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ABSTRACT

This thesis is concerned with the theory of Diophantine approximation, simulta-

neous Diophantine approximation and the geometry numbers and its application to

problems in signal processing involving periodic pulse trains. The contributions of

the thesis are in computational mathematics and algorithms for signal processing.

We begin with a review of Diophantine approximation. The notions of best Dio-

phantine approximation are developed. The relationship of Euclid’s algorithm with

best homogeneous approximation and Cassels’ algorithm with best inhomogeneous

approximation is explored. We also examine the relationship of best approximations

with other mathematical objects. We discover a direct relationship between the suc-

cessive maxima of certain periodograms and the best Diophantine approximations

of a real number.

After reviewing some of the theory of the geometry of numbers, such as point

lattices, Minkowski’s theorems, lattice reduction and the LLL algorithm, we study

simultaneous Diophantine approximation. We develop algorithms which are able to

find successive best simultaneous Diophantine approximations for lattices of ranks

two and three under quite general conditions. For lattices of rank three, the al-

gorithms are able to find successive best approximations by lattice points of both

lines and planes. We also review Brun’s algorithm and more modern algorithms

such as the HJLS algorithm of Hastad et al. (1989) for simultaneous Diophantine

approximation for lattices of arbitrary rank.

We then discuss the problem of calculating the intercept time, or simultaneous

coincidence, of a number of periodic pulse trains. Where the phase is unknown, we

calculate the probability of intercept. We show that the problems can be interpreted

as problems of Diophantine approximation and simultaneous Diophantine approx-

imation. We give expressions for the intercept time and probability of intercept

under a number of different conditions.

We also discuss the problem of estimation of the period and phase of a periodic

pulse train of which only a short, sparse and noisy record exists of the times-of-arrival

of the pulses. We apply a simultaneous Diophantine approximation algorithm de-

rived from the LLL algorithm to the estimation problem. In numerical simulations,

we find that it frequently obtains very good estimates even for records from which

99.9% of pulses are missing, of which only nine remain and for which errors in the

measurement of time-of-arrival are as much as 1% of the period.
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PREAMBLE

This thesis has turned out rather differently than I had imagined at its beginning

and it has been written under slightly unusual conditions. The opportunity to study

at the ANU arose through the creation of the Cooperative Research Centre for

Robust and Adaptive Systems — (CR)2ASys — in 1991. At that time, I was not

long finished my undergraduate studies at the University of Queensland, and I had

recently taken up a full-time position at the Electronic Warfare Division (EWD)

at the Defence Science and Technology Organisation (DSTO) in Salisbury, South

Australia. Professor Doug Gray, who had been one of the initial “conspirators”

in the establishment of the Centre and who was at that time the Research Leader of

the Signal and Information Processing Branch at EWD, offered me the possibility

of study at the ANU. I eagerly accepted. It was proposed that I should receive my

day-to-day supervision at DSTO, retaining my position as a Professional Officer in

the Commonwealth Public Service, with only short visits to Canberra. However,

this posed difficulties with enrolment at the ANU, which at that time did not allow

such extended absences from Canberra. Special permission was required and a year

passed before it was obtained. My official enrolment began in February, 1993.

Prior to the commencement of these studies, I had been involved with the signal

processing discipline of frequency estimation and, through the Pulse Train Project

of (CR)2ASys, with pulse train signal processing. A special interest had been in the

application of parallel processing to signal processing algorithms. Also during that

time, I was responsible for writing an initial version of software that has come to

be known as IDEA, an Interactive Deinterleaver for ELINT1 Applications, as well

as being involved in writing the specification of the current version. The software

was designed to be a powerful tool for the deinterleaving of radar pulse trains and

its development is continuing. It was envisaged at the outset that my thesis, as

a part of the activities of the Pulse Train Project, would focus on the problem of

deinterleaving pulse trains and especially time-of-arrival deinterleaving, where the

periods of the pulse trains are the chief or sole source of information used for their

separation. As it turned out, the thesis barely mentions deinterleaving. However,

the original aspiration has not been entirely extinguished, for the thesis, I believe,

has succeeded in strengthening the theoretical foundation for the study of pulse

trains, from which algorithms for deinterleaving can be derived and analysed.

1Electronic Intelligence.
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x P R E A M B L E

It was certainly not envisaged that my studies would lead me into the field of

approximation of linear forms by lattice points, a phrase which I use to encompass

the fields of Diophantine approximation, simultaneous Diophantine approximation

and that part of the geometry of numbers that deals with lattice reduction and short

lattice vectors (although in the last case, the linear form to be approximated degen-

erates to a point). These fields are not usually associated with signal processing.

Indeed, my knowledge of these subjects was extremely limited at the commencement

of my studies.

My attention was initially diverted by the problem of calculating intercept times

of periodic pulse trains. This problem is related to deinterleaving, but the relation-

ship is not direct. I became interested in the observation, which had been made

initially by Greg Noone and communicated to me by Jane Perkins, that the

probability of intercept of two pulse trains can be calculated by considering the

positions of pulses on a “folded interval” (or a circle) having the length (or circum-

ference) of one of the periods and that the pulses exhibit a “clustering” effect on

that interval as the amount of observation is increased. It seemed to me that the

structure of the clustering could be exploited. I soon discovered, and the results

are presented in Chapter 5, that an efficient method of calculating the probability

of intercept could be obtained using Euclid’s algorithm. This led me to study Dio-

phantine approximation and thence the other number theoretic subjects explored in

this thesis. My efforts were chiefly directed towards finding an expression and an

algorithm to allow efficient calculation of the intercept time or probability of inter-

cept in problems involving more than two pulse trains. It was only rather late in my

studies that I realised the application of the theory to the estimation of the period

of pulse trains, a topic which is discussed in Chapter 6, and to a number of other

areas in signal processing which time (and space!) has not allowed me to examine

in this thesis. However, the period estimation problem is indeed closely related to

the deinterleaving problem.

Out of this haphazard excursion into number theory, it is my fervent hope that

something coherent, interesting and useful has emerged.



NOTATION

1. We use R, N, Z and Q to denote the real numbers, natural numbers (1, 2, 3, . . . ),

integers and rational numbers, respectively.

2. We generally use bold face and a roman style to denote a vector, e.g. x ∈ Rn,

and we use bold face, roman style and upper case to denote a matrix, e.g. A ∈ Rn×n,

unless otherwise noted, in contrast to an italic style for scalars, e.g. x ∈ R.

3. For a matrix A ∈ Rm×n, we adopt the convention that aj refers to the jth

column vector of A and ajk is the element in the jth row and kth column of A.

4. The superscript T , in reference to a matrix, denotes its transpose.

5. We reserve I for the identity matrix, 0 and 1 for the vectors consisting entirely

of zeros and ones, respectively.

6. As a slight abuse of notation, we will occasionally and without notice use a

vector which has been defined in Rn as if it were a matrix in Rn×1. That is, all

vectors are assumed to be column vectors unless otherwise specified. For instance,

for two vectors x,y ∈ Rn, we use x · y and xTy interchangeably.

7. If x ∈ C then R{x} denotes its real part and I{x} denotes its imaginary part.

8. We define the signum function of a real number as

sgn(x) =


1 if x > 0,

0 if x = 0,

−1 if x < 0.

9. We use bxc to denote the greatest integer less than or equal to the real number

x. That is, bxc 6 x < bxc + 1. Similarly, we use dxe to denote the least integer

greater than or equal to x. We use bxe to denote a nearest integer to x. Where x is

a half-integer, its value is unspecified. Where it is necessary to specify which of the

nearest integers is required, we shall make this clear in the text.

10. We use IntS and volS to denote the interior and volume of a set S (see

Definition 3.4 and Definition 3.8 of Chapter 3, respectively).

11. The use of vertical bars, |·|, when applied to a discrete set, indicates the

number of elements in the set.

12. We will frequently make use of Bachmann’s O-notation for expressing as-

ymptotic quantities. Recall that g(x) = O(f(x)) for real-valued functions f and g

of a real number implies that there exists some positive constants x0 and M such

that x > x0 implies that |g(x)| 6M |f(x)|.
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C H A P T E R 1

INTRODUCTION

1. Problem Statement

Many physical phenomena exhibit some form of periodicity. From the ticking

of a clock to the quantisation of energy, they pervade the physical world. Their

study in mathematics has been ongoing throughout its history. This thesis has been

motivated by the need to understand the interactions between periodic processes

with differing periods and to estimate the periods of infrequently observed periodic

processes. That this should lead to the study of integers is not surprising, for the

purest representation of a periodic process is the embedding of the integers in the

continuum. The study of integers is variously known as arithmetic or the theory of

numbers. In this thesis, we explore the closely related branches of number theory

— Diophantine approximation, simultaneous Diophantine approximation and the

geometry of numbers — and their application to two problems in signal processing

and system analysis.

The signal processing applications we will examine are motivated by elec-

tronic support measures (ESM). This is a discipline of electronic warfare. It

is the theory and practice of monitoring the electromagnetic spectrum in order to

provide information on the location and nature of both friendly and hostile sources

of radiation. In an operational environment, the information must be timely and ac-

curate, enabling the marshalling of offensive and defensive resources, such as weapon

systems, electronic countermeasures and electronic counter-countermeasures. One

of the most important sources of radiation that must be detected and analysed are

radars. Radars typically emit a sequence of radio frequency pulses in a periodic se-

quence. Moreover, the search patterns of receiving equipment often have a periodic

nature. The periodicity in the radar emitter arises because of the ease of processing

radar returns from periodic sequences of pulses. The periodicity in ESM receivers

arises from the need to search a large range of parameter space with rather sensitive

equipment that can only examine a small range of parameters at once. For exam-

ple, it may be necessary to scan over bearing and carrier frequency. Therefore, the

receiver may have an antenna that rotates at a fixed rotational speed and tunes to

each frequency of interest in a fixed and repeating sequence. This sort of periodic

behaviour can also be found in radars, which also seek to acquire information about

the environment, although through active rather than passive means.

1



2 I N T RODU C T I O N

Therefore, many problems in ESM reduce to problems which involve periodic

pulse trains. Understanding how they interact is vital to being able to analyse and

design ESM equipment, and to process the signals which they receive.

The ESM problems which we treat are intercept time problems and the prob-

lem of estimating the parameters of a periodic pulse train of which only a short,

incomplete and noisy record exists of the times-of-arrival (TOAs).

The intercept time problem is one of predicting the time of intercept between

two of more periodic pulse trains, or calculating the probability of an intercept

over a certain time interval if there is incomplete information. Our interest in the

intercept time or probability of intercept is obviously driven by the desire that the

receiver should intercept the emissions of a radar at the earliest possible time in

order to provide as much time as possible for developing a response. To design ESM

equipment, we would like to know what control, if any, can be exerted over the

design to ensure that the intercept time is as small as possible or the probability of

intercept is as high as possible for likely threats.

The problem of estimating the period and phase of short, sparse and noisy record

of TOA measurements is one which occurs in the processing of radar pulse trains

by ESM equipment. The process of scanning through different sectors of space and

through different carrier frequencies might cause the record of any individual pulse

train to be incomplete. The measurements of the TOAs may not be precise due

to the presence of noise. However, the pulse repetition interval (PRI) of a radar

pulse train is one of the most important parameters to estimate. A PRI is often

peculiar to the make of radar. It frequently gives information about the mode of

operation. The mode of a radar varies depending upon the intentions of the platform

(craft, vehicle, vessel or person) which carries it. For instance, navigational radars

employ different modes depending on the maximum range of interest, varying the

PRI accordingly. Importantly, radars which queue or guide weapon systems employ

different modes depending upon what stage of the targetting process they are at.

To understand what quality of data is required to reliably estimate the period and

to improve the ability to compute it online are the aims of our investigations in this

area.

Both of these problems rely heavily on the theory of Diophantine approximation

and simultaneous Diophantine approximation for their solution. Since practitioners

of signal processing are not generally well-versed in these areas and because of the

need to develop new results for our purposes, we devote the greater amount of space

in the thesis to these topics. Indeed, it is hoped that the contributions in these fields

have merit in their own right.

Diophantine approximation is the study of the approximation of real numbers

by rational numbers. It is so named in honour of Diophantos, who studied the

solution of certain equations in rationals. Homogeneous Diophantine approximation

of a real number α involves finding non-zero integers p and q that make qα − p or
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α− p/q small in absolute value. Inhomogeneous approximation of α with respect to

another real number β involves finding integers p and q that make qα− p− β small

in absolute value. The smallest non-zero integers which give an approximation error

less than a certain value are best approximations. We will concern ourselves with

methods for calculating these best approximations.

Simultaneous Diophantine approximation extends the problem to simultaneous

approximation of many real numbers by rationals. The multiplicity of numbers to

be approximated determines the dimension of the problem. For higher dimensions,

the way in which the approximation error is measured allows extra variability in the

statement of the problem and as to how best approximations are defined. Simulta-

neous Diophantine approximation is closely related to integer programming. Integer

programming is the problem of finding a set of integers which minimise a linear

cost function with respect to a number of linear constraints. Whereas Diophantine

approximation is a rather mature branch of number theory, simultaneous Diophan-

tine approximation (and integer programming) are not yet as richly endowed with

theoretical results. Coupled with this, or perhaps a consequence, is the apparent

computational intractability of finding best simultaneous Diophantine approxima-

tions. It is the computational aspects of the problem we shall be most concerned

with. For low dimensional problems, we explicitly formulate algorithms which are

capable of finding complete sequences of best approximations, in a certain sense.

