding protocol to propagate
the routing request to every node in the network. However,
this is highly inefficient both in terms of the energy and
network bandwidth required, and can lead to the network
becoming congested.

For this reason, cluster-based routing protocols have been
developed. The idea is to generate a topology based around
groups of nodes called clusters. Each cluster has a head
node which is adjacent, i.e., directly connected, to every
other node in the cluster. Only the head nodes deal with
routing requests, which significantly reduces the network
traffic compared with flooding. The maintenance of clusters,
as nodes move within a MANET, itself creates overhead: in-
formation about connections between nodes in a distributed
setting requires the exchange of messages. Passive clustering
approaches, such as that in [6], avoid this extra overhead by
piggy-backing a ‘hello’ message (around 2 bits capturing the
node’s clustering state) onto MAC (Medium Access Control)
layer communications.

Cluster-based routing works by having every non-head
node adjacent to a head node. Also, for efficiency, no two
head nodes should be adjacent. Those conditions need to be
established during cluster-formation.

There are a number of ways that clusters can be es-
tablished. One approach is to assign the node with the
minimum identifier amongst all its neighbours as the head.
As pointed out by Gerla et al. [6], this approach can lead to
inefficiencies in establishing stable clusters, and also requires
a quasi-stationary assumption that nodes are not mobile
during cluster formation and maintenance.

Gerla et al. suggest an alternative approach called the
“first declaration wins” rule: essentially, the first node in a
neighbourhood to declare itself the head becomes the head.
Then some means of dealing with contention, i.e., when two
nodes simultaneously declare themselves head, is required.
But that is solved by standard techniques such as the node
with the minimum (or maximum) identifier backing off, or
both nodes backing off for random times.

In Section IV, we provide a formal specification of the
cluster formation process using a “first declaration wins”
strategy. Our specification is abstract, ignoring details such
as contention handling. In Sections V and VI, we illustrate
how we can reason about adaptivity of the specified system
using our definition of Section II.

IV. A FORMAL MODEL OF CLUSTER FORMATION

Our approach is independent of any particular formalism.
For presentation purposes, however, we employ the Z nota-
tion [17]. We begin our formalisation with the definition of
a type Node denoting the set of all nodes in a network, and
a type State denoting the possible states of a given node.

[Node]

State ::= undecided | member | head

The state of a network is captured by the states and
connectivity of nodes. A node cannot be connected to itself,
and must be transitively connected to all other nodes. These
constraints are captured as invariants in the state schema
Network. (Here + denotes the transitive closure).

Network
state : Node→ State
conn : Node↔ Node

∀ n : Node •
(n, n) 6∈ conn
∀m : Node • n 6= m⇒ (n,m) ∈ conn+

For a fixed network, i.e., one in which nodes are not
mobile and in which connectivity is never changed, there
would be two additional invariants. Firstly, there are no
adjacent heads.

I1 =̂ @n,m : Node •
state(n) = head ∧ state(m) = head ∧
(n,m) ∈ conn

Secondly, a member node is always connected to a head
and only member nodes are connected to heads.

I2 =̂ ∀ n : Node •
state(n) = member ⇔

(∃m : Node •
(n,m) ∈ conn ∧ state(m) = head)

These conditions, although necessary for the intended
operation of the network, are not invariants when we allow
mobility (as discussed in Sections V and VI).

Initially, all nodes of a network are in undecided state and
the connection topology is arbitrary.

Init
Network

∀ n : Node • state(n) = undecided

This schema establishes the additional invariants for fixed
networks which are trivially satisfied when all nodes are in
the undecided state. That is,

Init ⇒ I1 ∧ I2 . (2)

We model the cluster formation algorithm abstractly by a
single action which may occur repeatedly for as long as it
remains enabled. This action models a node n in undecided
state broadcasting that it changes to head state. On receiving
such a broadcast, all neighbouring nodes enter member state.
This captures the “first declaration wins” strategy.

DeclareHead
∆Network
n : Node

state(n) = undecided
state′(n) = head
∀m : Node •

(n,m) ∈ conn⇒ state′(m) = member
(n,m) 6∈ conn⇒ state′(m) = state(m)

conn′ = conn

This action maintains the additional invariants required
for a fixed network. If I1 is true when DeclareHead occurs
then there are no adjacent heads. The action makes node n a
head, but also makes all of its neighbouring nodes members.
Hence, I1 continues to hold.

Similarly, if I2 is true when DeclareHead occurs then
(a) all nodes connected to a head are members, and (b) all
member nodes are connected to a head. Hence n, which
is undecided, is not connected to a head (only to nodes
which are undecided or members). The action makes n a
head and all of its neighbours members. Hence, condition
(a) continues to hold. Also, since no neighbour of n is a
head before the action, the action does not change the state
of an existing head and hence condition (b) also continues
to hold.

That is, for any i : N we have

Init after DeclareHeadi ⇒ I1 ∧ I2 . (3)

For the cluster-based routing protocol, we require that
eventually every non-head node is adjacent to a head.

