ABSTRACT

DBSCAN is a popular method for clustering multi-dimensional objects. Just as notable as the method’s vast success is the research community’s quest for its efficient computation. The original KDD’96 paper claimed an algorithm with $O(n \log n)$ running time, where n is the number of objects. Unfortunately, this is a mis-claim; and that algorithm actually requires $O(n^2)$ time. There has been a fix in 2D space, where a genuine $O(n \log n)$-time algorithm has been found. Looking for a fix for dimensionality $d \geq 3$ is currently an important open problem.

In this paper, we prove that for $d \geq 3$, the DBSCAN problem requires $\Omega(n^{d/3})$ time to solve, unless very significant breakthroughs—ones widely believed to be impossible—could be made in theoretical computer science. This (i) explains why the community’s search for fixing the aforementioned mis-claim has been futile for $d \geq 3$, and (ii) indicates (sadly) that all DBSCAN algorithms must be intolerably slow even on moderately large n in practice. Surprisingly, we show that the running time can be dramatically brought down to $O(n)$ in expectation regardless of the dimensionality d, as soon as slight inaccuracy in the clustering results is permitted. We formalize our findings into the new notion of p-approximate DBSCAN, which we believe should replace DBSCAN on big data due to the latter’s computational intractability.

Categories and Subject Descriptors
H.3.3 [Information search and retrieval]: Clustering

Keywords
DBSCAN, Density-Based Clustering, Algorithm

1. INTRODUCTION

Density-based clustering is one of the most fundamental topics in data mining. Given a set P of n points in d-dimensional space \mathbb{R}^d, the objective is to group the points of P into subsets—called clusters—such that any two clusters are separated by “sparse regions”. Figure 1 shows two classic examples taken from [10]:

\begin{itemize}
 \item ϵ: a positive real value;
 \item MinPts: a small positive constant integer.
\end{itemize}

Let $B(p, \epsilon)$ be the d-dimensional ball centered at point p with radius ϵ, where the distance metric is Euclidean distance. $B(p, \epsilon)$ is “dense” if it covers at least MinPts points of P.

DBSCAN forms clusters based on the following rationale. If $B(p, \epsilon)$ is dense, all the points in $B(p, \epsilon)$ should be added to the same cluster as p. This creates a “chained effect”: whenever a new point p' with a dense $B(p', \epsilon)$ is added to the cluster of p, all the points in $B(p', \epsilon)$ should also join the same cluster. The cluster of p continues to grow in this manner to the effect’s fullest extent.

1.1 A Mis-Claim of 17 Years

In their seminal paper [10], Ester et al. claimed that their DBSCAN algorithm terminates in $O(n \log n)$ time. This turns out to be a mis-claim: as pointed out by Gunawan [11] recently, the algorithm of [10] actually runs in $O(n^2)$ worst case time, regardless of the parameters ϵ and MinPts.\footnote{This is in fact quite obvious in retrospect. The algorithm of [10] performs n range queries, each of which reports all the points within distance ϵ from a data point. When the points of P are all within distance ϵ from each other, the total time of all those queries is already $O(n^2)$.}

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

\textcopyright{} 2015 ACM 978-1-4503-2758-9/15/05 ...$15.00.

http://dx.doi.org/10.1145/2723372.2737792.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

SIGMOD ’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.

Copyright \textcopyright{} 2015 ACM 978-1-4503-2758-9/15/05 ...$15.00.

http://dx.doi.org/10.1145/2723372.2737792.
“performance bound” is explicitly stated in the Wikipedia page of DBSCAN\(^2\), major textbooks \([12, 20, 25]\), and a long string of papers \([2, 5, 7, 13, 16, 19, 24, 28, 29, 30]\) (mentioning just 10 of them). Very unfortunately, adverse consequence has ensued: several papers \([14, 21, 23]\) have utilized the O(n log n) “claim” as a building brick to derive new “results”, which have thus all been invalidated the moment the error was found (specifically, the affected results lie in Sec D.1 of \([14]\), Sec 3.2 of \([21]\), and Sec 5.2 of \([23]\)).

In \([11]\), Gunawan also showed that all of the subsequently improved versions of the original DBSCAN algorithm either do not compute the precise DBSCAN result (e.g., see \([6, 15, 26]\)), or still suffer from \(O(n^2)\) running time \([17]\). As a partial remedy, Gunawan developed a new 2D algorithm which truly runs in \(O(n \log n)\) time, but left the \(d \geq 3\) case as an open problem.

The mis-claim in \([10]\) and its 2D remedy \([11]\) leave behind two intriguing questions:

1. For \(d \geq 3\), is it possible to fix the error in \([10]\) by designing an algorithm that genuinely has \(O(n \log n)\) time complexity? To make things easier, is it possible to achieve time complexity \(O(n \log^2 n)\) even for some very large constant \(c\)?

2. If the answer to the previous question is no, it means that DBSCAN in \(d \geq 3\) is computationally intractable in practice even on moderately large \(n\). What should we do if we still want to apply this method to cluster a large dataset? This question becomes increasingly urgent nowadays with the arrival of big data.

1.2 Our Contributions

This paper makes three contributions. First, we prove that the DBSCAN problem requires \(\Omega(n^{4/3})\) time to solve in \(d \geq 3\), unless very significant breakthroughs (ones widely believed to be impossible) can be made in theoretical computer science. Note that \(n^{4/3}\) is arbitrarily larger than \(n \log n\), regardless of constant \(c\).

Second, we introduce a new concept called \(\rho\)-approximate DBSCAN as an alternative to DBSCAN on large datasets of \(d \geq 3\). \(\rho\)-approximate DBSCAN comes with very strong assurances in both quality and efficiency. For quality, its clustering result is guaranteed to be “sandwiched” between the results of DBSCAN obtained with parameters \((\epsilon, \text{MinPts})\) and \((\epsilon(1 + \rho), \text{MinPts})\), respectively. This is very desired in practice, because it is well-known \([2]\) that there is a comfortable range of \(\epsilon\) that will yield good DBSCAN clusters. For efficiency, we prove that \(\rho\)-approximate DBSCAN can be solved in linear \(O(n)\) expected time, for any \(\epsilon\), arbitrarily small constant \(\rho\), and in any fixed dimensionality \(d\)!

Third, we perform DBSCAN experiments on datasets significantly larger than those used in all the previous experiments to our awareness. The experiments reveal that, as predicted by theory, none of the exact DBSCAN algorithms has acceptable running time even in 3D (which perhaps explains why the previous evaluation was done only on small datasets). In contrast, our new \(\rho\)-approximate DBSCAN algorithm exhibits graceful scalability with respect to all parameters, and outperforms even the fastest exact algorithm by a factor up to three orders of magnitude.