A convenient way of expressing problems of simultaneous Diophantine approxi-

mation is in terms of the approximation of linear forms by lattice points. A point

lattice is a set of points which is generated from integer linear combinations of lin-

early independent basis vectors. The means by which we measure the closeness of

approximation is through the application of norms and semi-norms. The metric

balls associated with norms are convex bodies. The study of the relationship be-

tween point lattices and convex bodies is part of the geometry of numbers. For

this reason, we find it appropriate to review the geometry of numbers as a pre-

cursor to our study of simultaneous Diophantine approximation. The main object

of our investigations into the geometry of numbers are to introduce point lattices,

convex bodies and the various notions of lattice reduction. Lattice reduction is the

process of finding a lattice basis in a canonical form. The canonical form is usu-

ally stipulated in order to ensure that the basis vectors are short with respect to

a certain norm. The problem of finding short lattice vectors is similar to the si-

multaneous Diophantine approximation. Indeed, the relatively recently discovered

LLL algorithm for Lovász reduction of lattices is an important tool for simultaneous

Diophantine approximation because of its ease of computation and its guarantee of

finding reasonable short vectors (in a sense we will make precise). The importance of

this algorithm to simultaneous Diophantine approximation and thence to our signal

processing problems warrants that we should spend some time in understanding its

operation.
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2. Organisation of This Thesis

Our treatment of the subjects places heavy emphasis on algorithms for the solu-

tion of problems both in number theory and in signal processing. The thesis has two

parts. The first part (Chapter 2 to Chapter 4) is concerned with number theory and

is presented, on the whole, as pure mathematics with a computational bent. The

second part is about the signal processing applications of probability of intercept

(Chapter 5) and parameter estimation of periodic pulse trains (Chapter 6). We

construct in the first part the algorithms and theoretical tools which are necessary

in the second part. In the second part, we show that the intercept time problems

and the parameter estimation problems are best understood as Diophantine approx-

imation and simultaneous Diophantine approximation problems. We give details of

how the algorithms from the first part can be modified and applied.

In Chapter 2, we introduce the subject of Diophantine approximation. We define

the meanings of best Diophantine approximation, both homogeneous and inhomoge-

neous and in the absolute and relative sense. In order to appreciate the efficiencies of

the algorithms of Euclid and Cassels, we present some näıve algorithms for find-

ing best Diophantine approximations which essentially involve an exhaustive search

over the integers. We then show how Euclid’s algorithm can be employed to find

homogeneous best approximations much more quickly. In fact, we show that the

correspondence between the output of Euclid’s algorithm and the sequence of best

approximations for a given real number α is nearly one-to-one. We demonstrate the

relationship of the best approximations and Euclid’s algorithm with the simple con-

tinued fraction expansion of a real number. We show that the best approximations

in the absolute sense correspond almost completely with the convergents of that

expansion and that the best approximations in the relative sense are intermediate

fractions of the expansion.

We then investigate Cassels’ algorithm for computing best inhomogeneous Dio-

phantine approximations. We show that the algorithm produces outputs, which we

call auxiliary convergents, from which all the best inhomogeneous approximations

can be found.

The application of best Diophantine approximations to other mathematical ob-

jects is then explored. We discover a relationship between best Diophantine approx-

imations and the successive maxima of certain almost periodic functions constructed

from diagonal functions. As an important example, we discover that the successive

peaks of a periodogram of three time samples with positive amplitude can be in-

terpreted in terms of the best approximations of the ratio of the differences of the

sample times. We also show how best Diophantine approximations with a prescribed

approximation error can be located in a Farey series of appropriate order.

In Chapter 3 we discuss the geometry of numbers. We introduce the point lattice

and the convex body. We present Minkowski’s first and second theorems. We
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discuss and give an algorithm for finding the shortest vector in a lattice of arbitrary

rank. We then discuss various notions of lattice reduction, namely those of Gauss,

Minkowski, Hermite, Korkin & Zolotarev and Lovász. We present and

analyse algorithms for reduction in the sense of Gauss, Hermite and Lovász.

For Gaussian reduction, we demonstrate a relationship with the development of

the centred continued fraction expansion of a complex number. The algorithm we

present for Lovász reduction is a variant of the LLL algorithm of Lenstra et al.

(1982).

Simultaneous Diophantine approximation is discussed in Chapter 4. In the first

part of the chapter, we introduce the theory of (ρ, h)-minimal sets which, as we shall

see, can be used to describe algorithms which are guaranteed of finding best simul-

taneous Diophantine approximations, according to our quite general definition. For

lattices of rank two and three, we are able to realise these algorithms. For lattices

of rank two, we discover that our algorithm can be made to operate like an additive

version of Euclid’s algorithm (which we discuss in Chapter 2) or Gauss’ algorithm

(which we discuss in Chapter 3), depending upon the inputs. The algorithm for

lattices of rank three also possesses a rather simple, additive nature. We present

numerical examples to demonstrate its ability to discover best approximations in a

quite general class of problems. We demonstrate its ability to find best approxima-

tions to a line and to a plane in three dimensions, with respect to the Euclidean norm

and with respect to the sup-norm. Furthermore, we are able to increase the speed of

the algorithm by skipping some intermediate bases. The algorithm that we derive in

this way — which we call the “accelerated” algorithm — can be regarded as a gen-

eralisation of, and was inspired by, an algorithm of Furtwängler (1927). With

numerical examples, we demonstrate its equivalence with Furtwängler’s algorithm

under certain conditions, we demonstrate its ability to generate best approxima-

tions from any input basis and we present some evidence to suggest that, at least

for some inputs, the algorithm is able to find best approximations with a prescribed

maximum approximation error in a number of iterations which is proportional to

the logarithm of the error.

Since the prospects of the existence of a computationally efficient algorithm

for finding best approximations for lattices of arbitrary rank are thought to be

poor, we then turn our attention to algorithms which are intended to produce good

approximations with a moderate amount of computation. The first algorithm of this

type we review is Brun’s algorithm. We find that the algorithm has a rather natural

geometrical interpretation. However, it can be shown that, for certain inputs, it

does not produce good approximations. The invention of the LLL algorithm has

provided a tool for the development of algorithms for simultaneous Diophantine

approximation from which provably good approximations can be obtained without

excessive computational effort. As an example of recent algorithms which are derived

from the LLL algorithm, we study the HJLS algorithm of Hastad et al. (1989)
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but we also mention the PSLQ algorithm of Ferguson & Bailey (1991) and

algorithms of Just (1992) and Rössner & Schnorr (1996).

In Chapter 5, we study intercept time and probability of intercept problems.

We begin by considering problems involving only two pulse trains. We consider

problems in which the phase (time offset of the first pulse from the origin) of both

pulse trains are known a priori and they are equal, where they are known and

unequal and where one or both of the phases are unknown and assumed to be

uniformly distributed over the range of the PRI. For the problem of in phase initial

conditions, where both phases are known and equal, we formulate the problem as

one of finding a best approximation with a certain approximation error, the error

being determined by the sum of the pulse widths of the intercepting pulses. We

show how Euclid’s algorithm can be applied to obtain solutions. For arbitrary phase

initial conditions, we find that the problem can be stated as a problem of best

inhomogeneous Diophantine approximation and, consequently, Cassels’ algorithm

can be applied to obtain solutions. We also show that all further intercepts after

the first can be obtained by means of a recurrence relation.

When one or both of the phases are random, we cannot compute the intercept

time. Rather, we must be content with determining the probability of intercept over

a time interval. For the discrete time probability of intercept problem, where one

phase is known and the other is uniformly distributed, we calculate the probability

of an intercept occurring with one of the first N pulses of the pulse train with known

phase. The probability of intercept turns out to have a piecewise linear form with

a maximum of four linear segments. We interpret the slopes and the positions of

the boundaries of the segments in terms of best approximations and associated ap-

proximations and their approximation errors. For the continuous time probability

of intercept, where neither of the phases are known beforehand, the probability is

calculated over an observation interval, the length of which is a continuous variable.

The form of the probability of intercept is again shown to be piecewise linear, with

an additional quadratic segment. We find that, for small pulse widths, the expres-

sion for the continuous time probability is well-approximated by the discrete time

probability. We also discuss how the probability of intercept varies as a function

of the PRI of a pulse train, and show how this is related to adjacent elements of a

Farey series of appropriate order.

For the intercept time and probability of intercept of multiple pulse trains, we

are able to formulate the problem as a simultaneous Diophantine approximation

problem. We find that the properties which enabled relatively simple expressions

to be obtained for intercepts involving two pulse trains do not generalise in an

obvious way. The only problem which we are able to solve satisfactorily is the in

phase intercept time of three pulse trains, to which we can apply the additive or

accelerated algorithm of Chapter 4. However, we are able to disprove the existence

of a bounded number of linear segments in the expression for the continuous time
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probability of intercept of more than two pulse trains. Also, we are able to give an

expression for the probability of intercept over a short time interval.

We briefly review other approaches to intercept time problems that have ap-

peared in the literature. We review methods which exploit properties of linear

congruence and those which replace the assumption of strict periodicity with sto-

chastic behaviour. We find that the exploitation of linear congruence properties is

nearly identical to our approach. For the statistical description of pulse trains, we

find that the well-known expression for probability of intercept amongst many pulse

trains that was derived by Self & Smith (1985) is similar to our own expression

for short observation intervals.

In Chapter 6, we discuss the problem of estimating the PRI and phase of a

periodic pulse train of which only a short, sparse and noisy record exists of the

TOAs. We propose two statistical models for the observed data. The first model,

which we call “simple,” assumes only that the measurement errors on the TOAs are

independent and identically distributed (i.i.d.) zero mean normal random variables.

It assumes nothing about the way in which pulses go missing from the record. The

second model, which we call “extended,” assumes that the differences in consecutive

pulse indices of the observed pulses are drawn from a geometric distribution.

We consider the maximum likelihood estimation of the PRI and phase for data

generated by these models. We find that the problem is a simultaneous Diophan-

tine approximation problem and that, for the simple model, either no maximum

likelihood estimates exist or there are an infinitude. For the extended model, we

consider the joint maximum likelihood estimation and association (JMLEA) of PRI,

phase and pulse indices. We show that the JMLEA exists and that a sensible ap-

proach to its calculation is through the application of a simultaneous Diophantine

approximation algorithm derived from the LLL algorithm. We show that there is a

strong connection with the maximisation of the periodogram of the observed TOAs,

further strengthening the results of Chapter 2.

We present the results of extensive numerical simulations which show that the

proposed algorithm is capable of correctly associating pulse indices to observations,

and thereby generating statistically efficient estimates of PRI and phase, even when

99.9% of the pulses are missing from the record, only nine TOAs are recorded and

the standard deviation of the measurement error is as high as 1% of the PRI. We

also demonstrate through simulation its robustness to imprecise knowledge of the

model parameters: measurement noise variance and missing pulse rate.

Finally, in Chapter 7, we summarise the findings of the thesis and the major

original contributions it contains, as well as discussing possibilities for further re-

search.
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3. How to Read This Thesis

As one would expect, this thesis is intended to be read from start to finish.

However, the thesis has been written with two (often) distinct audiences in mind:

pure mathematicians and computer scientists with an inclination towards number

theory and by engineers and applied mathematicians with an inclination towards

signal processing.

It is hoped by the author that the first part of the thesis contains results which

might interest number theorists; that the subjects presented in the early chapters

are not merely a theoretical preparation for the signal processing applications in

the second part but that they are interesting and useful in their own right. Those

that have no interest in the practical application of the subject matter might well

be content to read only Chapter 2 to Chapter 4.

On the other hand, practitioners of signal processing may not wish to delve

deeply into the intricate workings of algorithms for Diophantine approximation, si-

multaneous Diophantine approximation and lattice reduction. However, there would

be little comprehension of the proposed solution to the engineering problems of

Chapter 5 and Chapter 6 without at least a superficial understanding of the theory

and algorithms of the earlier chapters. Here, the advantages of the “theorem-proof”

style of exposition in the fist part of the thesis are manifest. The important prop-

erties of the algorithms that are later relied upon can be quickly distilled from the

text, highlighted as they are in the theorem statements. This allows for the swift

absorption of major results without any need for a thorough understanding of the

“how and why.” Even so, large portions of the earlier chapters could be skipped

entirely. The sections on Cassels’ algorithm (Section 5 of Chapter 2), and the theory

of (ρ, h)-minimal sets and derived algorithms (Section 3 to Section 5 of Chapter 4)

are sections which could be missed by a reader who is not interested by such things,

without having an adverse effect on the ability to make sense of the later chapters.

It is also appropriate that we mention here the philosophy applied by the author

in deciding when to give proofs and when to omit them. Proofs have been given

where they are either short or deemed important in the development of the subject

matter. They are presented where the theorem statement is sufficiently different

from other theorems which can be found in the literature. They are likewise omitted

if the proof is long and not essential. This leads to choices which may appear

puzzling at first. For example, in Chapter 3, the proofs of Minkowski’s first and

second theorem are not given, although they underpin the theory of the geometry of

numbers. For our purposes, no knowledge is needed of the proofs and, in any case,

they are abundant in the literature. Similarly, in Chapter 2, we take particular

care to prove results about best Diophantine approximations in the absolute sense,

going to greater lengths than many texts on the subject, but state without proof

the theorem which relates the best Diophantine approximations of a real number
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in the relative sense with the intermediate fractions of its simple continued fraction

expansion. We justify this emphasis on the basis that a thorough understanding

of best homogeneous approximations in the absolute sense is required to place us

in a position to prove results about Cassels’ algorithm and its ability to find best

inhomogeneous approximations. This is one of the important original contributions

of the thesis. Furthermore, we make much greater use of approximations in the

absolute sense than we do of those in the relative sense, as is witnessed in Chapter 5.

The author hopes that, in the context of the material presented, the choices will be

seen to be appropriate by the time the reader reaches the end of the thesis.

4. The Presentation of Algorithms

This thesis places a heavy emphasis on presenting and analysing algorithms.

The algorithms are presented with a Pascal-like syntax. However, they are not fully

functional programs. Some details of the algorithms are not completely set out in

the text. It is left to the reader to infer from the surrounding text the inputs and

outputs of the algorithm, the types of each variable, and the number of arguments

and return types of function and procedure calls. However, the author has tried to

ensure that this is never a difficult task for the reader.

Our analysis of the algorithms, although at times quite detailed, may not seem

to the computer scientist to have gone far enough. Our analysis with regard to the

running time of an algorithm never goes further than understanding its arithmetic

complexity. In this model of computation, each simple arithmetic operation on a

real number (multiplication, division, addition, subtraction and rounding) has unit

cost. Occasionally, we will be happy just to conclude that an algorithm terminates

in a finite amount of time. At other times, we will analyse the algorithm only so far

as to determine the number of iterations through a particular loop.

A more thorough approach would have required that we analyse the algorithms

according to the bit complexity model. In this model, we analyse the running

time of the algorithm according to the number of operations that must be performed

by a Turing machine to complete the execution of the algorithm. While this gives a

more realistic picture of the running time of an implementation on a real computer

for large input sizes, the extra complication it introduces is not warranted here.

Finally, we explain what is meant when we make reference to algorithms being

“computationally efficient” or to problems being “computationally infeasible” or

“intractable.” We recall that computational problems can be divided up into a

number of classes, depending on their time and space requirements on a Turing

machine or other criteria such as their ability to be parallellised. Two important

classes of algorithms are P and NP. A problem which requires a “true or false”

answer is in P if it can be resolved in the affirmative by a deterministic Turing

machine in an amount of time which is bounded by a polynomial of the input size.