I3 =̂ ∀ n : Node •
state(n) 6= head ⇒

(∃m : Node •
(n,m) ∈ conn ∧ state(m) = head)

This is not an invariant of the specification since, for
example, it is not true initially. However, we can show that
it is eventually true for a finite, fixed network as follows.

The number of undecided nodes are decreased by at
least one (the broadcasting node n) every time DeclareHead
occurs. Since there are no other actions, for a finite network,
this number eventually reaches zero. Hence, given that I2
holds, we can deduce that I3 will eventually be true.

For a network with more than one node, since each head
node must have at least one member (since the network is
transitively connected), a maximum of N−1 occurrences of
DeclareHead are required, where N is the number of nodes
in the network. Hence, for some i 6 N − 1,

Init after DeclareHeadi ⇒ I3 (4)

This is an example of self configuration, i.e., where a system
configures itself for a given purpose.

V. ADAPTING TO NEW LINKS

In a mobile ad hoc network, connections between nodes
are formed and lost as the nodes move. In this section, we
will consider the ability of the system specified in Section III
to adapt to new connections being formed. In Section VI,
we will consider the case of connections being lost.

A new link being formed between two nodes that are not
both heads maintains the invariants I1 and I2 so it suffices
to consider an external action that links only heads.

NewLink
∆Network
n,m : Node

state(n) = state(m) = head
conn′ = conn ∪ {(n,m)}
state′ = state

If we add this action to the specification of Section III, I1
is no longer invariant: a node that is a head can be connected
to another head. Since head nodes never change their state,
the specification does not restore the condition. Hence, we
deduce that the system is not adaptive to the action NewLink.

To make the system adaptive, we could add an action
Hello to the specification which models head nodes peri-
odically broadcasting a message to their neighbours. All
neighbours on receiving such a broadcast, change their state
to member. Hence, if two head nodes become connected,
the first to broadcast its “hello” message remains head, the
other becomes a (non-head) member node.

Hello
∆Network
n : Node

state(n) = head
∀m : Node •

(n,m) ∈ conn⇒ state′(m) = member
(n,m) 6∈ conn⇒ state′(m) = state(m)

conn′ = conn

Given this new action, we can show that the system
restores I1. The number of interconnected head nodes de-
creases by at least two every time a “hello” message is sent
by such a node. Hence, after a single occurrence of NewLink,
a Hello from one of the interconnected heads will reduce
the number of interconnected head nodes to zero. So for all
i > 2 and n1, n2 : Node

Init after ρ ⇒ I1 (5)

where ρ is the catenated sequence

DeclareHeadi.NewLink[n1, n2/n,m].τ

and τ is any sequence of actions containing either
Hello[n1/n] or Hello[n2/n] and not containing NewLink.

Now consider I2. It is not affected by the addition of the
NewLink action. However, it is affected by the action Hello
which can cause a head node to become a member node,
leaving some member nodes without a head. For example
in Figure 1, node 2 becomes a member after receiving a
“hello” message from node 3. Node 1 is left without an
adjacent head.

The system as specified has no means of restoring I2.
Hence, we add a further action. The action Timeout models
a member node timing out after not having received a “hello”

3

member head

membermember

member

head

head

member

2

1

4

1

4

3

2

Figure 1.

message from its head for a specified amount of time. The
action abstracts time and requires only that the member node
no longer has a head.

Timeout
∆Network
n : Node

state(n) = member
∀m : Node •

(n,m) ∈ conn⇒ state(m) 6= head
state′(n) = undecided
∀m : Node •

m 6= n⇒ state′(m) = state(m)
conn′ = conn

Given the new action, we can show that I2, although no
longer an invariant, is restored by application of Timeout.
The number of member nodes without an adjacent head node
decreases by one (the node n) every time Timeout occurs.
Hence, if after a single occurrence of NewLink followed by
a Hello message, there are j member nodes without a head,
I2 is restored after j occurrences of Timeout. The node which
remains head (node 3 in Figure 1) has at least two members
after the action (its original member(s) and the node which
changes from a head to a member). Therefore, the maximum
number of Timeout actions required is N − 3, where N is
the number of nodes in the network. That is, for all i > 2
and n1, n2 : Node, there is some j 6 N − 3 such that

Init after ρ ⇒ I2 (6)

where catenation ρ is DeclareHeadi.NewLink[n1, n2/n,m].τ
and τ is any sequence of actions containing the subsequence
Hello[n1/n].Timeoutj or Hello[n2/n].Timeoutj.

Since both Hello and Timeout occur within a finite time
of being enabled (this is only stated informally here, but
could be formalised), any sequence of actions following
a single occurrence of a NewLink action will contain this
subsequence. Hence, the system is j+1-NewLink-adaptive.

Once I2 is restored it is not violated by any of the system
actions (unless NewLink occurs again). Hence, following the
reasoning in the previous section, the system self configures
restoring I3 after a number of DeclareHead actions. In the
worst case, all of the member nodes which timed out become
heads. That is, for all i > 2 and n1, n2 : Node, there is some
j 6 N − 3 and some k 6 j such that

Init after ρ.DeclareHeadk ⇒ I3 (7)

where catenation ρ is defined as above.