1.3 Paper Organization

Section 2 reviews the previous work related to ours. Section 3 provides theoretical evidence on the computational intractability of DBSCAN in practice, and discusses what practitioners can do if they insist on solving the problem exactly. Section 4 proposes \(\rho\)-approximate DBSCAN, elaborates on our algorithm, and establishes its quality and efficiency guarantees. Section 5 evaluates the exact and approximation algorithms with extensive experimentation. Finally, Section 6 concludes the paper with a summary of findings.

2. RELATED WORK

Section 2.1 reviews the DBSCAN definitions as set out by Ester et al. in \([10]\). Section 2.2 describes the 2D algorithm in \([11]\) that solves the problem genuinely in \(O(n \log n)\) time. Section 2.3 points out several results from computational geometry which will be needed to prove the intractability of DBSCAN later.

2.1 Definitions

As before, let \(P\) be a set of \(n\) points in \(d\)-dimensional space \(\mathbb{R}^d\). Given two points \(p, q \in \mathbb{R}^d\), we denote by \(\text{dist}(p, q)\) the Euclidean distance between \(p\) and \(q\). Denote by \(B(p, r)\) the ball centered at a point \(p \in \mathbb{R}^d\) with radius \(r\). Remember that DBSCAN takes two parameters: \(\epsilon\) and \(\text{MinPts}\).

Definition 1. A point \(p \in P\) is a core point if \(B(p, \epsilon)\) covers at least \(\text{MinPts}\) points of \(P\) (including \(p\) itself).

If \(p\) is not a core point, it is said to be a non-core point. To illustrate, suppose that \(P\) is the set of points in Figure 2, where \(\text{MinPts} = 4\) and the two circles have radius \(\epsilon\). Core points are shown in black, and non-core points in white.

Definition 2. A point \(q \in P\) is density-reachable from \(p \in P\) if there is a sequence of points \(p_1, p_2, ..., p_t \in P\) (for some integer \(t \geq 2\)) such that:

- \(p_1 = p\) and \(p_t = q\)
- \(p_1, p_2, ..., p_{t-1}\) are core points
- \(p_{i+1} \in B(p_i, \epsilon)\) for each \(i \in [1, t-1]\).

Note that points \(p\) and \(q\) do not need to be different. In Figure 2, for example, \(o_1\) is density-reachable from itself; \(o_{10}\) is density-reachable from \(o_1\) and from \(o_3\) (through the sequence \(o_3, o_2, o_1, o_{10}\)). On the other hand, \(o_{11}\) is not density-reachable from \(o_{10}\) (recall that \(o_{10}\) is not a core point).

Definition 3. A cluster \(C\) is a non-empty subset of \(P\) such that:

- (Maximality) If a core point \(p \in C\), then all the points density-reachable from \(p\) also belong to \(C\).

![Figure 2: An example dataset (the two circles have radius \(\epsilon\); \(\text{MinPts} = 4\))](image-url)
Definition 3 implies that each cluster contains at least a core point (i.e., \(p \)). In Figure 2, \(\{o_1, o_{10}\} \) is not a cluster because it does not involve all the points density-reachable from \(o_1, \{o_1, o_2, o_3, \ldots, o_{10}\} \), on the other hand, is a cluster.

Ester et al. [10] gave a nice proof that the algorithm has only a linear number \(O(n) \) of connected components.

Lemma 1 ([11]). The number \(k \) is also the number of clusters in \(P \). Furthermore, \(P(V_i) \) (\(1 \leq i \leq k \)) is exactly the set of core points in the \(i \)-th cluster.

Figure 3b shows the \(G \) for Figure 3a (note that there is no edge between cells \(c_{14} \) and \(c_{16} \)).

The algorithm then proceeds by finding all the connected components of \(G \). Let \(k \) be the number of connected components, \(V_i \) (\(1 \leq i \leq k \)) be the set of vertices in the \(i \)-th connected component, and \(P(V_i) \) be the set of core points covered by the cells of \(V_i \).

Lemma 1 ([11]). The number \(k \) is also the number of clusters in \(P \). Furthermore, \(P(V_i) \) (\(1 \leq i \leq k \)) is exactly the set of core points in the \(i \)-th cluster.

Labeling Process. Let \(c_1 \) and \(c_2 \) be two different cells in \(T \). They are \(\epsilon \)-neighbors of each other if the minimum distance between them is at most \(\epsilon \). Figure 3c shows in gray all the \(\epsilon \)-neighbor cells of the cell covering \(o_{10} \). It is easy to see that each cell has at most 21 \(\epsilon \)-neighbors. If a non-empty cell \(c \) contains at least \(\text{MinPts} \) points, then all those points must be core points.

Now consider a cell \(c \) with \(|P(c)| < \text{MinPts} \). Each point \(p \in P(c) \) may or may not be a core point. To find out, the algorithm simply calculates the distances between \(p \) and all the points covered by each of the \(\epsilon \)-neighbor cells of \(c \). This allows us to know exactly the size of \(|B(p, \epsilon)| \), and hence, whether \(p \) is core or non-core.

For example, in Figure 3c, for \(p = o_{10} \), we calculate the distance \(\text{dist} \) between \(o_{10} \) and all the points in the gray cells to find out that \(o_{10} \) is a non-core point.

Computation of \(G \). Fix a core cell \(c_1 \). We will explain how to obtain the edges incident on \(c_1 \) in \(E \). Let \(c_2 \) be a core cell that is an \(\epsilon \)-neighbor of \(c_1 \). For each core point \(p \in P(c_1) \), we find the core point \(p' \in c_2 \) that is the nearest to \(p \). If \(\text{dist}(p, p') \leq \epsilon \), an edge \((c_1, c_2)\) is added to \(G \). On the other hand, if all such \(p \in P(c_1) \) have been tried but still no edge has been created, we conclude that \(E \) has no edge between \(c_1, c_2 \).

As a corollary of the above, each core cell \(c_1 \) has \(O(1) \) incident edges in \(E \) (because it has \(O(1) \) \(\epsilon \)-neighbors). In other words, \(E \) has only a linear number \(O(n) \) of edges.

Assigning Border Points. Recall that each \(P(V_i) \) (\(1 \leq i \leq k \)) includes only the core points in the \(i \)-th cluster of \(P \). It is still necessary to assign each non-core point \(q \) (i.e., border point) to the appropriate clusters. The principle of doing so is simple: if \(p \) is a core point and \(\text{dist}(p, q) \leq \epsilon \), then \(q \) should be added to the (unique) cluster of \(p \). To find all such core points \(p \), Gunawan [11] adopted the following simple algorithm. Let \(c \) be the cell where \(q \) lies. For each \(\epsilon \)-neighbor cell \(c' \) of \(c \), simply calculate the distances from \(q \) to all the core points in \(c' \).

Running Time. Gunawan [11] showed that, other than the computation of \(G \), the rest of the algorithm runs in \(O(\text{MinPts} \cdot \)
\(n) = O(n)\) expected time or \(O(n \log n)\) worst-case time. The computation of \(G\) requires \(O(n)\) nearest neighbor queries, each of which can be answered in \(O(n \log n)\) time after building a Voronoi diagram for each core cell. Therefore, the overall execution time is bounded by \(O(n \log n)\).