Such a problem is in NP if it can be resolved in the affirmative by a non-deterministic
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Turing machine in an amount of time which is bounded by a polynomial of the input

size. Without wishing to discuss in detail the differences between deterministic and

non-deterministic Turing machines, we summarise by saying that if we present the

algorithm for determination of the problem as a decision tree then it is in P if the

number of nodes in the tree which lead to resolution in the affirmative is bounded

by a polynomial of the input size and it is in NP in the depth of that part of

the tree which leads to resolution in the affirmative is bounded in this way. If a

problem is in P then it is also in NP. A common assertion is that problems in

P are “computationally feasible” for execution on a realistic computer. Problems

that are in NP but not in P are likewise “computationally infeasible.” It is an

open question in computer science as to whether P = NP. Again without giving

a full explanation of the definition of the terms, problems which are NP-complete

are thought to be computationally infeasible since if any such problem was found to

be in P then P = NP. The status of NP-hard problems is not as clear, but this is

usually treated as an indication that the problem is quite possibly computationally

infeasible. The reader is referred to, for example, Lewis & Papadimitriou (1981)

for a discussion of these subjects.

5. Original Contributions

There are five areas in which the author believes this thesis makes an impor-

tant, original contribution. In the field of number theory, the theory developed in

Chapter 2 relating the outputs of Cassels’ algorithm with the sequence of best in-

homogeneous Diophantine approximations is, to the author’s knowledge, the most

comprehensive to have yet appeared.

The algorithms for best simultaneous Diophantine approximation in Chapter 4

with lattices of rank three are novel and able to produce sequences of best simultane-

ous Diophantine approximations for a more general class of approximation problems

than previous algorithms which have been published. It can be used for both best

approximation of a line by lattice points (“traditional” simultaneous Diophantine

approximation) and approximation of a plane by lattice points (best approximate

integer relations). The invention of the extended norm to ensure correct operation

of the algorithm is also a novel feature of the presentation. Importantly for the ap-

plications we have in mind, it can also be used to solve certain coincidence problems

involving three pulse trains.

As a bridge between the number theoretic work and the applications in signal

processing, the findings regarding the relationship between best Diophantine ap-

proximations and the successive maxima of diagonal functions and, in particular,

the periodogram are new and original. The findings may lead to a greater involve-

ment of number theoretic algorithms in frequency and spectrum estimation.

The chapter on intercept time (Chapter 5) presents the intercept time problem

as a Diophantine approximation problem. The application of that theory to the
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interpretation of phenomena is an original contribution of this thesis. Furthermore,

the results, as few as they are, for intercepts between more than two pulse trains

have not previously appeared in the literature.

Finally, the statistical model of the process of sparse and noisy observation of

a periodic pulse train and the subsequent application of a modern algorithm for

simultaneous Diophantine approximation (presented in Chapter 6) is an original

contribution. The use of an algorithm derived from the LLL algorithm has led to a

considerable improvement in our ability to quickly recover information from short,

sparse and noisy records.





C H A P T E R 2

DIOPHANTINE APPROXIMATION

1. Approximation of a Real Number by Rational Numbers

We consider the problem of finding approximations, in an appropriate sense,

to a single real number by rational numbers. This is known as the problem of

Diophantine approximation, in honour of Diophantos of Alexandria, who

studied many problems involving rational numbers in his books, Arithmetica, written

c.  A.D.

There are a number of ways in which we might define what is meant by a “good”

approximation. We will consider three ways of approximating a real number α. In

each we shall seek to minimise a function which represents the “nearness” of a ra-

tional number p/q from α while keeping the denominator q as small as possible. We

call such a function the (absolute value of the) approximation error function.

The first such function we consider is α − p/q and problems which involve minimi-

sation of the absolute value of this function we call homogeneous Diophantine

approximation in the relative sense. The second such function is qα−p, and

minimisation of its absolute value we shall refer to as homogeneous Diophan-

tine approximation in the absolute sense. Finally, given an additional real

number β, we will also consider the minimisation of the absolute value of qα−p−β,

which we call inhomogeneous Diophantine approximation (in the absolute

sense).

If we write our chosen approximation error function F (p/q) then we say that a

rational number p/q with positive denominator is a best Diophantine approx-

imation (or simply best approximation) in the appropriate sense if, for all other

rational numbers p′/q′ with positive denominators,

q′ 6 q ⇒ |F (p′/q′)| > |F (p/q)|(1.1)

and

|F (p′/q′)| 6 |F (p/q)| ⇒ q′ > q.(1.2)

Remark 1.1. Several variations of the definition of a best approximation are

possible. Indeed, a significant generalisation for approximation of multiple real

numbers is presented in Chapter 4. However, we remark at this point that it is usual

to allow best approximations to have either positive or negative denominators, and to

write the inequalities in (1.1) and (1.2) involving q and q′ with the same inequalities

in terms of |q| and |q′|. For homogeneous approximation, this affords no extra

13
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generality, since a rational number p/q can be a best approximation according to the

expanded definition if and only if (−p)/(−q) is. For inhomogeneous approximation,

however, there is a non-trivial difference between the definitions. For the applications

we have in mind in subsequent chapters, the definition we have given is the most

appropriate.

For reasons which will become apparent, we will usually express best approxi-

mations not as a rational number p/q, but rather as the ordered pair of numerator

and denominator (p, q).

We will begin our study of algorithms for Diophantine approximation in Section 2

by discussing some näıve algorithms for best Diophantine approximation. These are

algorithms which any mathematically capable person could invent within minutes of

learning the problem. Although we present much improved algorithms subsequently,

it is nevertheless instructive to examine the behaviour of these obvious algorithms,

if only to understand why the improved algorithms are desirable. We will then

study Euclid’s algorithm in Section 3, which we will show produces (with some

trivial exceptions) each and every best homogeneous Diophantine approximation of

its input α in the absolute sense, and calculates them very efficiently. In Section 4,

we will introduce the simple continued fraction expansion of a real number and show

that Euclid’s algorithm produces the convergents of the simple continued fraction

expansion of α. We will also obtain running time bounds on the algorithm and

indicate how the algorithm can also be made to produce the best homogeneous

Diophantine approximations in the relative sense. In Section 5, we will present

Cassels’ algorithm for inhomogeneous approximation. We will show that it can be

used to efficiently find all the best inhomogeneous Diophantine approximations of α

with respect another real number β.

At the end of this chapter, we devote two sections to the examination of some

related problems. In Section 6, we discuss the successive maxima of certain diagonal

functions in two variables (see Definition 6.1). We show that this is a generalisation

of the Diophantine approximation problem. As an important example, we show

how Euclid’s algorithm can be used to find successive maxima in a periodogram of

three samples with positive amplitudes (see Example 6.2 and subsequent discussion).

This relationship is potentially quite important in signal processing because of its

application to frequency estimation and spectrum estimation of irregularly sampled

data. We will partially extend these results to periodograms with arbitrary numbers

of samples in Chapter 6.

In the last section of this chapter, Section 7, we review some elementary prop-

erties of Farey series with special emphasis on their relationship with Diophantine

approximation.

There are two main objectives in this chapter: to acquaint the reader with al-

gorithms for Diophantine approximation as a foundation for our study of signal
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processing applications in later chapters and to present original research. The origi-

nal contributions, as set forth in Section 5 of Chapter 1, are chiefly those which relate

to the calculation of best inhomogeneous Diophantine approximations with Cassels’

algorithm and to the correspondence between successive maxima of certain diagonal

functions and the best Diophantine approximations of a real number. This necessi-

tates an emphasis on specific properties of best Diophantine approximations early

in the chapter which is more detailed than would be required if our only purpose

was to present a review of the theory.

2. Some Näıve Algorithms for Diophantine Approximation

Consider a näıve approach to finding best homogeneous approximations in the

absolute sense to a real number α by a rational number p/q. Clearly, for any q,

that value of p which minimises |qα− p| is p = bqαe. This suggests the following

algorithm with the approximation error function F (p, q) = qα− p.

Algorithm 2.1.

1 begin

2 q := 1;

3 p := bqαe;
4 output(p, q);

5 η∗ := F (p, q);

6 while η∗ 6= 0 do

7 q := q + 1;

8 p := bqαe;
9 η := F (p, q);

10 if |η| < |η∗| then η∗ := η; output(p, q); fi;

11 od;

12 end.

Proposition 2.1. If F (p, q) = qα − p where α is a real number then Algo-

rithm 2.1 outputs all best homogeneous approximations to α in the absolute sense,

unless α is a half-integer.

Remark 2.1. We mean by half-integer a number of the form k + 1
2
, k ∈ Z.

Obviously, a half-integer k + 1
2

has three best approximations: (k, 1), (k + 1, 1) and

(2k + 1, 2). Algorithm 2.1 will miss one of the first two of these, but it will find the

other two and then terminate.

Proof. The proof is by induction. The algorithm finds the best approximation

for q = 1. If the algorithm has found all best approximations with denominators n <

q, then on the qth iteration it will find all best approximations with a denominator

of q, since there can only be one if α is not a half-integer. Thus it has been proven

by induction. �
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By the same method of proof, we can prove the following proposition.

Proposition 2.2. If F (p, q) = p/q − α where α is a real number then Algo-

rithm 2.1 outputs all best homogeneous approximations to α in the relative sense,

unless α is a half-integer.
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Figure 1. Graphical interpretation of the operation of Algorithm 2.1

on the input α =
√

2−1 for homogeneous Diophantine approximation.

Figure 1 illustrates the operation of Algorithm 2.1 on the input α =
√

2−1. Here

we see that the real input α can be regarded as the slope of a line passing through

the origin. Diophantine approximations to α can be regarded as points with integer

coordinates which lie close to the line. The integer points are represented by dots

(·). Open circles (�) represent the points which are considered by Algorithm 2.1.

Filled circles (•) represent the best homogeneous Diophantine approximations to α

in the relative sense. Open circles superimposed over filled circles represent the best

homogeneous Diophantine approximations to α in the absolute sense.

We now inquire into the number of iterations required by the algorithm to find

approximations to a certain accuracy. It is clear that if α is a rational number then

the algorithm will terminate after a number of iterations equal to its denominator

when expressed in lowest terms. Similarly, it is clear that the algorithm can never

terminate if α is irrational. How many iterations of the algorithm are required to

produce a best approximation with an absolute approximation error not greater

than some ε > 0? To answer this question, we present the following famous theorem

of Dirichlet.

Theorem 2.1. Given any real numbers α > 0 and Q > 1, there exists a rational

number p/q such that

(2.1) 0 < q < Q and |qα− p| 6 1

Q
.
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Proof. The proof makes use of the pigeon-hole principle. Let k = dQe. Con-

sider the set of k+1 integer pairs which consists of (0, 0), (−1, 0) as well as (bqαc, q)
for q = 1, . . . , k−1. For any element (p, q) of the set, it is clear that 0 6 qα−p 6 1.

We then divide the interval [0, 1] into k equal sub-intervals, each of length 1/k. Since

we have k + 1 elements in our set of integers pairs, there must be a pair of pairs

(p1, q1) and (p2, q2) such that

j

k
6 q1α− p1 6 q2α− p2 6

j + 1

k

for some 0 6 j < k. Thus,

0 6 (q2 − q1)α− (p2 − p1) 6
1

k
6

1

Q

and 0 < |q2 − q1| < k which implies that 0 < |q2 − q1| < Q. Therefore, the ra-

tional number (p2 − p1)/(q2 − q1), expressed so that the denominator is positive,

satisfies (2.1) and the theorem is proven. �

Remark 2.2. No significant improvement is possible on the bound q < Q

in (2.1). For suppose

(2.2) Q > 3 and
1

Q
< α <

1

Q− 1
.

In this case, it is easily shown that

1

Q
< qα < 1− 1

Q

whenever 0 < q < Q− 2.

We might hope to replace the upper bound q < Q in (2.1) with something

substantially smaller when we consider homogeneous Diophantine approximation

errors in the relative sense because the approximation errors are smaller by a factor

of q. A factor of one half will have to suffice, as the next theorem shows.

Theorem 2.2. Given any real numbers α > 0 and Q > 1, there exists a rational

number p/q such that

(2.3) 0 < q < 1
2
Q+ 1 and

∣∣∣∣α− p

q

∣∣∣∣ 6 1

Q
.

Proof. If we set q =
⌈

1
2
Q
⌉
< 1

2
Q+ 1 and p = bqαe then∣∣∣∣α− p

q

∣∣∣∣ =
|qα− bqαe|

q
6

1

2
⌈

1
2
Q
⌉ 6 1

Q
.

�

Remark 2.3. Once again, no significant improvement on the upper bound q <
1
2
Q + 1 is possible. For suppose again that we have (2.2). It is then easily shown

that
|qα− p|

q
>

1

Q



18 D I OPHANT INE APPROX IMAT ION

whenever 0 < q < 1
2
(Q− 1).

Dirichlet’s theorem (Theorem 2.1) implies that we can be sure of finding a best

homogeneous approximation to α in the absolute sense with an absolute approx-

imation error of less than ε with 0 < ε < 1 in less than 1/ε iterations with

F (p, q) = |qα− p|. Similarly, we are assured of finding a best homogeneous ap-

proximation to α in the relative sense with an absolute approximation error of less

than ε within 1/(2ε) + 1 iterations when F (p, q) = |p/q − α|.
We now consider the modification of Algorithm 2.1 to make it suitable for in-

homogeneous Diophantine approximation of a real number α. If we were to set our

approximation error function F (p, q) to qα− p− β for real numbers α and β (6= 0)

and also to change our expression for choosing p to p := bqα− βe on lines 3 and 8

then the resulting algorithm can be shown to find all best inhomogeneous Diophan-

tine approximations to α with respect to β, except when α− β is a half-integer (in

which case one and only one is missed). The following theorem implies that the

number of best approximations may be infinite.

Theorem 2.3. If α is an irrational number and β 6= 0 and ε > 0 are real

numbers then there exists a pair of integers (p, q) with q > 0 such that

(2.4) |qα− p− β| 6 ε

Proof. From Dirichlet’s theorem, we can find a pair of integers (p′, q′) such that

|q′α− p′| 6 ε and q′ > 0. Let δ = q′α− p′. Now, δ 6= 0 since α is irrational. If δ and

β have the same sign then set k = bβ/δc+ 1 > 1. Then

|kq′α− kp′ − β| 6 ε

and so (p, q) = (kp′, kq′) satisfies (2.4). If δ and β have opposite sign then set

k′ = dβe if β is positive or k′ = bβc otherwise. With k = b(β − k′)/δc + 1 > 1 we

find that

|kq′α− kp′ + k′ − β| 6 ε.