VI. ADAPTING TO BROKEN LINKS

A link being broken is modelled by the following action.

BreakLink
∆Network
n,m : Node

(n,m) ∈ conn
conn′ = conn \ {(n,m)}
state′ = state

I1 is not affected by this action. However, I2 may no
longer hold since the connection between a member node
and its only head may be removed.

This situation is analogous to that in Figure 1 and I2, and
hence I3, will be restored if we add the actions Hello and
Timeout. The reasoning follows that in the previous section.

VII. CONCLUSION AND FURTHER WORK

In this paper, we have formally defined adaptivity to a
given external action Z in a manner which allows us to
quantify the system’s adaptive response. Our formalisation
makes proofs of adaptivity amenable to Formal Methods, in
particular to incremental development. We would also like
to be able to use abstraction to perform model checking [2,
Ch. 13]. Determining its relationship to our definition of
adaptivity is an important area of future work.

Our formal definition is not limited to a particular speci-
fication paradigm. However to make it more suited to multi-
agent systems, we would like to consider it in the context
of action refinement which would allow us to capture the
concurrent behaviour of such systems. In particular, this
would allow us to reason more explicitly about notions
such as contention between agents. Action systems [1] is
one formalism that supports action refinement and we will
consider using (a variant of) it in future work.

ACKNOWLEDGEMENTS

The first author acknowledges support from the Macao
Science and Technology Development Fund under the
PEARL project, grant number 041/2007/A3 and the second
author acknowledges support from the Macao Science and
Technology Development Fund under the EAE project, grant
number 072/2009/A3.

REFERENCES

[1] R.J.R. Back and R. Kurki-Suonio. Decentralization of pro-
cess nets with centralized control. Distributed Computing,
3(2):73–87, 1989.

[2] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking.
MIT Press, 1999.

[3] W.-P. de Roever and K. Engelhardt. Data refinement: model-
oriented proof methods and their comparison. CUP, 1998.

[4] E.W. Dijkstra. Self-stabilizing systems in spite of distributed
control. Communications of the ACM, 17:643–644, 1974.

[5] I. Georgiadis, J. Magee, and J. Kramer. Self-organising soft-
ware architectures for distributed systems. In 1st Workshop
on Self-healing Systems (WOSS ’02), pages 33–38, 2002.

[6] M. Gerla, T.J. Kwon, and G. Pei. On demand routing in large
ad hoc wireless networks with passive clustering. In Pro-
ceedings of IEEE Wireless Communications and Networking
Conference (WCNC 2000), volume 1, pages 100–105, 2000.

[7] M. Güdemann, F. Nafz, F. Ortmeier, H. Seebach, and W. Reif.
A specification and construction paradigm for organic com-
puting systems. In Second IEEE International Conference
on Self-Adaptive and Self-Organizing Systems (SASO 2008),
pages 233–242. IEEE Computer Society Press, 2008.

[8] T. Herman. Probabilistic self-stabilization. Information
Processing Letters, 35:63–67, 1990.

[9] T. Herman. A self-stabilization bibliography. Available at
www.cs.uiowa.edu/ftp/selfstab/bibliography/, 1992.

[10] J.M. Hoekstra. Designing for Safety: the Free Flight Air Traf-
fic Management Concept. PhD thesis, Technical University
of Delft, 2001.

[11] M. Jiang, J. Li, and Y.C. Tay. Cluster Based Routing Protocol
(CBRP). Technical report, Internet draft, National University
of Singapore, 1999.

[12] C.R. Lin and M. Gerla. Adaptive clustering for mobile
wireless networks. IEEE Journal on Selected Areas in
Communications, 15(7):1265–1275, 1997.

[13] A.K. McIver and C.C. Morgan. An elementary proof that
Herman’s Ring is Θ(N2). Information Processing Letters,
94:79–84, 2005.

[14] F. Nafz, F. Ortmeier, H. Seebach. J.-P. Steghöfer, and W. Reif.
A universal self-organisation mechanism for role-based or-
ganic computing systems. In International Conference on
Autonomic and Trusted Computing (ATC’09), volume 5586 of
Lecture Notes in Computer Science, pages 17–31. Springer-
Verlag, 2009.

[15] M. Schneider. Self stabilization. ACM Computing Surveys,
25:45–67, 1993.

[16] G. Smith and J. W. Sanders. Formal development of self-
organising systems. In International Conference on Auto-
nomic and Trusted Computing (ATC’09), volume 5586 of
Lecture Notes in Computer Science, pages 90–104. Springer-
Verlag, 2009.

[17] J.M. Spivey. The Z Notation: A Reference Manual. Prentice
Hall, 2nd edition, 1992.

[18] R.P. Würtz, editor. Organic Computing: Understanding
Complex Systems. Springer-Verlag, 2008.