2.3 Some Geometric Results

Bichromatic Closest Pair (BCP). Let \(P_1, P_2\) be two sets of points in \(\mathbb{R}^d\) for some constant \(d\). Set \(m_1 = |P_1|\) and \(m_2 = |P_2|\). The goal of the BCP problem is to find a pair of points \((p_1, p_2) \in P_1 \times P_2\) with the smallest distance, namely, \(\text{dist}(p_1, p_2) \leq \text{dist}(p_1', p_2')\) for any \((p_1', p_2') \in P_1 \times P_2\). Figure 4 shows the closest pair for a set of black points and a set of white points.

In 2D space, it is well-known that BCP can be solved in \(O(m_1 \log m_1 + m_2 \log m_2)\) time. The problem is much more challenging for \(d \geq 3\), for which currently the best result is due to Agarwal et al. [1]:

Lemma 2 ([1]). For any fixed dimensionality \(d \geq 4\), there is an algorithm solving the BCP problem in

\[
O \left((m_1 m_2)^{\frac{1}{d-1}} + m_1 \log^2 m_2 + m_2 \log m_1 \right)
\]

expected time, where \(\delta' > 0\) can be an arbitrarily small constant. For \(d = 3\), the expected running time can be improved to

\[
O((m_1 m_2 \cdot \log m_1 \cdot \log m_2)^{\frac{2}{3}} + m_1 \log^2 m_2 + m_2 \log^2 m_1).
\]

Spherical Emptiness and Hopcroft. Let us now introduce the unit-spherical emptiness checking (USEC) problem:

Let \(S_{pt}\) be a set of points, and \(S_{ball}\) be a set of balls with the same radius, all in data space \(\mathbb{R}^d\), where the dimensionality \(d\) is a constant. The objective of USEC is to determine whether there is a point of \(S_{pt}\) that is covered by some ball in \(S_{ball}\).

For example, in Figure 4b, the answer is yes.

Set \(n = |S_{pt}| + |S_{ball}|\). In 3D space, the USEC problem can be solved in \(O(n^{4/3} \log^{4/3} n)\) expected time [1]. Finding a 3D USEC algorithm with running time \(o(n^{4/3})\) is a big open problem in computational geometry, and is widely believed to be impossible; see [8].

Strong hardness results are known about USEC when the dimensionality \(d\) is higher, owing to an established connection between the problem and the Hopcroft’s problem:

Let \(S_{pt}\) be a set of points, and \(S_{line}\) be a set of lines, all in data space \(\mathbb{R}^2\) (note that the dimensionality is always 2). The goal of the Hopcroft’s problem is to determine whether there is a point in \(S_{pt}\) that lies on some line of \(S_{line}\).

For example, in Figure 4c, the answer is no.

The Hopcroft’s problem can be settled in time slightly higher than \(O(n^{4/3})\) time (see [18] for the precise bound), where \(n = |S_{pt}| + |S_{line}|\). It is widely believed [8] that \(\Omega(n^{4/3})\) is a lower bound on how fast the problem can be solved. In fact, this lower bound has already been proved on a broad class of algorithms [9].

It turns out that the Hopcroft’s problem is a key reason of difficulty for a large number of other problems. This phenomenon gave rise to the notion of Hopcroft hard [8]. Specifically, a problem \(X\) is Hopcroft hard if an algorithm solving \(X\) in \(o(n^{4/3})\) time implies an algorithm solving the Hopcroft’s problem in \(o(n^{4/3})\) time. In other words, a lower bound \(\Omega(n^{4/3})\) on the time of solving the Hopcroft’s problem implies the same lower bound on \(X\).

Erickson [9] proved the following relationship between USEC and the Hopcroft’s problem:

Lemma 3 ([9]). The USEC problem in any dimensionality \(d \geq 5\) is Hopcroft hard.

3. DBSCAN IN \(\geq 3\) DIMENSIONS

This section paves the way towards approximate DBSCAN, which is the topic of the next section. In Section 3.1, we establish the computational intractability of DBSCAN in practice via a novel reduction from the USEC problem (see Section 2.3). For practitioners that insist on applying this clustering method with the utmost accuracy, in Section 3.2, we present a new exact DBSCAN algorithm that outperforms all the previous solutions in time complexity.

3.1 Hardness of DBSCAN

We will prove:

Theorem 1. The following statements are true about the DBSCAN problem:

- It is Hopcroft hard in any dimensionality \(d \geq 5\). Namely, the problem requires \(\Omega(n^{4/3})\) time to solve, unless the Hopcroft problem can be settled in \(o(n^{4/3})\) time.
- When \(d = 3\) (and hence, \(d = 4\)), the problem requires \(\Omega(n^{4/3})\) time to solve, unless the USEC problem can be settled in \(o(n^{4/3})\) time.

As mentioned in Section 2.3, it is widely believed that neither the Hopcroft problem nor the USEC problem can be solved in \(o(n^{4/3})\) time—any such algorithm would be a celebrated breakthrough in theoretical computer science.

Proof of Theorem 1. We observe a subtle connection between USEC and DBSCAN:

Lemma 4. For any dimensionality \(d\), if we can solve the DBSCAN problem in \(T(n)\) time, then we can solve the USEC problem in \(T(n) + O(n)\) time.

Proof. Recall that the USEC problem is defined by a set \(S_{pt}\) of points and a set \(S_{ball}\) of balls with equal radii, both in \(\mathbb{R}^d\). Denote
by \(A \) a DBSCAN algorithm in \(\mathbb{R}^d \) that runs in \(T(n) \) time on \(m \) points. Next, we describe an algorithm that deploys \(A \) as a black box to solve the USEC problem in \(T(n) + O(n) \) time, where \(n = |S_{pt}| + |S_{ball}| \).

Our algorithm is simple:

1. Obtain \(P \), which is the union of \(S_{pt} \) and the set of centers of the balls in \(S_{ball} \).
2. Set \(\epsilon \) to the identical radius of the balls in \(S_{ball} \).
3. Run \(A \) to solve the DBSCAN problem on \(P \) with this \(\epsilon \) and \(\text{MinPts} = 1 \).
4. If any point in \(S_{pt} \) and any center of \(S_{ball} \) belong to the same cluster, then return yes for the USEC problem (namely, a point in \(S_{pt} \) is covered by some ball in \(S_{ball} \)). Otherwise, return no.

It is fundamental to implement the above algorithm in \(T(n) + O(n) \) time. Next, we prove its correctness.

Case 1: We return yes. We will show that in this case there is indeed a point of \(S_{pt} \) that is covered by some ball in \(S_{ball} \).