Therefore (kp′ − k′, kq′) satisfies (2.4). �

Theorem 2.3 implies that our modification of Algorithm 2.1 might not terminate

if α is irrational. However, whereas we are guaranteed that Algorithm 2.1 as stated

for homogeneous approximation will terminate if α is rational, this is not the case for

the modification to this algorithm just discussed for inhomogeneous approximations.

Consider the case where α is rational. In this case, qα−β−bqα− βe can take on only

finitely many values. If none of these values are zero then it is clear that our modified

Algorithm 2.1 will never terminate while producing only a finite number of best

approximations. To overcome this difficulty, we propose the following algorithm,

which incorporates some further minor modifications to Algorithm 2.1.



SOME NA IVE ALGOR ITHMS 19

Algorithm 2.2.

1 begin

2 q := 1;

3 p := bqαe; P := bqα− βe;
4 output(P, q);

5 η := qα− p; ζ∗ := qα− P − β;

6 while η 6= 0 ∧ ζ∗ 6= 0 do

7 q := q + 1;

8 p := bqαe; P := bqα− βe;
9 η := qα− p; ζ := qα− P − β;

10 if |ζ| < |ζ∗| then ζ∗ := ζ; output(P, q); fi;

11 od;

12 end.

Observe that Algorithm 2.2 keeps track of both the inhomogeneous approxima-

tion error (ζ) as well as the homogeneous approximation error (η). The algorithm

terminates as soon as either approximation error becomes zero. We are now assured

that Algorithm 2.2 will continue to iterate and find best approximations with suc-

cessively smaller approximation errors and it will eventually terminate if the number

of such best approximations is finite.

If the algorithm terminates with η = 0 then all the best inhomogeneous ap-

proximations have been found. For suppose there were some best inhomogeneous

approximation (P ′, q′) with q′ > q, where q has that value for which the algorithm

terminates with η = 0. Then the pair of integers (P ′ − p, q′ − q) must have the

same inhomogeneous approximation error as (P ′, q′) and, clearly, 0 < q′ − q < q′.

Therefore, (P ′, q′) cannot possibly be a best inhomogeneous approximation.
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Figure 2. Graphical interpretation of the operation of Algorithm 2.2

on the inputs α =
√

2−1 and β = 0.1 for inhomogeneous Diophantine

approximation.
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Figure 2 illustrates the operation of Algorithm 2.2 on the input α =
√

2 − 1

when β = 0.1, using the same geometrical interpretation as we used to illustrate

the operation of Algorithm 2.1 in Figure 1. The line representing α no longer runs

through the origin, as it did in the homogeneous case, but is now offset by the amount

β. Open circles superimposed over filled circles represent the best inhomogeneous

Diophantine approximations to α with respect to β. Comparing their positions with

the positions of the best homogeneous approximations in Figure 1, we can see that

they have little in common.

For homogeneous approximation, we have Dirichlet’s theorem to provide an a

priori upper bound on the number of iterations required to produce a sufficiently

good approximation, as defined by a maximum approximation error ε. Unfortu-

nately, no such upper bound can be given in the inhomogeneous case, as shown

by the following theorem, due to Khinchin. For a proof, see Cassels (1957),

Theorem III, p. 51.

Theorem 2.4. Let ϕ(q) be any positive function of the integer variable q such

that

lim
q→∞

ϕ(q)→ 0.

Then there is an irrational α and a real number β such that the pair of inequalities

0 < q 6 Q and |qα− p− β| < ϕ(Q)

has no solution in integers (p, q) for infinitely many values of Q.

3. Euclid’s Algorithm

The following is an algorithm which was originally described by Euclid in

Propositions 1 and 2 of Book VII of his Elements (Heath, 1908), although it is

almost certainly of earlier origin (Knuth, 1981).

Algorithm 3.1.

1 begin

2 r := x; s := y;

3 while r > 0 do

4 if r > s then r := r − s;
5 else swap(r, s);

6 fi;

7 od;

8 end.

Algorithm 3.1 is familiar to most students of mathematics as the greatest com-

mon divisor algorithm. Given two positive integer inputs x and y, this algorithm

eventually terminates with r = 0 and s = gcd(x, y).
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In Propositions 2 and 3 of Book X of Elements, Euclid proposes essentially

the same algorithm to determine the “greatest common measure” of two “com-

mensurable magnitudes,” if one exists. In modern terms, what is meant is that

Algorithm 3.1 can be given positive real inputs x and y and if there exists some

(greatest) real number δ such that

(3.1) mδ = x and nδ = y

where m and n are both integers then the algorithm will terminate with r = 0

and s = δ. The number δ is then the greatest common measure. The algorithm

terminates if and only if x and y have a greatest common measure. This statement

is equivalent to the statement that the algorithm terminates if and only if x/y is a

rational number.

Clearly, the algorithm could be made significantly faster if we replaced the re-

peated subtraction with division. Also, Algorithm 3.1 makes no attempt to calculate

the integers m and n as defined in (3.1) which relate the greatest common measure

to the inputs x and y. The algorithm we now present can be regarded as an im-

proved version of Algorithm 3.1 which remedies these two deficiencies for the inputs

x = α and y = 1. The remainder of this section will be devoted to showing that

the intermediate calculations performed by the algorithm yield integers which have

special properties with regard to the Diophantine approximation of α.

Algorithm 3.2.

1 begin

2 η−1 := −1; η−2 = α;

3 p−1 := 1; p−2 := 0;

4 q−1 := 0; q−2 := 1;

5 n := 0;

6 while ηn−1 6= 0 do

7 an :=

⌊
−ηn−2

ηn−1

⌋
;

8 pn := pn−2 + anpn−1;

9 qn := qn−2 + anqn−1;

10 ηn := ηn−2 + anηn−1;

11 n := n+ 1;

12 od;

13 end.

Proposition 3.1. For each n > 0 for which ηn 6= 0, Algorithm 3.2 calculates

values for ηn, an, pn and qn so that

(i) ηn = qnα− pn,

(ii) ηn(ηn−1 + kηn) 6 0 if and only if k 6 an+1, k ∈ Z,

(iii) ηn(ηn + ηn−1) < 0,
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(iv) ηnηn−1 < 0,

(v) an+1 > 0,

(vi) qn > 0,

(vii) ηn+1

(
ηn+1 − 1

2
ηn−1

)
< 0 unless ηn+1 = 0 and

(viii) pn+1qn − pnqn+1 = ηnqn+1 − ηn+1qn = (−1)n.

Proof. The proof of (i) is by inspection of Algorithm 3.2. Clearly, η−2 =

q−2α − p−2 and η−1 = q−1α − p−1. The expressions for updating pn, qn and ηn all

have the same form, so the condition ηn = qnα−pn will always be maintained (even

if ηn becomes zero).

Consider statement (ii). If k 6 an+1 then k 6 −ηn−1/ηn and so ηn(ηn−1 + kηn) 6

0. If k > an then k > −ηn−1/ηn and so ηn(ηn−1 + kηn) > 0. Thus statement (ii) is

true. Notice that it is also true when n = −1.

Using the obvious inequality

(3.2)
−ηn−2

ηn−1

− 1 < an 6
−ηn−2

ηn−1

,

we find that, for n > 0,

ηn−1ηn = ηn−1ηn−2 + anη
2
n−1 < 0(3.3)

and similarly

ηn−1(ηn + ηn−1) > 0.(3.4)

From (3.3) and (3.4) we have η2
n−1ηn(ηn + ηn−1) < 0 and therefore statement (iii) is

true for any n > 0.

Statement (iii) implies (iv) and (ii) and (iii) together imply (v). Furthermore,

(v) together with the observation that q0 = 1 implies (vi).

Consider (vii). If an+1 = 1 then (3.2) implies that −ηn−1/ηn < 2 which implies

that η2
n > −1

2
ηnηn−1. Now, if an+1 = 1 then ηn+1 = ηn−1 + ηn which implies that

(3.5) ηn
(
ηn+1 − 1

2
ηn−1

)
= η2

n + 1
2
ηnηn−1 > 0.

By application of (iv) with n replaced by n + 1 we see that, unless ηn+1 = 0,

ηnηn+1 < 0 so, in combination with (3.5), we have

(3.6) η2
nηn+1

(
ηn+1 − 1

2
ηn−1

)
< 0

which implies (vii) since η2
n > 0.

On the other hand, if an+1 > 1 then (3.2) implies that −ηn−1/ηn > 2 which

implies that η2
n 6 −1

2
ηnηn−1. Therefore,

ηnηn+1 = ηn(ηn−1 + an+1ηn)

> ηnηn−1 −
(
ηn−1

ηn
+ 1

)
η2
n

= −η2
n >

1
2
ηnηn−1
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and so again

ηn
(
ηn+1 − 1

2
ηn−1

)
> 0

which, through (3.6), implies (vii).

We prove statement (viii) by induction. The statement is clearly true for n = −2.

Suppose it is true for all n < N and N > −2. Then

pN+1qN − pNqN+1 = (pN−1 + aN+1pN)qN − pN(qN−1 + aN+1qN)

= −(pNqN−1 − pN−1qN)

and

ηNqN+1 − ηN+1qN = ηN(qN−1 + aN+1qN)− (ηN−1 + aN+1ηN)qN

= −(ηN−1qN − ηNqN−1)

and so the statement is true for n = N also. �

Corollary 3.1. For each n > 0 for which ηn 6= 0, Algorithm 3.2 calculates

values for pn, qn and an such that(
α− pn

qn

)(
α− pn−1 + kpn

qn−1 + kqn

)
6 0

whenever 0 < k 6 an+1.

Proof. The corollary is a direct consequence of statements (ii) and (vi) of

Proposition 3.1. �

We shall have frequent recourse to the following fact.

Fact 3.1. If x, a, b and c are real numbers such that ac 6 0, bc > 0 and

(3.7) (x− a)(x− b) 6 0

then

(3.8) (x− a)(x− b− c) 6 (x− a)(x− b)

Proof. The proof is trivial if c = 0 so suppose c 6= 0. Suppose the fact is untrue

and (3.7) is satisfied but (3.8) is not. By subtraction of the left hand side of (3.8)

from the right hand side, we find that c(x− a) < 0 which implies that

(3.9) cx < ac 6 0.

But

c2(x− a)(x− b) = (cx− ca)(cx− cb) 6 0

which implies that c(x− b) > 0 and therefore cx > bc > 0, contradicting (3.9). �
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Proposition 3.2. If Algorithm 3.2 is run on an input real number α then, for

each n > 0 for which ηn 6= 0, it is true that

(i) ηn > 0 if n is even,

(ii) ηn < 0 if n is odd,

(iii) |ηn| < |ηn−1| and

(iv) |ηn+1| < 1
2
|ηn−1|.

Proof. Statements (i) and (ii) follow from statement (iv) of Proposition 3.1,

observing that η−1 = −1.

Using Fact 3.1 with x = ηn, a = −ηn−1, b = 0 and c = ηn−1 and using (iii) of

Proposition 3.1, we see that ηn(ηn + ηn−1) < 0 implies that (ηn − ηn−1)(ηn + ηn−1) <

0. Thus, η2
n − η2

n−1 < 0 and (iii) follows.

We use Fact 3.1 and statement (vii) of Proposition 3.1 in an analogous fashion

to show (iv). �

Corollary 3.2. If Algorithm 3.2 is run on an input real number α then it either

terminates after a finite number of iterations with ηn = 0 or lim
n→∞

ηn = 0.

We can now see that Algorithm 3.2 very quickly finds good homogeneous Dio-

phantine approximations of α in the absolute sense. Clearly,

|ηn| < 2−dn/2e,

so to find a pair of integers (p, q) with an approximation error, |qα− p| 6 ε, for

some ε > 0, requires at most 2dlog2(1/ε)e iterations of Algorithm 3.2. In Section 4,

we will show that an even smaller bound is possible.

Corollary 3.3. If Algorithm 3.2 is run on an input real number α and it

terminates with ηn = 0 and n > 0 then an > 2.

Proof. From statement (v) of Proposition 3.1, we know that an > 1. If an = 1

then ηn = ηn−2+ηn−1 = 0 but |ηn−2| > |ηn−1| from statement (iii) of Proposition 3.2,

so this is impossible. �

We now enquire into the relationship between the integers (pn, qn) generated

by the algorithm and the best homogeneous Diophantine approximations in the

absolute sense. We will find that the relationship is almost one-to-one.

Proposition 3.3. Suppose Algorithm 3.2 is executed with the real number α as

its input. Suppose (p, q) are integers which are not both zero and let η = qα− p. If

ηn 6= 0 and

(3.10) (η − ηn)(η − ηn−1 − kηn) < 0

for some n > 0 and 0 6 k 6 an+1 then either q < 0 or q > qn−1 + (k + 1)qn.

Before proving Proposition 3.3 we make some important observations about the

proposition in the form of a lemma.
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Lemma 3.1. Consider the statement of Proposition 3.3 and the approximation

errors, ηn, calculated by Algorithm 3.2 for the real input α. It is true that

(i) the statement of Proposition 3.3 for n = N > 0 and k = 0 is equivalent to

its statement for n = N − 1 and k = aN ,

(ii) satisfaction of (3.10) for n = N > 0 and k = K where 0 < K 6 aN+1

implies satisfaction of (3.10) for n = N and k = K − 1,

(iii) if

(3.11) η(η + ηN−1 + κηN) < 0

for N > 0 and 0 6 κ 6 an+1 then q 6= 0 and (3.10) is satisfied for n = N−1

and k = aN − 1.

Proof. We see that (i) follows from the fact that ηN = ηN−2 + aNηN and

qN−2 + (aN + 1)qN−1 = qN + qN−1.

That (η − ηN−1 −KηN)(η − ηN) < 0 implies [η − ηN−1 − (K − 1)ηN ](η − ηN) <

0 can be confirmed by application of Fact 3.1 with x = η, a = ηN , b = ηN−1 +

KηN and c = −ηN . Clearly, ac < 0 and bc > 0 by virtue of statement (iii) of

Proposition 3.1 since K 6 aN+1. Thus, we have shown that (ii) is true.