Recall that a yes return means a point \(p \in S_{pt} \) and the center \(q \) of some ball in \(S_{ball} \) have been placed in the same cluster, which we denote by \(C \). By connectivity of Definition 3, there exists a point \(z \in C \) such that both \(p \) and \(q \) are density-reachable from \(z \).

By setting \(\text{MinPts} = 1 \), we ensure that all the points in \(P \) are core points. In general, if a core point \(p_1 \) is density-reachable from \(p_2 \) (which by definition must be a core point), then \(p_2 \) is also density-reachable from \(p_1 \) (as can be verified by Definition 2).

This means that \(z \) is density-reachable from \(p_i \), which—together with the fact that \(q \) is density-reachable from \(z \)—shows that \(q \) is density-reachable from \(p \).

It thus follows by Definition 2 that there is a sequence of points \(p_1, p_2, ..., p_t \in P \) such that (i) \(p_1 = p, p_t = q \), and (ii) \(\text{dist}(p_i, p_{i+1}) \leq \epsilon \) for each \(i \in [1, t - 1] \). Let \(k \) be the smallest \(i \in [2, t] \) such that \(p_i \) is the center of a ball in \(S_{ball} \). Note that \(k \) definitely exists because \(p_1 \) is such a center. It thus follows that \(p_{k-1} \) is a point from \(S_{pt} \), and that \(p_{k-1} \) is covered by the ball in \(S_{ball} \) centered at \(p_k \).

Case 2: We return no. We will show that in this case no point of \(S_{pt} \) is covered by any ball in \(S_{ball} \).

This is in fact very easy. Suppose on the contrary that a point \(p \in S_{pt} \) is covered by a ball of \(S_{ball} \) centered at \(q \). Thus, \(\text{dist}(p, q) \leq \epsilon \), namely, \(q \) is density-reachable from \(p \). Then, by maximality of Definition 3, \(q \) must be in the cluster of \(p \) (recall that all the points of \(P \) are core points). This contradicts the fact that we returned no. ∎

Theorem 1. We return yes. Let \(P \) be the point set of \(n \) points in \(\mathbb{R}^d \) to be clustered. We still take parameters \(\epsilon \) and \(\text{MinPts} \), but in addition, also a third parameter \(\rho \), which can be any arbitrarily small positive constant, and controls the degree of approximation.

Next, we re-visit the basic definitions of DBSCAN in Section 2, and modify some of them to their \(\rho \)-approximate versions. First, the notion of core/non-core point remains the same as Definition 1. The concept of density-reachability in Definition 2 is also inherited directly, but we will also need:

Definition 4. A point \(q \in P \) is \(\rho \)-approximate density-reachable from \(p \in P \) if there is a sequence of points \(p_1, p_2, ..., p_t \in P \) (for some integer \(t \geq 2 \)) such that:

- \(p_1 = p \) and \(p_t = q \)
- \(p_1, p_2, ..., p_{t-1} \) are core points
- \(p_{t+1} \in B(p_i, \epsilon(1 + \rho)) \) for each \(i \in [1, t - 1] \).

Note the difference between the above and Definition 2: in the third bullet, the radius of the ball is increased to \(\epsilon(1 + \rho) \). To illustrate, consider a small input set \(P \) as shown in Figure 5. Set \(\text{MinPts} = 4 \). The inner and outer circles have radii \(\epsilon \) and \(\epsilon(1 + \rho) \), respectively. Core and non-core points are in black and white, respectively. Point \(o_5 \) is \(\rho \)-approximate density-reachable from \(o_3 \) (via sequence: \(o_3, o_2, o_1, o_5 \)). However, \(o_5 \) is not density-reachable from \(o_3 \).

Definition 5. A \(\rho \)-approximate cluster \(C \) is a non-empty subset of \(P \) such that:

Theorem 2. For any fixed dimensionality \(d \geq 3 \), there is an algorithm solving the DBSCAN problem in \(O(n^{2 - \frac{d}{2(d + 1)}}) \) expected time, where \(\delta > 0 \) can be an arbitrarily small constant. For \(d = 3 \), the running time can be improved to \(O((n \log n)^{4/3}) \) expected time.
The next theorem formalizes the quality assurance mentioned earlier: of the quality guarantee to be proved next.

- (Maximality) If a core point \(p \in C \), then all the points density-reachable from \(p \) also belong to \(C \).
- (\(\rho \)-Approximate Connectivity) For any points \(p_1, p_2 \in C \), there exists a point \(p \in C \) such that both \(p_1 \) and \(p_2 \) are \(\rho \)-approximate density-reachable from \(p \).

Note the difference between the above and the original cluster formulation (Definition 1): the connectivity requirement has been weakened into \(\rho \)-approximate connectivity. In Figure 5, both \(\{o_1, o_2, o_3, o_4\} \) and \(\{o_1, o_2, o_3, o_4, o_5\} \) are \(\rho \)-approximate clusters.

Problem 2. The \(\rho \)-approximate DBSCAN problem is to find a set \(\mathcal{C} \) of \(\rho \)-approximate clusters of \(P \) such that every core point of \(P \) appears in exactly one \(\rho \)-approximate cluster.

Unlike the original DBSCAN problem, the \(\rho \)-approximate version may not have a unique result. In Figure 5, for example, it is legal to return either \(\{o_1, o_2, o_3, o_4\} \) or \(\{o_1, o_2, o_3, o_4, o_5\} \). Nevertheless, any result of the \(\rho \)-approximate problem comes with the quality guarantee to be proved next.

4.2 A Sandwich Theorem

Both DBSCAN and \(\rho \)-approximate DBSCAN are parameterized by \(\epsilon \) and \(\text{MinPts} \). It would be perfect if they can always return exactly the same clustering results. Of course, this is too good to be true. Nevertheless, in this subsection, we will show that this is almost true: the result of \(\rho \)-approximate DBSCAN is guaranteed to be somewhere between the (exact) DBSCAN results obtained by \((\epsilon, \text{MinPts}) \) and by \((\epsilon(1 + \rho), \text{MinPts}) \)! It is well-known that the clusters of DBSCAN rarely differ considerably when \(\epsilon \) changes by just a small factor—in fact, if this really happens, it suggests that the choice of \(\epsilon \) is very bad, such that the exact clusters are not stable anyway (we will come back to this issue later)!

Let us define:

- \(\mathcal{C}_1 \) as the set of clusters of DBSCAN with parameters \((\epsilon, \text{MinPts})\)
- \(\mathcal{C}_2 \) as the set of clusters of DBSCAN with parameters \((\epsilon(1 + \rho), \text{MinPts})\).
- \(\mathcal{C} \) as an arbitrary set of clusters that is a legal result of \((\epsilon, \text{MinPts}, \rho)\)-approx-DBSCAN.

The next theorem formalizes the quality assurance mentioned earlier:

Theorem 3. (Sandwich Quality Guarantee). The following statements are true:

1. For any cluster \(C_1 \in \mathcal{C}_1 \), there is a cluster \(C \in \mathcal{C} \) such that \(C_1 \subseteq C \).
2. For any cluster \(C \in \mathcal{C} \), there is a cluster \(C_2 \in \mathcal{C}_2 \) such that \(C \subseteq C_2 \).

Proof. To prove Statement 1, let \(p \) be an arbitrary core point in \(C_1 \). Then, \(C_1 \) is precisely the set of points in \(P \) density-reachable from \(p \).

In general, if a point \(q \) is density-reachable from \(p \) in \((\epsilon, \text{MinPts})\)-exact-DBSCAN, \(q \) is also density-reachable from \(p \) in \((\epsilon, \text{MinPts}, \rho)\)-approx-DBSCAN. By maximality of Definition 5, if \(C \) is the cluster in \(\mathcal{C} \) containing \(p \), then all the points of \(C_1 \) must be in \(C \).

To prove Statement 2, consider an arbitrary core point \(p \in C \) (there must be one by Definition 5). In \((\epsilon(1 + \rho), \text{MinPts})\)-exact-DBSCAN, \(p \) must also be a core point. We choose \(C_2 \) to be the cluster of \(\mathcal{C}_2 \) where \(p \) belongs. Now, fix an arbitrary point \(q \in C \). In \((\epsilon, \text{MinPts}, \rho)\)-approx-DBSCAN, by \(\rho \)-approximate connectivity of Definition 5, we know that \(p \) and \(q \) are both \(\rho \)-approximate reachable from a point \(z \). This implies that \(z \) is also \(\rho \)-approximate reachable from \(p \). Hence, \(q \) is \(\rho \)-approximate reachable from \(p \). This means that \(q \) is density-reachable from \(p \) in \((\epsilon(1 + \rho), \text{MinPts})\)-exact-DBSCAN, indicating that \(q \in C_2 \).

Here is an alternative, more intuitive, interpretation of Theorem 3:

- Statement 1 says that if two points belong to the same cluster of DBSCAN with parameters \((\epsilon, \text{MinPts})\), they are definitely in the same cluster of \(\rho \)-approximate DBSCAN with the same parameters.
- On the other hand, a cluster of \(\rho \)-approximate DBSCAN parameterized by \((\epsilon, \text{MinPts})\) may also contain two points \(p_1, p_2 \) that are in different clusters of DBSCAN with the same parameters. However, this is not bad because Statement 2 says that as soon as the parameter \(\epsilon \) increases to \((1 + \rho)\), \(p_1 \) and \(p_2 \) will fall into the same cluster of DBSCAN!

Figure 6 nicely illustrates the effects of approximation. How many clusters are there? Interestingly, the answer is it depends. As pointed out in the classic OPTICS paper [2], different \(\epsilon \) values allow us to view the dataset from various granularities, leading to different clustering results. In Figure 6, given \(\epsilon_1 \) (and some
Given any point P of \mathbb{R}^d, DBSCAN outputs 3 clusters. Given ϵ_2, on the other hand, DBSCAN outputs 2 clusters, which makes sense because at this distance, the two clusters on the right merge into one.

Now let us consider approximation. The dashed circles illustrate the radii obtained with ρ-approximation. For both ϵ_1 and ϵ_2, ρ-approximate DBSCAN will return exactly the same clusters, because these distances are robustly chosen by being insensitive to small perturbation. For ϵ_3, however, ρ-approximate DBSCAN may return only one cluster (i.e., all points in the same cluster), whereas exact DBSCAN will return only two (i.e., the same two clusters as ϵ_2). By looking at the figure closely, one can realize that this happens because the dashed circle of radius $\rho(1 + \epsilon_3)$ “happens” to pass a point—namely point o—which falls outside the solid circle of radius ϵ_3. Intuitively, ϵ_3 is a poor parameter choice because it is too close to the distance between two clusters such that a small change to it will cause the clustering results to be altered.

4.3 Approximate Range Counting

Let us now take a break from DBSCAN, and turn our attention to a different problem, whose solution is vital to our ρ-approximate DBSCAN algorithm.

Let P still be a set of n points in \mathbb{R}^d where d is a constant. Given any point $q \in \mathbb{R}^d$, a distance threshold $\epsilon > 0$ and an arbitrarily small constant $\rho > 0$, an approximate range count query returns an integer that is guaranteed to be between $|B(q, \epsilon \cap \mathcal{P})|$ and $|B(q, \epsilon(1 + \rho)) \cap \mathcal{P}|$. For example, in Figure 5, given $q = o_1$, a query may return either 4 or 5.

Arya and Mount [3] developed a structure of $O(n)$ space that can be built in $O(n) \log n$ time, and answers any such query in $O(n \log n)$ time. Next, we design an alternative structure with better performance in our context:

Lemma 5. For any fixed ϵ and ρ, there is a structure of $O(n)$ space that can be built in $O(n \log n)$ expected time, and answers any approximate range count query in $O(1)$ expected time.

Structure. Our structure is a simple quadtree-like hierarchical grid partitioning of \mathbb{R}^d. First, impose a regular grid on \mathbb{R}^d where each cell is a d-dimensional hyper-square with side length $\sqrt[2^d]{\epsilon \rho}$. For each non-empty cell c of the grid (i.e., c covers at least 1 point of P), divide it into 2^d children cells of the same size. For each resulting non-empty cell c', divide it recursively in the same manner, until the side length of c' is at most $\epsilon \rho \sqrt[2^d]{\epsilon \rho}$.

We use H to refer to the hierarchy thus obtained. We keep only the non-empty cells of H, and for each such cell c, record $cnt(c)$ which is the number of points in P covered by c. We will refer to a cell of H with side length $\sqrt[2^d]{\epsilon \rho}$ as a level-i cell. Clearly, H has only $h = \max\{1, 1 + \lceil \log_2(1/\rho) \rceil\} = O(1)$ levels. If a level-(i + 1) cell c' is inside a level-i cell c, we say that c' is a child of c, and c a parent of c'. A cell with no children is called a leaf cell.

Figure 7 illustrates the part of the first three levels of H for the dataset on the left. Note that empty cells are not stored.

Query. Given an approximate range count query with parameters q, ϵ, ρ, we compute its answer ans as follows. Initially, $ans = 0$.

In general, given a non-empty level-i cell c, we distinguish three cases:

- If c is disjoint with $B(q, \epsilon)$, ignore it.
- If c is fully covered by $B(q, \epsilon(1 + \rho))$, add $cnt(c)$ to ans.
- When neither of the above holds, check if c is a leaf cell in H. If not, process the child cells of c in the same manner. Otherwise (i.e., c is a leaf), add $cnt(c)$ to ans only if c intersects $B(q, \epsilon)$.

The algorithm starts from the level-0 non-empty cells that intersect with $B(q, \epsilon)$.