Consider (iii). Using Fact 3.1 with x = η, a = 0, b = −ηN−1 − κηN and

c = κηN , we see that (3.11) implies that η(η + ηN−1) < 0, which in turn implies that

|η| < |ηN−1| 6 1 and so q 6= 0.

Similarly, we can use Fact 3.1 with x = η, a = 0, b = −ηN−1 − κηN and

c = (κ+ 1)ηN to show that (3.11) implies that η(η + ηN−1 − ηN) < 0 which is

equivalent to

(3.12) η[η − ηN−2 − (aN − 1)ηN−1] < 0.

Using Fact 3.1 again with x = η, a = ηN−2 + (aN − 1)ηN−1, b = 0 and c = ηN−1

we see that (3.12) implies that [η − ηn−2 − (aN − 1)ηN−1](η − ηN−1) < 0, which is

simply (3.10) for n = N − 1 and k = aN − 1. Therefore, we have proved (iii). �

Proof of Proposition 3.3. The proof is by induction. The proposition is

obviously true for n = 0 and k = 0 because satisfaction of (3.10) is equivalent to

satisfaction of −1 < η < α−bαc < 1. Therefore q 6= 0 because p and q are not both

zero, which is the implication of the proposition.

Now, suppose the proposition is true for all 0 6 k < K when n = N > 0 and

0 < K 6 aN+1 and for all n < N if N > 0. Suppose (p, q) is an integer pair

which satisfies the conditions of the proposition for n = N and k = K. Because of

statement (ii) of Lemma 3.1, we know that q < 0 or q > qN−1 +KqN . Let

(p′, q′) = (p− pN−1 −KpN , q − qN−1 −KqN).
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Clearly, p′ and q′ are not both zero. By substitution of η′ = q′α−p′ = η−ηN−1−KηN
into (3.10), we find that

η′[η′ + ηN−1 + (K − 1)ηN ] < 0.

We observe that this is just (3.11) from statement (iii) of Lemma 3.1 with η replaced

by η′ and κ replaced by K − 1. Therefore q′ 6= 0. If N = 0 then this implies that

q < 0 or q > q−1 + (K + 1)q0 and the proposition is true for k = K also. If N > 0

then, because statement (iii) implies that (3.10) is satisfied with η replaced by η′

for n = N − 1 and k = aN − 1, we can see that the proposition can be applied to

(p′, q′) with n = N − 1 and k = aN − 1 and therefore q′ > qN−2 + aNqN−1 = qN .

Hence, q < 0 or q > qN−1 + (K + 1)qN and the proposition is true for k = K also.

To complete the induction, we observe statement (i) of Lemma 3.1. �

Proposition 3.4. Suppose Algorithm 3.2 is executed with the real number α as

its input. Suppose (p, q) are integers with q > 0 and let η = qα − p. If ηn 6= 0

and (3.10) is satisfied for some n > 0 and 0 6 k < an+1 then either (p, q) = (p∗, q∗),

where (p∗, q∗) are defined as

(p∗, q∗) = (pn−1 + (k + 1)pn, qn−1 + (k + 1)qn),

or q > q∗.

Proof. First we show that (p∗, q∗) yields a solution to (3.10). With η∗ = q∗α−p∗

we find that

η∗ = ηn−1 + (k + 1)ηn

and so

(η∗ − ηn−1 − kηn)(η∗ − ηn) = ηn(ηn−1 + kηn) < 0

because of statement (ii) of Proposition 3.1 and because k < an+1.

Now, Proposition 3.3 implies that q > q∗. So if we let

(p′, q′) = (p− p∗, q − q∗)

then q′ > 0. After substitution of η′ for η in (3.10) we have

(3.13) (η′ + ηn)(η′ + ηn−1 + kηn) < 0.

Using Fact 3.1 successively, we find that (3.13) implies that (η′ + ηn)(η′ + ηn−1) < 0

which implies that (η′ − ηn−1)(η′ + ηn−1) < 0. Thus |η′| < |ηn−1| 6 1. If q′ = 0

then |η′| = |p′| > 1 unless p′ = 0 also. Therefore (p, q) = (p∗, q∗) or q > q∗ and the

proposition is proved. �

Proposition 3.5. Suppose Algorithm 3.2 is executed with the real number α as

its input. Suppose (p, q) are integers which are not both zero and let η = qα− p. If

n > 0 and |η| < |ηn| then (p, q) = (pn+1, qn+1) or q < 0 or q > qn+1.
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Proof. Now, |η| < |ηn| implies that

(η − ηn)(η + ηn) < 0.

Using Fact 3.1 with x = η, a = ηn, b = −ηn and c = ηn−1 + an+1ηn = ηn+1 we find

that

(η − ηn)[η − ηn−1 − (an+1 − 1)ηn] < 0.

Hence, the conditions of Proposition 3.3 and Proposition 3.4 are satisfied so (p, q) =

(pn+1, qn+1) or q < 0 or q > qn+1. �

Proposition 3.6. If (p, q) is a best homogeneous Diophantine approximation of

α in the absolute sense and α is not a half-integer then (p, q) = (pn, qn) for some

n > 0, where the (pn, qn) are those which are calculated by Algorithm 3.2 for the input

α. Furthermore, if (pn, qn) is a pair of integers calculated by Algorithm 3.2 for some

real input α and n > 0 then (pn, qn) is a best approximation of the aforementioned

type.

Proof. Suppose (p, q) is a best approximation but not one of the (pn, qn). Let

η = qα− p. Now, |η| 6 α− bαc otherwise (p0, q0) = (bαc, 1) has a smaller absolute

approximation error and q0 6 q since, by definition, q > 0. Let N be the largest

index such that |η| < |ηN−1|. Clearly, N > 0. If N > 0 then Proposition 3.5

furnishes a contradiction. If N = 0 and (p, q) 6= (p0, q0) is a best approximation

then (p, q) = (dαe, 1). Since η = η0, we conclude that η = η0 = 1
2

and so α must be

a half-integer.

Now, suppose (pN , qN) is not a best approximation for some N > 0. Therefore,

there must exist some pair of integers (p, q), with q > 0 and η = qα− p, such that

(3.14) q 6 qN and |η| 6 |ηN |

and one of these inequalities must be satisfied strictly. The right-hand inequality

of (3.14), together with statement (iii) of Proposition 3.2, implies that |η| < |ηN−1|.
Proposition 3.5 again furnishes a contradiction. �

Remark 3.1. Consider the behaviour of Algorithm 3.2 when presented with a

half-integer, say α = m + 1
2
. The algorithm terminates after two iterations and

calculates (p0, q0) = (m, 1), (p1, q1) = (2m+ 1, 2). Note that (m+ 1, 1) is a best

approximation of α, but does not appear amongst the (pn, qn), n = 0, 1.

Remark 3.2. We remark that (p0, q0) might not necessarily be a best approx-

imation of α. If α − bαc > 1
2

then (p0, q0) = (bαc, 1) is not a best approximation

since (p1, q1) = (dαe, 1) is better.

In this section, we have shown that Algorithm 3.2 produces a sequence of inte-

ger pairs (pn, qn) which, with some minor exceptions noted in Proposition 3.6 and
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subsequent Remarks, consists of each and every best homogeneous Diophantine ap-

proximation in the absolute sense to its input real number. We have also shown in

Proposition 3.2 (and subsequent discussion) that the number of iterations required

to produce a pair of integers yielding an absolute approximation error not greater

than some specified number ε is logarithmic in 1/ε. Clearly, this is a great improve-

ment over the näıve Algorithm 2.1 of the previous section, which requires up to 1/ε

iterations for the same task.

4. Simple Continued Fractions

Consider a (possibly infinitely) continued fraction of the form

(4.1) a0 +
1

a1 +
1

a2 +
1

a3 + . . .

where the ai are independent variables called the partial quotients. We will

occasionally use the notation [a0, a1, a2, . . .] as a convenient way of expressing a

continued fraction in the form of (4.1) in terms of the prescribed partial quotients.

In the case where a0 ∈ Z and ai ∈ N for all i > 0, the resulting continued fraction

is called a simple continued fraction(s.c.f.).

If we truncate the s.c.f. at the nth partial quotient and express the resulting

fraction in its lowest terms then the rational number, pn/qn, which results is called

the nth convergent (for reasons which will soon become clear). We say that an

s.c.f. is an expansion of a real number α if it evaluates to α when the s.c.f. consists

of only a finite number of partial quotients or if

lim
n→∞

pn
qn

= α

otherwise. In our discussion of simple continued fractions, we impose the additional

restriction that an s.c.f. which terminates but does not simply consist of the first

term a0 shall have a final partial quotient greater than one. This allows us to state

the following theorem, which summarises a number of classical results which can all

be found in, for example, Khinchin (1964) or Hardy & Wright (1979).

Theorem 4.1. Each real number has a unique s.c.f. expansion. Each s.c.f. eval-

uates or converges to a unique real number. Furthermore, every rational number has

a finite s.c.f. expansion and every infinite s.c.f. converges to an irrational number.

We adopt the convention that the (−1)th and (−2)th convergents of any s.c.f.

are given by p−1 = q−2 = 1 and p−2 = q−1 = 0. This may seem somewhat arbitrary

(and reminiscent of Algorithm 3.2!), but it allows for significant simplification in

many discussions of the s.c.f. and we demonstrate this in the following theorem.
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Theorem 4.2. If we express the s.c.f. of α in the form of (4.1) then the nth

convergent of α, pn/qn, satisfies

(4.2)
pn
qn

=
pn−2 + anpn−1

qn−2 + anqn−1

for all n > 0.

Proof. The theorem is obviously true for n = 0. We complete the proof by

induction. Suppose the statement of the theorem is true for all 0 6 n < N then the

N th convergent can be obtained by using (4.2) for the (N −1)th convergent with the

partial quotient aN−1 + (1/aN). This gives

pN
qN

=

pN−3 +

(
aN−1 +

1

aN

)
pN−2

qN−3 +

(
aN−1 +

1

aN

)
qN−2

=
pN−2 + aNpN−3 + aN−1aNpN−2

qN−2 + aNqN−1 + aN−1aNpN−2

=
pN−2 + aNpN−1

qN−2 + aNqN−1

,

which is simply (4.2) for n = N . �

Proposition 4.1. Algorithm 3.2 generates the complete sequence of partial quo-

tients, an, and convergents, pn/qn, of the s.c.f. expansion of α.

Proof. If we make the observation that initially we can write

α = [α] =

[
k,

1

α− k

]
,

where we use the [·] notation to denote the continued fraction with the prescribed

partial quotients, k ∈ Z and k 6= α, then by choosing a0 = k = bαc we can

ensure that 1/(α− a0) > 1. If α is an integer then the s.c.f. expansion for α is

trivial. Provided α is not an integer, and setting ξ1 = 1/(α− a0), we can repeat the

procedure by choosing a1 = bξ1c. If ξ is an integer, then α = [a0, a1]. Otherwise, we

find that

α =

[
a0, a1,

1

ξ1 − a1

]
and the last partial quotient is assigned to ξ2 and again ξ2 > 1. This procedure

can be repeated, finding successive ξn and forming the partial quotients from their

integer parts until, for some n, ξn is an integer, should this ever occur. Up to the

terminating step,

α = [a0, a1, . . . , an−1, ξn].
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We now show that ξn = −ηn−2/ηn−1, where the ηn are those which are calculated

by Algorithm 3.2 for the input α. If we make the assignment ξ0 = α then it is clearly

true for n = 0. If it is true for all n < N then

ξN =
1

ξN−1 − aN−1

=
−ηN−2

ηN−3 + aN−1ηN−2

=
−ηN−2

ηN−1

and thus it is true for n = N also, and so it is shown by induction.

We use Theorem 4.2 to show that expressions for pn and qn are then correct.

It remains to show that the s.c.f. so developed converges to α. This is a direct

consequence of Corollary 3.2. �

Consider the growth rate of the convergents and the rate of decay of the ap-

proximation errors from one iteration of Algorithm 3.2 to the next for positive real

inputs, α > 0. To understand the growth rate of the convergents, we introduce the

Fibonacci numbers Fn. These are defined by F0 = 0, F1 = 1 and Fn = Fn−2+Fn−1

for n > 1.

Lemma 4.1. The nth Fibonacci number, Fn, can be expressed as

(4.3) Fn =
γn − (−γ)−n√

5

where

γ =

√
5 + 1

2

is the golden ratio.

Proof. We can verify this directly for n = 0 and n = 1. To show (4.3) holds

for all n we use induction. Suppose it were true for all n < N . Making use of the

identity γ = 1 + γ−1, we find that

FN = FN−1 + FN−2

=
γN−1 − (−γ)1−N + γN−2 −

(
−γ2−N)

√
5

=
γN−1(1 + γ−1)− (−γ)1−N(1− γ)√

5

=
γN − (−γ)−N√

5

and so (4.3) is satisfied for n = N also and by induction, for all n > 0. �
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Theorem 4.3. For any α > 0, the numerator, pn, and denominator, qn, of the

nth partial quotient, n > 0, satisfy

pn > Fn and qn > Fn+1

where Fn is the nth Fibonacci number.

Proof. The proof follows directly from consideration of (4.2) in Theorem 4.2.

Since a0 ∈ N0 and an ∈ N for all n > 0, we minimise the growth of the numerator

and denominator at each stage if the convergent a0 is 0 and an = 1 for each n > 0.

This implies pn = pn−2 + pn−1 and qn = qn−2 + qn−1 for all n > 0 and p0 = F0,

p1 = q0 = F1 and q1 = F2. The proof is therefore complete. �

Remark 4.1. The partial quotients described in the proof of Theorem 4.3 belong

to the s.c.f. which converges to γ−1. That is,

γ−1 = [0, 1, 1, 1, . . .].

In order to understand the rate of decay of the approximation errors, we first

recall Dirichlet’s theorem (Theorem 2.1). The following two theorems are related

to that theorem but they offer an improved bound. They also lead to an improved

upper bound on the running time required by Algorithm 3.2 to produce best approx-

imations with a specified maximum absolute approximation error. The theorems are

not proved here since they are somewhat incidental. The proofs can be found in

Hardy & Wright (1979).

Theorem 4.4. For any real number α > 0 there is an infinite number of rational

numbers p/q which satisfy the inequality

(4.4) |qα− p| 6 1√
5q
.

Theorem 4.5. Of any three consecutive convergents in the s.c.f. expansion of a

real number α > 0, at least one satisfies (4.4).

We can combine the result of Theorem 4.5 with that of Theorem 4.3 to obtain

the following corollary.

Corollary 4.1. Any three consecutive approximation errors, ηn, in the s.c.f.

expansion of a real number, α > 0, satisfy

(4.5) min {Fn+1|ηn|, Fn+2|ηn+1|, Fn+3|ηn+2|} 6
1√
5
.

Remark 4.2. The approximation errors in the s.c.f. expansion of γ−1 asymptot-

ically achieves the upper bound prescribed by (4.5). Therefore, the constant 1/
√

5

cannot be replaced by any smaller number. To see this, we merely observe that the
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approximation errors |ηn| for the s.c.f. expansion of γ−1 are given by |ηn| = γ−n+1

(which is easily proved by induction) and therefore

Fn+1|ηn| =
1− (−γ)−2n−2

√
5

.

We can use Corollary 4.1 to improve on the bound we found in the previous

section for the number of iterations required to find best approximations with an

absolute approximation error not greater than ε > 0. From Corollary 4.1, the

number of iterations required is N+3 (after accounting for the fact that one iteration

is required to calculate the 0th convergent) where N is an integer such that

1√
5FN+1

6 ε.

This implies that

γN+1 − (−γ)−N−1 >
1

ε
.

Since (−γ)−N−1 < 1 for all N > 0, we have

N > logγ

(
1

ε
+ 1

)
− 1.

Therefore, we require
⌈
logγ(ε

−1 + 1)
⌉

+ 2 iterations. This implies that the number

of iterations is approximately 2.078 ln(1/ε)+2 when ε is small. The bound we found

in the previous section, that the number of iterations is at most 2dlog2(1/ε)e, is

approximately 2.885 ln(1/ε). Thus, our new upper bound is appreciably smaller for

small ε (and close to smallest possible).

For completeness, we conclude this section by stating (without proof) the follow-

ing result from Khinchin (1964) concerning the relationship between the conver-

gents of the s.c.f. and best homogeneous Diophantine approximations in the relative

sense. Before the statement of the theorem, we define the intermediate frac-

tions (or intermediate convergents) of a s.c.f. These are fractions of the

form
pn−2 + kpn−1

qn−2 + kpn−1

and they are defined for all n > 0 for which an > 1 and, of those, for all 0 < k < an.

(We have already encountered these fractions. They appeared in Proposition 3.3,

which allowed us to prove the nearly complete correspondence between the conver-

gents and the best homogeneous approximations in the absolute sense in Proposi-

tion 3.6.)

Theorem 4.6. Every best homogeneous Diophantine approximation in the rela-

tive sense to a real number α is a convergent or an intermediate fraction of the s.c.f.

expansion of α.
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Remark 4.3. It should be noted that the converse is not true in general. Con-

sider the s.c.f. expansion of π,

π = [3, 7, 15, 1, 292, 1, . . .].

The first few (non-negatively indexed) convergents are

p0

q0

=
3

1
,

p1

q1

=
22

7
and

p2

q2

=
333

106
.

Consider the intermediate fractions between the 1st and 2nd convergent. These are

the fractions

(4.6)
p1 + p2

q1 + q2

=
25

8
,

p1 + 2p2

q1 + 2q2

=
47

15
, . . . ,

p1 + 14p2

p2 + 14q2

=
311

99
.

Straightforward calculation shows that∣∣∣∣π − 22

7

∣∣∣∣ = 0.00126 · · · <
∣∣∣∣π − 25

8

∣∣∣∣ = 0.0166 · · · ,

so the intermediate fraction 25/8 is not a best homogeneous approximation of

π in the relative sense. However, all the intermediate fractions in the sequence

(p1 + kp2)/(q1 + kq2) are best approximations of this type when 7 < k < 15 = a3.

In this section, we have demonstrated the connection between Algorithm 3.2

and the simple continued fraction expansion of a real number. We have called upon

results from that theory to improve the running time bound on the algorithm for

calculation of best approximations over that which we found in the previous section

(although only by an asymptotically constant factor). We have also presented a

theorem (Theorem 4.6) which relates best homogeneous Diophantine approximations

of a real number in the relative sense to the convergents and intermediate fractions

of the s.c.f. expansion of that number.

5. Cassels’ Algorithm

Our aim in this section is to describe an algorithm due to Cassels (1954) and

to examine in the relationship of its outputs with best inhomogeneous Diophantine

approximations of the inputs.1 We begin by presenting the algorithm in full in Al-

gorithm 5.1. The algorithm initially appears quite complex and, from the algorithm

alone, we would have some difficulty in deducing what relationship it has, if any,

with best inhomogeneous approximations. This will be explained, little by little, in

the subsequent series of propositions which culminates in Theorem 5.1. The reader

is therefore advised to read the algorithm in a cursory manner at first, and to refer

back to it as necessary to confirm the statements of the propositions.

1In Clarkson et al. (1996), the author made the mistake of attributing a similar algorithm

to Descombes (1956).
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Algorithm 5.1.

1 begin

2 η−1 := −1; η−2 = α; ζ−1 := −β;

3 p−1 := 1; p−2 := 0; P−1 := 0;

4 q−1 := 0; q−2 := 1; Q−1 := 0;

5 n := 0;

6 while ηn−1 6= 0 ∧ ζn−1 6= 0 do

7 an :=

⌊
−ηn−2

ηn−1

⌋
;

8 pn := pn−2 + anpn−1; qn := qn−2 + anqn−1;

9 ηn := ηn−2 + anηn−1;

10 if Qn−1 6 qn−1 then

11 bn :=

⌊
−ζn−1 − ηn−2

ηn−1

⌋
;

12 Pn := Pn−1 + pn−2 + bnpn−1; Qn := Qn−1 + qn−2 + bnqn−1;

13 ζn := ζn−1 + ηn−2 + bnηn−1;

14 else

15 Pn := Pn−1 − pn−1; Qn := Qn−1 − qn−1;

16 ζn := ζn−1 − ηn−1;

17 fi;

18 n := n+ 1;

19 od;

20 end

We observe that this algorithm is “built on top of” Algorithm 3.2, in that the

values of ηn, an, pn and qn are those which would be calculated by that algorithm for

the same input α. Therefore we bring to bear the results of the previous two sections

to prove the following proposition, which is also due to Cassels, and subsequent

results in this section.

Proposition 5.1. Suppose Algorithm 5.1 is executed on the real inputs α and

β. For each n > 0,

(5.1) ζn = Qnα− Pn − β.

If, additionally, ηn 6= 0 and ζn 6= 0 then either

0 < Qn 6 qn and ζn(ζn + ηn−1) < 0(An)

or

qn < Qn 6 qn + qn−1 and ζn(ζn − ηn) < 0(Bn)

Proof. The truth of (5.1) is apparent from inspection of Algorithm 5.1. We see

that ζ−1 = Q−1α−P−1−β. The expressions for updating Pn, Qn and ζn everywhere
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have the same form. Bearing in mind statement (i) of Proposition 3.1, we find

that (5.1) must always be true.

The proof of the remainder of the proposition is by induction. For n = 0 we have

Q−1 = q−1 = 0 and so Algorithm 5.1 produces P0 = b0 = bα− βc and Q0 = q0 = 1.

Furthermore, 0 < ζ0 = α− β − bα− βc < 1 = −η−1 and so ζ0(ζ0 + η−1) < 0. Thus,

a pair (P0, Q0) has been calculated by Algorithm 5.1 which satisfies (An) for n = 0.

Suppose the statement of the theorem is true for all 0 6 n < N . If (Bn) holds

for n = N − 1 then Algorithm 5.1 sets QN = QN−1 − qN−1 and ζN = ζN−1 − ηN−1

and so (An) holds for n = N unless ηN = 0 or ζN = 0.

Suppose (An) holds for n = N − 1. Algorithm 5.1 will then set

QN = QN−1 + qN−2 + bNqN−1 and ζN = ζN−1 + ηN−2 + bNηN−1.

Now,

(5.2)
−ζN−1 − ηN−2

ηN−1

=
ζN−1(ζN−1 + ηN−2)

−ζN−1ηN−1

.

The numerator of the right-hand side of (5.2) is negative because of (An) for n =

N−1, which also implies that ζN−1ηN−2 < 0. From statement (iv) of Proposition 3.1,

we find that ζN−1ηN−1 > 0. Hence the expressions of (5.2) are positive. By the same

reasoning,

−ζN−1 − ηN−2

ηN−1

<
−ηN−2

ηN−1

.

Hence, 0 6 bN 6 aN .

If bN < aN then 0 < QN 6 qN . Now, using the inequalities

(5.3)
−ζN−1 − ηN−2

ηN−1

− 1 < bN 6
−ζN−1 − ηN−2

ηN−1

together with the assumption that ηN−1 6= 0, we find that

(5.4) −η2
N−1 < ζNηN−1 < 0 and 0 < (ζN + ηN−1)ηN−1 < η2

N−1

when ζN 6= 0 which implies that ζN(ζN + ηN−1) < 0. Thus, if bN < aN then

Algorithm 5.1 finds an integer couple (PN , QN) which satisfies (An) for n = N .

If bN = aN then qN < QN 6 qN + qN−1. In this case,

(5.5) bN = aN =
ηN − ηN−2

ηN−1

>
ηN − ηN−2 − ζN−1

ηN−1

.

We can use (5.5) to replace the left-hand inequality of (5.3) in order to improve (5.4)

so that

ηN−1ηN < ζNηN−1 < 0 and 0 < (ζN − ηN)ηN−1 < −ηN−1ηN

(provided neither ζN = 0 nor ηN = 0) which implies that ζN(ζN − ηN) < 0. There-

fore, (Bn) holds for n = N . �
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Remark 5.1. We note some implications which have come to light in the proof

of Proposition 5.1. We now see that we can regard Algorithm 5.1 as being in one

of three states when n > 0: the state in which (Pn, Qn) and ζn satisfy (An), in

which they satisfy (Bn) or in which the algorithm is about to terminate with ζn = 0

or ηn = 0. We will refer to either of the first two states simply by the equation

numbers (An) or (Bn).

Furthermore, for every iteration n > 0 we observe and emphasise that

(i) regardless of the algorithm’s state, we will always have 0 < Qn 6 qn+qn−1,

(ii) unless the algorithm is terminating with ζn = 0, we have ζn(ζn + ηn−1) < 0,

(iii) the algorithm is in state (An) or the terminating state when n = 0,

(iv) if the algorithm is in state (An) then 0 6 bn+1 6 an+1 and if k ∈ Z,

k 6 bn+1 then ηn(ζn + ηn−1 + kηn) 6 0,

(v) the algorithm is in state (Bn) if and only if it was in state (An) on the

previous iteration and bn = an and

(vi) if it is in state (Bn) then n > 0, (Pn+1, Qn+1) = (Pn−1, Qn−1) and the

algorithm will either be in state (An) or in the terminating state with

ηn+1 = 0 on the subsequent iteration.

These remarks lead to the following proposition and corollary.

Proposition 5.2. If Algorithm 5.1 is executed on the real inputs α and β then,

for each n > 0 for which ζn 6= 0, it is true that

(i) ζn > 0 if n is even,

(ii) ζn < 0 if n is odd and

(iii) |ζn| < |ηn−1|.

Proof. Statements (i) and (ii) follow from the fact that ζnηn−1 < 0, which is a

consequence of statement (ii) of Remark 5.1, and because ζ0 = α−β−bα− βc > 0.

Statement (iii) is also a consequence of statement (ii) of Remark 5.1. �

Corollary 5.1. If Algorithm 5.1 is run on the real inputs α and β then the

algorithm either terminates after a finite number of iterations with ηn = 0 or ζn = 0

or

lim
n→∞

ζn = lim
n→∞

ηn = 0.

From Proposition 5.2, we can already see that Algorithm 5.1 produces good inho-

mogeneous Diophantine approximations very quickly because |ζn| 6 |ηn−1|. Indeed,

we can use the results of Theorem 4.1 and subsequent discussion from the previous

section to deduce that the number of iterations of Algorithm 5.1 required to produce

a pair of integers with an absolute approximation error less than some ε > 0 is at

most
⌈
logγ(ε

−1 + 1)
⌉

+ 3 (the extra iteration being required because |ζn| 6 |ηn−1|
rather than |ζn| 6 |ηn|).
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However, we can show that the integer pairs produced by Algorithm 5.1 yield

all the best inhomogeneous Diophantine approximations of α with respect to β. We

show this in the following propositions.

Proposition 5.3. Suppose Algorithm 5.1 is executed with the real numbers α

and β as its inputs. Suppose (P,Q) are integers and let ζ = Qα − P − β. If, for

some n > 0, the algorithm is in state (An) and

(5.6) (ζ − ζn)(ζ − ζn − ηn−1 − kηn) < 0

and 0 6 k 6 bn+1 then either Q 6 0 or Q > Qn + qn−1 + (k + 1)qn. Furthermore,

the same is also true if the algorithm is in the terminating state with ζn 6= 0 and

k = 0.

Proof. The proof is by induction on n and k. The proposition is true for n = 0

and k = 0 because, in this case, satisfaction of (5.6) is equivalent to satisfaction of

(5.7) α− β − bα− βc − 1 < ζ < α− β − bα− βc.

If Q = 1 then ζ = α − β − P and (5.7) cannot be satisfied. Therefore Q 6 0 or

Q > Q0 + q−1 + q0 = 2.

Suppose the proposition is true for all 0 6 k < K when n = N > 0 and

0 < K 6 bN+1 and for all n < N if N > 0. Suppose (P,Q) is an integer pair which

satisfies the conditions of the proposition for n = N and k = K. (Note that this

condition excludes the possibility that the algorithm is in the terminating state.)

We will call upon Fact 3.1 with x = ζ, a = ζN , b = ζN + ηN−1 +KηN and c = −ηN
to show that (5.6) implies that

(5.8) (ζ − ζN)[ζ − ζN − ηN−1 − (K − 1)ηN ] < 0.

That Fact 3.1 can be applied is not clear until we show that ac 6 0 and bc > 0.

To see that bc > 0, recall statement (iv) of Remark 5.1. Now, ζNηN−1 < 0 because

of (An) and therefore

ζNηN−1ηN(ζN + ηN−1 +KηN) > 0.

Recalling statement (iv) of Proposition 3.1 we now see that ac 6 0.