To illustrate, consider the query shown in Figure 7. The two gray cells correspond to nodes SW(5) and NE(4) at level 2. The subtree of neither of them is visited, but the reasons are different. For SW(5), its cell is disjoint with $B(q, \epsilon)$, so we ignore it (even though it intersects $B(q, \epsilon(1 + \rho))$). For NE(4), its cell completely falls in $B(q, \epsilon(1 + \rho))$, so we add its count 4 to the result (even though it is not covered by $B(q, \epsilon)$).

Correctness. The above algorithm has two guarantees. First, if a point $p \in P$ is inside $B(q, \epsilon)$, it is definitely counted in ans. Second, if p is outside $B(q, \epsilon(1 + \rho))$, then it is definitely not counted in ans. These guarantees are easy to verify, utilizing the fact that if a leaf cell c intersects $B(p, \epsilon)$, then c must fall completely in $B(p, \epsilon(1 + \rho))$ because any two points in a leaf cell are within distance $\epsilon \rho$. It thus follows that the ans returned is a legal answer.

Time Analysis. Remember that the hierarchy H has $O(1)$ levels. Since there are $O(n)$ non-empty cells at each level, the total space is $O(n \log n)$. With hashing, it is easy to build the structure level by level in $O(n \log n)$ expected time.

To analyze the running time of our query algorithm, observe that each cell c visited by our algorithm must satisfy one of the following conditions: (i) c is a level-0 cell, or (ii) the parent of c intersects the boundary of $B(q, \epsilon)$. For type-(i), the $O(1)$ level-0 cells intersecting $B(q, \epsilon)$ can be found in $O(1)$ expected time using the coordinates of q. For type-(ii), it suffices to bound the number of cells intersecting the boundary of $B(q, \epsilon)$ because each such cell has $2^d = O(1)$ child nodes.

In general, a d-dimensional grid of cells with side length l has $O((1 + \frac{\epsilon}{\sqrt[2^d]{\epsilon \rho}})^d)$ cells intersecting the boundary of a sphere with radius θ [3]. Combining this and the fact that a level-i cell has side length $\sqrt[2^d]{\epsilon \rho}$, we know that the total number of cells (of all levels) intersecting the boundary of $B(q, \epsilon)$ is bounded by:

$$
\sum_{i=0}^{h-1} O\left(1 + \left(\frac{\epsilon}{\sqrt[2^d]{\epsilon \rho}}\right)^d\right)^{d-1} = O\left(\left(2^d\right)^{d-1}\right) = O\left(1 + (1/\rho)^{d-1}\right)
$$

which is a constant for any fixed ρ. This concludes the proof of Lemma 5.

4.4 Solving ρ-Approximate DBSCAN

We are now ready to solve the ρ-approximate DBSCAN problem by proving our last main result:
Algorithm. Our \(\rho \)-approximate algorithm differs from the exact algorithm we proposed in Section 3.2 only in the definition and computation of the graph \(G \). We re-define \(G = (V, E) \) as follows:

- As before, each vertex in \(V \) is a core cell of the grid \(T \) (remember that the algorithm of Section 3.2 imposes a grid \(T \) on \(\mathbb{R}^d \), where a cell is a core cell if it covers at least one core point).
- Given two different core cells \(c_1, c_2 \), whether \(E \) has an edge between \(c_1 \) and \(c_2 \) obeys the rules below:
 - yes, if there exist core points \(p_1, p_2 \) in \(c_1, c_2 \), respectively, such that \(\text{dist}(p_1, p_2) \leq \epsilon \).
 - no, if no core point in \(c_1 \) is within distance \(\epsilon(1 + \rho) \) from any core point in \(c_2 \).
 - don’t care, in all the other cases.

To compute \(G \), our algorithm starts by building, for each core cell \(c \) in \(T \), a structure of Lemma 5 on the set of core points in \(c \). To generate the edges of a core cell \(c_1 \), we examine each \(\epsilon \)-neighbor cell \(c_2 \) of \(c_1 \) in turn. For every core point \(p \) in \(c_1 \), do an approximate range count query on the set of core points in \(c_2 \). If the query returns a non-zero answer, add an edge \((c_1, c_2)\) to \(G \). If all such \(p \) have been tried but still no edge has been added, we decide that there should be no edge between \(c_1 \) and \(c_2 \).

Correctness. Let \(C \) be an arbitrary cluster returned by our algorithm. We will show that \(C \) satisfies Definition 5.

Maximality. Let \(p \) be an arbitrary core point in \(C \), and \(q \) be any point of \(P \) density-reachable from \(p \). We will show that \(q \in C \). To do so, we consider that \(q \) is a core point. By Definition 2, there is a sequence of core points \(p_1, p_2, ..., p_l \) (for some integer \(t \geq 2 \)) such that \(p_1 = p, p_l = q \), and \(\text{dist}(p_i, p_{i+1}) \leq \epsilon \) for each \(i \in [1, t - 1] \). Denote by \(c_i \) the cell of \(T \) covering \(p_i \). By the way \(G \) is defined, there must be an edge between \(c_i \) and \(c_{i+1} \), for each \(i \in [1, t - 1] \). It thus follows that \(c_1 \) and \(c_2 \) must be in the same connected component of \(G \); therefore, \(p \) and \(q \) must be in the same cluster. The correctness of the other scenario where \(q \) is a non-core point is trivially guaranteed by the way that non-core points are assigned to clusters.

\(\rho \)-Approximate Connectivity. Let \(p \) be an arbitrary core point in \(C \). For any point \(q \in C \), we will show that \(q \) is \(\rho \)-approximate density-reachable from \(p \). Again, we consider first that \(q \) is a core point. Let \(c_0 \) and \(c_1 \) be the cells of \(T \) covering \(p \) and \(q \), respectively. Since \(c_0 \) and \(c_1 \) are in the same connected component of \(G \), there is a path \(c_1, c_2, ..., c_n \) in \(G \) (for some integer \(t \geq 2 \)) such that \(c_1 = c_0 \) and \(c_n = c_1 \). Recall that any two points in the same cell are within distance \(\epsilon \). Combining this fact with how the edges of \(G \) are defined, we know that there is a sequence of core points \(p_1, p_2, ..., p_n \) (for some integer \(t \geq 2 \)) such that \(p_1 = p, p_n = q \), and \(\text{dist}(p_i, p_{i+1}) \leq \epsilon(1 + \rho) \) for each \(i \in [1, t - 1] \). Therefore, \(q \) is \(\rho \)-approximate density-reachable from \(p \).

Time Analysis. It takes \(O(n) \) expected time to construct the structure of Lemma 5 for all cells. The expected time of computing \(G \) is proportional to the number of approximate range count queries issued. For each core point of a cell \(c_1 \), we issue \(O(1) \) queries in total (one for each \(\epsilon \)-neighbor cell of \(c_2 \)). Hence, the total number of queries is \(O(n) \). The rest of the \(\rho \)-approximate algorithm runs in \(O(n) \) expected time, following the same analysis in [11]. This completes the proof of Theorem 4. It is worth mentioning that, intuitively, the efficiency improvement of our approximate algorithm (over the exact algorithm in Section 3.2) owes to the fact that we settle for an imprecise solution to the BCP problem by using Lemma 5.