Having established (5.8), we can now apply the proposition to (P,Q) for n = N

and k = K − 1 to find that Q 6 0 or Q > QN + qN−1 +KqN . Let

(p, q) = (P − PN − pN−1 −KpN , Q−QN − qN−1 −KqN)

and let η = qα− p. Clearly, p and q are not both zero. We have

η = ζ − ζN − ηN−1 −KηN

which implies that (An) can be rewritten as

η(η + ηN−1 +KηN) < 0.
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From statement (iii) of Lemma 3.1 we find that q 6= 0 and (3.10) is satisfied for

n = N − 1 and k = aN − 1. If N = 0 this implies that Q 6 0 or Q > Q0 + q−1 +

(K + 1)q0 = K + 2. If N > 0 then we can apply Proposition 3.3 to show that q < 0

or q > qN which implies that Q 6 0 or Q > QN + qN−1 + (K + 1)qN .

To complete the induction on n and k, it remains to show that if the proposition

holds for all 0 6 n < N then it holds for n = N and k = 0. (Note that our

discussion now includes the possibility that the algorithm is in the terminating state

with ζN 6= 0.) Suppose (P,Q) is an integer pair which satisfies the conditions of the

proposition for n = N and k = 0.

Suppose the algorithm was in state (Bn) on the previous iteration, n = N − 1.

Then, from statement (vi) of Remark 5.1, we see that N > 2. We also note that (5.6)

for n = N , k = 0 reduces to

(ζ − ζN)(ζ − ζN − ηN−1) = (ζ − ζN−2)(ζ − ζN−1)

= (ζ − ζN−2)(ζ − ζN−2 − ηN−3 − bN−1ηN−2) < 0.

But this is simply (5.6) for n = N − 2, k = bN−1. We conclude that Q 6 0 or

Q > QN−1 + qN−2 = QN + qN−2 + qN−1 > QN + qN−1.

On the other hand, suppose the algorithm was in state (An) on the previous

iteration, n = N − 1. We intend to apply Fact 3.1 to show that, in this case, (5.6)

implies that

(5.9) (ζ − ζN)(ζ − ζN−1) < 0.

To do this, we set x = ζ, a = ζN , b = ζN + ηN−1 = ζN−1 + ηN−2 + (bN + 1)ηN−1

and c = −[ηN−2 + (bN + 1)ηN−1]. Recalling from statement (v) of Remark 5.1 that

bN < aN , we see that

ηN−1[ηN−2 + (bN + 1)ηN−1] 6 0

because of statement (ii) of Proposition 3.1. Also, statement (ii) of Remark 5.1

implies that ζNηN−1 < 0. Therefore,

(5.10) η2
N−1ζN [ηN−2 + (bN + 1)ηN−1] > 0

and, because η2
N−1 > 0, we find that ac 6 0. Again using statement (ii) of Re-

mark 5.1, we find from (5.10) that

η2
N−1ζ

2
N(ζN + ηN−1)[ηN−2 + (bN + 1)ηN−1] 6 0.

As η2
N−1ζ

2
N > 0, we see that bc > 0. Therefore, we have shown the validity of (5.9)

in this case. We observe that (5.9) is just (5.6) when n = N − 1 and k = bN .

Therefore, we can apply the proposition to show that Q 6 0 or Q > QN−1 + qN−2 +

(bN + 1)qN−1 = QN + qN−1.

Thus, regardless of whether the algorithm was in state (An) or (Bn) on the

previous iteration n = N − 1, we have found that either Q 6 0 or Q > QN + qN−1.
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Let

(p, q) = (P − PN − pN−1, Q−QN − qN−1).

Clearly, p and q are not both zero. Let

η = qα− p = ζ − ζN − ηN−1.

Substitution into (5.6) reveals that

(5.11) η(η + ηN−1) < 0.

Witness that this is (3.11) of statement (iii) of Lemma 3.1 with κ = 0 which implies

that Proposition 3.10 can be applied. We then find that either q < 0 or q > qN .

Hence, either Q 6 0 or Q > QN−1 + qN = QN + qN−1 + qN , in agreement with the

proposition. Therefore, the induction on n and k is complete and the proposition is

proved. �

Proposition 5.4. Suppose Algorithm 5.1 is executed with the real inputs α and

β. Suppose (P,Q) is a pair of integers with Q > 0 and let ζ = Qα− P − β. If, for

some n > 0, the algorithm is in state (An) and (5.6) of Proposition 5.3 is satisfied

for some 0 6 k 6 bn+1 and k < an+1 and

(5.12) ηn−1 + (k + 1)ηn 6= 0

then either (P,Q) = (P ∗, Q∗), where (P ∗, Q∗) is defined by

(P ∗, Q∗) = (Pn + pn−1 + (k + 1)pn, Qn + qn−1 + (k + 1)qn),

or Q > Q∗.

Proof. Firstly, we show that (P ∗, Q∗) satisfies (5.6). With ζ∗ = Q∗α−P ∗−β =

ζn + ηn−1 + (k + 1)ηn, we find that

(ζ∗ − ζn)(ζ∗ − ζn − ηn−1 − kηn) = ηn[ηn−1 + (k + 1)ηn] < 0

by virtue of (5.12) and statement (ii) of Proposition 3.1 because k + 1 6 an+1.

Now, from Proposition 5.3, we know that Q > Q∗. Let

(p, q) = (P − P ∗, Q−Q∗)

and suppose that p and q are not both zero. Let

η = qα− p = ζ − ζ∗ = ζ − ζn − ηn−1 − (k + 1)ηn.

Substitution into (5.6) yields

(5.13) [η + ηn−1 + (k + 1)ηn](η + ηn) < 0.

Successive application of Fact 3.1 shows that (5.13) implies that (η + ηn−1)(η + ηn) <

0 which implies that (η + ηn−1)(η − ηn−1) < 0. Thus, |η| < |ηn−1| 6 1 which implies

that q 6= 0. Hence, if (P,Q) 6= (P ∗, Q∗) then Q > Q∗. �
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We now see that the inhomogeneous approximation errors of the (Pn, Qn) gener-

ated by Algorithm 5.1 quickly vanish and, in the sense implied by Proposition 5.4,

they enjoy a uniqueness property. For this reason, we call the (Pn, Qn) for n > 0

the auxiliary convergents of α with respect to β. Similarly, the bn, where

defined, are auxiliary partial quotients. We also define the intermediate

auxiliary convergents between the nth and (n + 1)th auxiliary convergents as

those pairs of integers of the form

(5.14) (Pn + pn−1 + kpn, Qn + qn−1 + kqn)

with 0 6 k < bn+1 and n > 0. Obviously, this is only meaningful if (Pn, Qn)

satisfies (An). However, we also define an intermediate auxiliary convergent which

follows the final auxiliary convergent if, on the terminating step, ζn 6= 0. This final

intermediate auxiliary convergent has the form of (5.14) with k = 0.

We can now state and prove the main result of this section.

Theorem 5.1. If (P,Q) is a best inhomogeneous Diophantine approximation

of α with respect to β then it is an auxiliary convergent or intermediate auxiliary

convergent of α with respect to β.

Proof. Let ζ = Qα − P − β. Suppose there are only a finite number of aux-

iliary convergents and intermediate auxiliary convergents (which will occur if Algo-

rithm 5.1 terminates) and each has an absolute approximation error greater than

|ζ|. This means that |ζ| < |ζN | and |ζ| < |ζn + ηN−1| and that ζN 6= 0 and ηN = 0,

where N is the index of the final auxiliary convergent (the iteration on which the

algorithm enters the terminating state). Hence, starting with either

(ζ − ζN)(ζ + ζN) < 0 or (ζ − ζN − ηN−1)(ζ + ζN + ηN−1) < 0

depending on whether |ζN | < |ζN + ηN−1| or not, respectively, we can apply Fact 3.1

to show that

(ζ − ζN)(ζ − ζN − ηN−1) < 0

because of statement (ii) of Remark 5.1. We can apply Proposition 5.3 to show

that Q > QN + qN−1 + qN . But the integer pair (P − pN , Q− qN) has the same

approximation error as (P,Q) since ηN = 0 and 0 < Q−qN < Q. Thus, (P,Q) cannot

possibly be a best inhomogeneous Diophantine approximation and the theorem is

true in this case.

On the other hand, suppose there exists some auxiliary convergent or interme-

diate auxiliary convergent which has an absolute approximation error not greater

than |ζ|. This is automatic if there are an infinite number of auxiliary convergents

because of Corollary 5.1. Now, arrange the auxiliary convergents and intermediate

auxiliary convergents, starting with (P0, Q0), in order of increasing index, in the case

of auxiliary convergents, and with the intermediate auxiliary convergents ordered in

the obvious way between the auxiliary convergents with which they are associated.
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Choose the first integer pair from this sequence with an absolute approximation

error not greater than |ζ|. Let (P ∗, Q∗) be this element. We will show that we can

express (P ∗, Q∗) as either

(P ∗, Q∗) = (P0, Q0)(5.15)

or

(P ∗, Q∗) = (PN + pN−1 +KpN , QN + qN−1 +KqN)(5.16)

for some N > 0 and 0 6 K 6 bN+1. This is obvious if (P ∗, Q∗) is an intermediate

auxiliary convergent but it requires some explanation otherwise. Suppose (P ∗, Q∗)

is an auxiliary convergent, say (Pm, Qm) for some m > 0. If m = 0 then obviously

we have (5.15). If m > 0 and (Pm−1, Qm−1) satisfies (An) for n = m− 1 then (5.16)

is obviously valid with N = m − 1 and K = bm. If (Pm−1, Qm−1) satisfies (Bn)

then, from statement (vi) of Remark 5.1, m > 2 and (Pm−2, Qm−2) = (Pm, Qm) and

so there is an earlier element in the sequence with the same approximation error,

contrary to our assumption. Furthermore, we note that if (P ∗, Q∗) takes the form

of (5.16) with K = 0 then (PN−1, QN−1) cannot have satisfied (Bn) for, if it had,

we would have (PN + pN−1, QN + qN−1) = (PN−1, QN−1) and (PN−1, QN−1) occurs

earlier in the sequence.

Now that we have established the validity of (5.15) and (5.16), let us set ζ∗ =

Q∗α− P ∗ − β. By assumption, |ζ∗| 6 |ζ|.
Suppose (P ∗, Q∗) = (P0, Q0) = (bα− βc, 1). Now, we must have ζ0 = 1

2
= −ζ

and (P,Q) = (dα− βe, 1), otherwise (P,Q) could not be a best approximation.

But (P,Q) = (P0 + p−1, Q0 + q−1) in this case, which is an intermediate auxiliary

convergent, and so the theorem holds.

If we have (5.16) with K > 0 then we know that |ζ| < |ζN | and also that |ζ| <
|ζN + ηN−1 + (K − 1)ηN | because both integer pairs to which these approximation

errors correspond occur earlier in the sequence than (P ∗, Q∗) and therefore

(ζ − ζN)[ζ − ζN − ηN−1 − (K − 1)ηN ] < 0.

We can then apply Proposition 5.4 with n = N and k = K − 1 to show that

Q > Q∗ unless (P,Q) = (P ∗, Q∗). If Q > Q∗ then (P,Q) cannot possibly be a best

approximation because |ζ| > |ζ∗|. Therefore, the theorem is true in this case.

The last possibility we need to consider is that (P ∗, Q∗) takes the form of (5.16)

with K = 0. If N = 0 then we have |ζ| < |ζ0|. This implies that (P,Q) =

(P ∗, Q∗) = (P0 − 1, 1) or that Q > 1 = Q∗ in which case (P,Q) cannot possibly be a

best approximation since |ζ| > |ζ∗|. If N > 0 then, as we discussed above, we know

that (PN−1, QN−1) satisfies (An) for n = N − 1. Now, |ζ| < |ζN | and |ζ| < |ζN−1|
because both integer pairs to which these approximation errors correspond occur
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earlier in the sequence than (P ∗, Q∗). Therefore,

(ζ − ζN−1)(ζ − ζN) = (ζ − ζN−1)(ζ − ζN−1 − ηN−2 − bNηN−1) < 0.

We can then apply Proposition 5.4 with n = N − 1 and k = bN to show that either

(P,Q) = (P ∗, Q∗) or Q > Q∗. As before, we see that if Q > Q∗ then (P,Q) cannot

possibly be a best approximation. Therefore, the proof is complete. �

6. Successive Maxima of Certain Diagonal Functions

In this section we will examine the relationship between certain diagonal func-

tions and Diophantine approximation. A diagonal function is a type of almost

periodic function (Levitan & Zhikov, 1982) which arises from taking the value of

a periodic function in n variables, n > 1, along a “diagonal” or line passing through

the origin (see Definition 6.1). For certain diagonal functions arising from periodic

functions of two variables, we will show in Theorem 6.1 that there is a close rela-

tionship between the successive maxima of the function and the best homogeneous

Diophantine approximations in the absolute sense of the slope of the diagonal. We

will then illustrate the theorem by applying it to periodograms of the form

F (ω) =

∣∣∣∣∣
3∑
j=1

Aje
−iωtj

∣∣∣∣∣
2

where the Aj are positive real numbers and the tj are real numbers with t1 6 t2 6 t3.

We will see that the positions of the successive peaks in a periodogram of this

type are dictated by the best homogeneous Diophantine approximations of the ratio

(t2 − t1)/(t3 − t1). This result is potentially significant for signal processing, where

the successive maxima of the periodogram are important for frequency estimation

and spectral estimation.

Definition 6.1. A function F : R → R is called a diagonal function if f

can be expressed F (x) = f(α1x, α2x, . . . , αnx) where f : Rn → R is a function which

is periodic in each of its variables and αi ∈ R for each i = 1, . . . , n.

Definition 6.2. A function f : R2 → R is Z2-periodic if f(x + k) = f(x) for

all x ∈ R2 and k ∈ Z2.

We use Nint(x) to denote the set of nearest integers to a real number x. Obvi-

ously, this will contain only one element unless x is a half-integer, in which case it

will contain two elements.

Theorem 6.1. Suppose f : R2 → R is a symmetric, Z2-periodic function and f

is bounded above. Suppose that the restriction of f to the unit square T =
[
−1

2
, 1

2

]
×[

−1
2
, 1

2

]
attains its maximum at 0 and nowhere else and nor are there any other local
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maxima. If x and α are real numbers such that x > 1
2
, |α| 6 1 and for all y ∈ R,

y > 1
2
,

y 6 x ⇒ f(yα, y) 6 f(xα, x)(6.1)

and

f(yα, y) > f(xα, x) ⇒ y > x(6.2)

then the Cartesian product N = Nint(xα)×Nint(x) contains either a best homoge-

neous Diophantine approximation of α in the absolute sense or the point (0, 1).