5. EXPERIMENTS

We now present an empirical evaluation of the proposed techniques. All the experiments were run on a machine equipped with 3.2GHz CPU and 8 GB memory. The operating system was Linux (Ubuntu 13.04). All the programs were coded in C++, and compiled using g++ with -O3 turned on.

Section 5.1 describes the datasets in our experimentation, after which we present our findings in two parts. First, Section 5.2 assesses the clustering precision of \(\rho \)-approximate DBSCAN. Then, Section 5.3 demonstrates the vast efficiency gain achieved by our approximation algorithm compared to exact DBSCAN.

5.1 Datasets

Except in a single experiment (for visualization), we focused on dimensionality \(d \geq 3 \) because the 2D case has been well solved in [11]. In all cases, the underlying data space had a normalized domain of \([0, 10^5]\) for every dimension. We deployed both synthetic and real datasets whose details are explained next.

Synthetic: Seed Spreader (SS). A synthetic dataset was generated in a “random walk with restart” fashion. First, fix the dimensionality \(d \), take the target cardinality \(n \), a restart probability \(\rho_{\text{restart}} \), and a noise percentage \(\rho_{\text{noise}} \). Then, we simulate a seed spreader that moves about in the space, and spits out data points around its current location. The spreader carries a local counter such that whenever the counter reaches 0, the spreader moves a distance of \(r_{\text{shift}} \) towards a random direction, after which the counter is reset to \(\rho_{\text{inert}} \). The spreader works in steps. In each step, (i) with probability \(\rho_{\text{restart}} \), the spreader restarts, by jumping to a random location in the data space, and resetting its counter to \(\rho_{\text{inert}} \); (ii) no matter if a restart has happened, the spreader produces a point uniformly at random in the ball centered at its current location with radius 100, after which the local counter decreases by 1. Intuitively, every time a restart happens, the spreader begins to generate a new cluster. In the first step, a restart is forced so as to put the spreader at a random location. We repeat in total \(n(1 - \rho_{\text{noise}}) \) steps, which generate the same number of points.

<table>
<thead>
<tr>
<th>parameter</th>
<th>values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n) (synthetic)</td>
<td>100k, 0.5m, 1m, 2m, 5m, 10m</td>
</tr>
<tr>
<td>(d) (synthetic)</td>
<td>3, 5, 7</td>
</tr>
<tr>
<td>(\epsilon)</td>
<td>from 5000 to the collapsing radius</td>
</tr>
<tr>
<td>(\rho)</td>
<td>from 0.001, 0.01, 0.02, ..., 0.1</td>
</tr>
</tbody>
</table>

Table 1: Parameter values (defaults in bolds)
Finally, we add \(n \cdot \rho_{\text{noise}} \) noise points, each of which is uniformly distributed in the whole space.

Figure 8 shows a small 2D dataset which was generated with \(n = 1000 \) and had 4 restarts; the dataset will be used for visualization. In all the other experiments, \(c_{\text{reset}} = 100, r_{\text{shift}} = 50d, \rho_{\text{restart}} \) was fixed to \(10/(n(1 - \rho_{\text{noise}})) \) with \(\rho_{\text{noise}} = 1/10^4 \). In expectation, around 10 restarts would occur in the generation. The value of \(n \) ranged from 100k all the way to 10 million, while \(d \) from 3 to 7. See Table 1.

Real. Three real datasets were employed in our experimentation. The first one, PAMAP2, is a 4-dimensional dataset with cardinality 3,850,505, obtained by taking the first 4 principle components of a PCA on the PAMAP2 database [22] from the UCI machine learning archive [4]. The second one, Farm, is a 5-dimensional dataset with cardinality 3,627,086, which contains the VZ-features [27] of a satellite image of a farm in Saudi Arabia\(^4\). It is worth noting that VZ-feature clustering is a common approach to perform color segmentation of an image [27]. The third one, Household, is a 7-dimensional dataset with cardinality 2,049,280, which includes all the attributes of the Household database again from the UCI archive [4] except the temporal columns date and time. Points in the original database with missing coordinates were removed.

Collapsing Radius. The parameter \(\text{MinPts} \) was fixed to 100 in all cases (except only the visualization experiment). Every dataset has a unique collapsing radius, which is the smallest \(\epsilon \) such that exact DBSCAN returns a single cluster. For each dataset, we inspected a wide range of \(\epsilon \) from 5000 all the way to its collapsing radius.

5.2 Approximation Quality

2D Visualization. Let us start by showing to the reader directly the effects of approximation. For this purpose, we take the 2D dataset in Figure 8 as the input (note that the cardinality was deliberately chosen to be small to facilitate visualization), and fixed \(\text{MinPts} = 20 \). Figure 9a demonstrates the 4 clusters found by exact DBSCAN with \(\epsilon = 5000 \) (which is the radius of the circle shown). The points of each cluster are depicted with the same color and marker. Figures 9b, 9c, and 9d present the clusters found by our \(\rho \)-approximate DBSCAN when \(\rho \) equals 0.001, 0.01, and 0.1, respectively. In all cases, \(\rho \)-approximate DBSCAN returned exactly the same clusters as DBSCAN.

Making things more interesting, in Figure 9e, we increased \(\epsilon \) to 11300 (again, \(\epsilon \) is the radius of the circle shown). This time, DBSCAN found 3 clusters (note that 2 clusters in Figure 9a have merged). Figures 9f, 9g, and 9h give the clusters of \(\rho \)-approximate DBSCAN when \(\rho \) equals 0.001, 0.01, and 0.1, respectively. Once again, the clusters of \(\rho \) = 0.001 and 0.01 are exactly the same as DBSCAN. However, 0.1-approximate DBSCAN returned only 2 clusters. This can be understood by observing that the circle in Figure 9e almost touched a point from a different cluster. In fact, it will, once \(\epsilon \) increases by 10\%, which explains why 0.1-approximate DBSCAN produced different results.

Then we pushed \(\epsilon \) even further to 12200 so that DBSCAN yielded 2 clusters as shown in Figure 9i. Figures 9j, 9k, and 9l

\(^4\)http://www.satimagingcorp.com/gallery/ikonos/ikonos-tadco-farms-saudi-arabia
illustrate the clusters of ρ-approximate DBSCAN for $\rho = 0.001$, 0.01, and 0.1, respectively. Here, both $\rho = 0.01$ and 0.1 had given up, but $\rho = 0.001$ still robustly churned out exactly the same clusters as DBSCAN.

Surprised by $\rho = 0.01$ not working, we examined carefully the reason behind its failure, and then, realized something interesting. It turned out that 12200 was extremely $\rho = 2m$, respectively. In each diagram, the range of ϵ is in fact an “unstable” value for ρ.

How to evaluate the maximum legal ρ? We now proceed to inspect the running time of DBSCAN clustering using four algorithms:

- **KDD96** [10]: the original DBSCAN algorithm in [10];
- **CIT08** [17]: the state of the art of exact DBSCAN, namely, the fastest existing algorithm able to produce the same DBSCAN result as **KDD96**;
- **OurExact**: the exact DBSCAN algorithm we developed in Theorem 2;
- **OurApprox**: the ρ-approximate DBSCAN algorithm we proposed in Theorem 4.

Scalability with Cardinality n. The first experiment examines how each method scales with the number n objects. For this purpose, we used synthetic SS datasets of 3D, 5D, and 7D by varying n from 100k to 10m. The results are presented in Figure 11—note that the y-axis is in log scale. If **KDD96** and **CIT08** do not have results at a value of n, it means that they did not terminate within 12 hours in the corresponding experiments! **OurExact** managed to finish within 10^4 seconds (less than 3 hours) even on the largest dataset. However, this is dwarfed by the superb efficiency of **OurApprox** which took less than 490 seconds in all cases, and were often faster than **OurExact** by a factor of two orders of magnitude.

As an interesting note, all methods were fast when the dataset was small, e.g., when $n = 100k$. This is perhaps the reason why most (if not all) of the previous evaluation of DBSCAN algorithms, as far as we are aware, was on datasets of this scale.

In other words, those values of ϵ are unstable anyway. This can also be seen from sandwich theorem (Theorem 3), namely, the results of 0.001-approximate DBSCAN must fall between the results of DBSCAN with ϵ and 1.001ϵ, respectively. Hence, if 0.001-approximate DBSCAN differs from DBSCAN, it means that the results of DBSCAN have changed within $[\epsilon, 1.001\epsilon]$!
two methods are heavily dependent on the data distribution. In any case, OurApprox consistently outperformed all other methods significantly in Figure 12.

Influence of Approximation Ratio ρ. Finally, Figure 13 shows the running time of OurApprox as a function of ρ, on the 3D, 5D, 7D SS datasets of size 2m and the real datasets. Very much as expected, when ρ increased (i.e., less precision is demanded), OurApprox became more efficient.

6. CONCLUSIONS

DBSCAN is a creative, elegant, and effective technique for density-based clustering, which is very extensively applied in data mining, machine learning, and databases. However, all the existing DBSCAN algorithms have poor scalability with the dataset size in dimensionality $d \geq 3$. This is unfortunate because clustering in $d \geq 3$ is important, due to the frequent need of using multiple features to accurately model an object.

In this paper, we explain rigorously why the community’s search for a fast DBSCAN algorithm for $d \geq 3$ has been unsuccessful. We show that, unless very significant breakthroughs (ones widely believed to be impossible) can be made in theoretical computer science, the DBSCAN algorithm requires $\Omega(n^{4/3})$ time.
to solve, where \(n \) is the size of the underlying dataset. This strongly polynomial complexity essentially states that DBSCAN is computationally intractable in practice, even for moderately large \(n \). This is very disappointing especially given the arrival of the big data era. Motivated by this, we propose the novel concept of \(\rho \)-approximate DBSCAN, which is designed to replace DBSCAN on large-scale data. We prove both theoretical and experimentally that \(\rho \)-approximate DBSCAN has excellent guarantees both in the quality of cluster approximation and computational efficiency. In fact, almost in all scenarios, it returns exactly the same clusters as DBSCAN but requires computation time only linear to \(n \).

7. REFERENCES

Proof of Theorem 2

It suffices to analyze the time used by our algorithm to generate the edges of \(G \). The other parts of the algorithm use \(O(n) \) expected time, following the analysis of [11].

Let us consider first \(d \geq 4 \). First, fix the value of \(\delta \) in Theorem 2. Define: \(\lambda = n^{1/2}d - \delta/2 \). Given a core cell \(c \), we denote by \(m_c \) the number of core points in \(c \). Then, by Lemma 2, the time we spend generating the edges of \(G \) is

\[
\sum_{c \in \text{core cells}} O \left(m_c m_{c'} \right)^{1-\lambda} + m_c \log m_c + m_{c'} \log m_{c'}.
\]

To bound the first term, we derive

\[
\sum_{c \in \text{core cells}} O \left(m_c m_{c'} \right)^{1-\lambda} \leq \sum_{c \in \text{core cells}} O \left(m_c m_{c'} \right)^{1-\lambda} + \sum_{c \in \text{core cells}} O \left(m_c m_{c'} \right)^{1-\lambda}
\]

\[
= \sum_{c \in \text{core cells}} O \left(m_c m_{c'} \right)^{1-\lambda} + \sum_{c \in \text{core cells}} O \left(m_c m_{c'} \right)^{1-\lambda}
\]

\[
= \sum_{c \in \text{core cells}} O \left(m_c m_{c'} \right)^{1-\lambda} + \sum_{c \in \text{core cells}} O \left(m_c m_{c'} \right)^{1-\lambda}
\]

\[
= O \left(m_c m_{c'} \right)^{1-\lambda} + \sum_{c \in \text{core cells}} O \left(m_c m_{c'} \right)^{1-\lambda}
\]

\[
= O \left(m_c m_{c'} \right)^{1-\lambda} + \sum_{c \in \text{core cells}} O \left(m_c m_{c'} \right)^{1-\lambda}
\]

where the last equality used the fact that \(c \) has only \(O(1) \) \(\epsilon \)-neighbor cells as long as \(d \) is a constant (and hence, \(m_c \) can be added only \(O(1) \) times). The other terms in (1) are easy to bound:

\[
\sum_{c \in \text{core cells}} \sum_{c' \in \text{core cells}} O \left(m_c m_{c'} \right)^{1-\lambda} + \sum_{c \in \text{core cells}} O \left(m_c m_{c'} \right)^{1-\lambda} + \sum_{c \in \text{core cells}} O \left(m_c m_{c'} \right)^{1-\lambda} + \sum_{c \in \text{core cells}} O \left(m_c m_{c'} \right)^{1-\lambda}
\]

\[
= O \left(m_c m_{c'} \right)^{1-\lambda} + \sum_{c \in \text{core cells}} O \left(m_c m_{c'} \right)^{1-\lambda} + \sum_{c \in \text{core cells}} O \left(m_c m_{c'} \right)^{1-\lambda} + \sum_{c \in \text{core cells}} O \left(m_c m_{c'} \right)^{1-\lambda}
\]

In summary, we spend \(O(n^{2-\lambda}) \) time generating the edges of \(E \). This proves the part of Theorem 2 for \(d \geq 4 \). An analogous analysis based on the \(d = 3 \) branch of Lemma 2 establishes the other part of Theorem 2.