Proof. If x = 1
2

then the proof is obvious because (0, 1) ∈ N . If |α| = 1 then

(α, 1) is the only best approximation of α. However, there must be an element of

the form (kα, k) ∈ N with k ∈ N. If k > 1 then f(α, 1) > f(xα, x) and 1 < x,

which contradicts (6.2). Therefore, for the rest of the proof, we suppose that x > 1
2

and |α| < 1.

Suppose that neither a best approximation nor (0, 1) are elements of N . Let

(p, q) be that element of N with least absolute value for each coordinate. Clearly,

q > 0 since x > 1
2
. Let η = qα− p. Now, there must exist some best approximation

(p∗, q∗) of α such that

q∗ 6 q and |η∗| 6 |η|

and at least one of these inequalities must be satisfied strictly. If there is more

than one best approximation that satisfies these conditions then choose that best

approximation which gives the smallest q∗ > 0.

Suppose η∗ = 0. In this case, (q∗α, q∗) ∈ Z2 and so f(qα, q) > f(xα, x). If q∗ < q

then q∗ < x which would contradict (6.2). If q∗ = q then

q∗ − 1
2
< x 6 q∗ + 1

2
.

Therefore,

p∗ − 1
2
|α| < xα 6 p∗ + 1

2
|α|

but this implies that (p∗, q∗) ∈ N because |α| < 1, contrary to our assumption.

Suppose 0 < |η∗| = |η|. In this case, 0 < q∗ < q, otherwise (p, q) would also be

a best approximation. Now f(xα, x) = f(xα− p, x− q) because f is Z2-periodic.

Also, −1
2
< x− q 6 1

2
. If η∗ = η then, using the fact that

xα− p = (q∗ + x− q)α− p∗,

we see that

f(xα, x) = f((q∗ + x− q)α, q∗ + x− q).
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But 1
2
< q∗ + x − q 6 q∗ + 1

2
< x and this contradicts (6.2). Similarly, if η∗ = −η

then

f(xα, x) = f((q∗ + q − x)α, q∗ + q − x),

again contradicting (6.2) since 1
2
6 q∗ + q − x < x.

Finally, suppose 0 < |η∗| < |η|. Let x = (xα− p, x− q) ∈ T . Consider the sets

P1 = {(a, b) ∈ T | aα− b < |η∗|}

P2 = {(a, b) ∈ T | aα− b > |η∗|}

and

P3 = {(a, b) ∈ T | aα− b = |η∗|}

Clearly, P1 ∪P2 ∪P3 = T and Pi ∩Pj = ∅ whenever i 6= j. Also, 0 ∈ P1 and either

x ∈ P2 or −x ∈ P2 and both P1 and P2 are open in T . Consider the set

C = {z ∈ T | f(z) > f(x)}.

We know that C ∩ Pi 6= ∅ when i = 1 or i = 2. Suppose C ∩ P3 = ∅. This would

imply that C is disconnected and in turn this would imply that the restriction of

f to T has a local maximum on P2. However, we have assumed in the theorem

statement that f has no such local maximum in P2. Therefore, there is some point

z ∈ P3 such that f(z) > f(x). Thus, there exists some δ ∈
[
−1

2
, 1

2

]
such that

f(η∗ + δα, δ) > f(xα, x)

and, therefore,

f((q∗ + δ)α, q∗ + δ) > f(xα, x).

If q∗ + δ < x then we contradict (6.2).

Suppose q∗+δ > x which implies that q∗ = q. Now, x > q− 1
2
. Thus, both x and

q∗+δ lie in the interval (q∗− 1
2
, q∗+ 1

2
]. Consider any real z in this interval. Because

|α| < 1, there are only two possible integers which can be elements of Nint(zα) and

they differ by one. Clearly, p0 = bq∗αe is one such value and |q∗α− p0| 6 1
2
. Let p1

be the other possible element of Nint(zα). Thus, |p1 − p0| = 1 and |q∗α− p1| > 1
2
.

We see that both p and p∗ are distinct elements of the set {p0, p1}. Now, |η∗| 6 1
2

because (p∗, q∗) is a best approximation. If |η∗| = 1
2

then |η| = 1
2
, but we have

assumed that |η∗| < |η|, so |η∗| < 1
2
, |η| > 1

2
, p∗ = p0 and p = p1. However, this

implies that q = q∗ = 1, since we chose that best approximation with smallest q∗ > 0

and all best approximations have approximation errors less than (or equal to) 1
2
. In

this case, one of the values p0 or p1 must be zero. Also, it is easily verified that

|p∗| 6 1. Now, because x 6 q∗ + δ, we must have |xα| 6 |(q∗ + δ)α| which implies

that |p| 6 |p∗|. Thus, either (p, q) = (0, 1) or (p, q) = (p∗, q∗). �

We illustrate Theorem 6.1 with two examples.
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Example 6.1. Let

f(x) = −min
k∈Z2

g(x− k)

where

g(z) = (|z1|p + |z2|p)1/p

for some real constant p > 1 (g is p-norm; see Definition 5.2 in the next chapter).

It is easily verified that ‖x− k‖p attains its minimum for any x whenever k =

(bx1e, bx2e). Furthermore, it is clear that f(x) is Z2-periodic and bounded above

and the restriction of f(x) to the unit square T has only one local maximum at 0.

Thus, Theorem 6.1 can be applied to functions of this type.

Example 6.2. Consider functions of the form

f(x1, x2) =
∣∣A1 + A2e

−i2πx1 + A3e
−i2πx2

∣∣2
= A2

1 + A2
2 + A2

3

+ 2A1A2 cos 2πx1 + 2A1A3 cos 2πx2 + 2A2A3 cos 2π(x1 − x2)

(6.3)

where the Ai, i = 1, 2, 3, are positive real numbers. A plot of f(x1, x2) over T

-0.4

-0.2

0

0.2

0.4

x1

-0.4

-0.2

0

0.2

0.4

x2

0

1

2

3

4

5

f

Figure 3. A plot of f(x1, x2), as defined in (6.3), over the unit square

[−1
2
, 1

2
]× [−1

2
, 1

2
].

appears in Figure 3. The values A1 = 1, A2 = 0.8 and A3 = 0.6 were used to

generate the plot. The local maxima and minima are marked with a plus sign (+).

We now seek expressions for the positions of the local maxima and minima in terms

of the values of A1, A2 and A3.
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The function is obviously Z2-periodic. The partial derivatives of the first and

second orders are

∂f

∂x1

= −4πA2[A1 sin 2πx1 + A3 sin 2π(x1 − x2)],(6.4)

∂f

∂x2

= −4πA3[A1 sin 2πx2 − A2 sin 2π(x1 − x2)],(6.5)

∂2f

∂x2
1

= −8π2A2[A1 cos 2πx1 + A3 cos 2π(x1 − x2)],(6.6)

∂2f

∂x2
2

= −8π2A3[A1 cos 2πx2 + A2 cos 2π(x1 − x2)](6.7)

and

∂2f

∂x1x2

=
∂2f

∂x2x1

= 8π2A2A3 cos 2π(x1 − x2).(6.8)

Consider the local maxima of f on R2. Recall that, because f has continuous

second order partial derivatives, the local maxima of f occur wherever

∂f

∂x1

=
∂f

∂x2

= 0,(6.9)

∂2f

∂x2
1

6 0,
∂2f

∂x2
2

6 0,(6.10)

and

∂2f

∂x2
1

∂2f

∂x2
2

>

(
∂2f

∂x1x2

)2

.(6.11)

We firstly consider trivial solutions of (6.9). Namely, these are the solutions of

the form (x1, x2) = (m/2, n/2) where m,n ∈ Z. If both m and n are even then (6.10)

and (6.10) and (6.11) are satisfied strictly. Thus, f has absolute local maxima at all

points in Z2. It is also readily apparent that these local maxima are also the global

maxima. If both m and n are odd and (6.10) is satisfied then

− ∂2f

∂x1x2

<
∂2f

∂x2
i

6 0

for i = 1, 2, so (6.11) cannot be satisfied. If one of m or n is even and the other

odd then one of the inequalities of (6.10) cannot be satisfied. Thus, of the trivial

solutions of (6.9), only solutions consisting of integer pairs yield local maxima, and

these are absolute and global.

We now seek non-trivial solutions of (6.9). We can rewrite (6.4) as

(6.12)
∂f

∂x1

= −4πMA2 sin 2π(x1 − θ)

where

M =
[
(A1 + A3 cos 2πx2)2 + A2

3 sin2 2πx2

]1/2
=
[
A2

1 + A2
3 + 2A1A3 cos 2πx2

]1/2
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and (when M 6= 0)

(6.13) cos 2πθ =
A1 + A3 cos 2πx2

M
and sin 2πθ =

A3 sin 2πx2

M
.

Obviously, M > 0. Suppose M = 0. This implies that x2 = n/2 where n ∈ Z and

A1 = A3. Clearly, ∂f/∂x1 = 0. However, consideration of (6.5) shows that (6.9) is

only satisfied for the trivial solutions when M = 0. Therefore, suppose M > 0.

From (6.12), we see that ∂f/∂x1 = 0 whenever

(6.14) x1 = θ + k/2,

where k ∈ Z. Suppose k is even, in which case

cos 2πx1 = cos 2πθ and sin 2πx1 = sin 2πθ.

To satisfy (6.9), we require that

−1

4πA3

∂f

∂x2

= A1 sin 2πx2 − A2 sin 2π(x1 − x2)

= A1 sin 2πx2 +
A2(A1 + A3 cos 2πx2) sin 2πx2 − A2A3 sin 2πx2 cos 2πx2

M

=

(
A1 +

A1A2

M

)
sin 2πx2 = 0.

Since A1, A2 and M are positive, we must have x2 = n/2. But this leads to the

trivial solutions again.

Suppose k is odd in (6.14). Now,

cos 2πx1 = − cos 2πθ and sin 2πx1 = − sin 2πθ

and satisfaction of (6.9) requires that

−1

4πA3

∂f

∂x2

=

(
A1 −

A1A2

M

)
sin 2πx2 = 0.

Apart from the trivial solutions arising from sin 2πx2 = 0, we see that a non-trivial

solution may exist when M = A2. Hence,

A2
1 + A2

2 + 2A1A3 cos 2πx2 = A2
2

and thus

(6.15) cos 2πx2 =
−A2

1 + A2
2 − A2

3

2A1A3

.

A solution exists when the absolute value of the right hand side of (6.15) is less than

or equal to one. Assuming this condition is satisfied then, after substituting (6.13),

we find that

(6.16) cos 2πx1 =
−A2

1 − A2
2 + A2

3

2A1A2
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and so there exist non-trivial solutions of (6.9) at

x =

(
± 1

2π
arccos

−A2
1 − A2

2 + A2
3

2A1A2

, ∓ 1

2π
arccos

−A2
1 + A2

2 − A2
3

2A1A3

)
+ k

where k ∈ Z2 and the range of arccos is assumed to be [0, π) and the opposite signs

of the first and second coordinates are dictated by the opposite signs of sin 2πx1 and

sin 2πx2.

Now, with cos 2πx1 and cos 2πx2 as given by (6.16) and (6.15), respectively, we

find that

cos 2π(x1 − x2) = cos 2πx1 cos 2πx2 + sin 2πx1 sin 2πx2

=
−1

A2

[
(A1 + A3 cos 2πx2) cos 2πx2 + A3 sin2 2πx2

]
=
−1

A2

[
(A1 + A3 cos 2πx2) cos 2πx2 + A3

(
1− cos2 2πx2

)]
= −A1 cos 2πx2 + A3

A2

=
A2

1 − A2
2 − A2

3

2A2A3

.

(6.17)

Substitution of this equality, together with (6.15) and (6.16), into (6.6) and (6.7)

yields

∂2f

∂x2
1

= 8π2A2
2 > 0

and

∂2f

∂x2
2

= 8π2A2
3 > 0

so these non-trivial solutions are not local maxima. Similar substitution into (6.8)

yields
∂2f

∂x1x2

= 4π2
(
A2

1 − A2
2 − A2

3

)
.

Now, (
∂2f

∂x1x2

)2(
∂2f

∂x2
1

∂2f

∂x2
2

)−1

=

(
A2

1 − A2
2 − A2

3

2A1A2

)2

= cos2 2π(x1 − x2) 6 1

so (6.11) is satisfied whenever the non-trivial solutions exist. Thus, if the non-

trivial solutions exist then they are local minima. Furthermore, substitution of the

expressions for cos 2πx1, cos 2πx2 and cos 2π(x1 − x2) in (6.16), (6.15) and (6.17)

into that for f in (6.3) reveals that f(x1, x2) = 0 for these values of x1 and x2. Since

f is non-negative, it is clear that, whenever these non-trivial solutions exist, they

yield global minima.

We have now shown that the only local maxima on R2 are the elements of Z2.

However, we need to consider the restriction of f to the unit square T . Having found



FAREY SER IE S 49

the local maxima in R2, we need only examine the behaviour of f on the boundary

of T . On the boundary of T , f takes the form of a cosine in the free variable

with a non-negative coefficient. Therefore, the only maxima on the boundary which

require investigation are those which occur at
(
±1

2
, 0
)

and
(
0,±1

2

)
. However, these

are trivial solutions of (6.9) and we know from our discussion above that they are

not local maxima in R2. Hence, they cannot be local maxima on T .

Therefore, Theorem 6.1 can be applied to functions in the form of (6.3).

Consider the way in which the above example might be used to locate the posi-

tions of peaks in a periodogram. We define a periodogram as any function of the

form

F (ω) =

∣∣∣∣∣
n∑
j=1

Aje
−iωtj

∣∣∣∣∣
2

where the Aj ∈ C are called amplitudes and the tj ∈ R are called sample times.

Consider periodograms of 3 points (that is, n = 3) with real, positive amplitudes

and distinct sample times ordered so that t1 < t2 < t3. In this case, we have

F (ω) =
∣∣A1e

−iωt1 + A2e
−iωt2 + A3e

−iωt3
∣∣2

=
∣∣A1 + A2e

−iω(t2−t1) + A3e
−iω(t3−t1)

∣∣2
=
∣∣A1 + A2e

−i2πxα + A3e
−i2πx∣∣2

where

x =
ω

2π(t3 − t1)
and α =

t2 − t1
t3 − t1

.

Clearly, we have transformed the periodogram into a diagonal function of the type

discussed in Example 6.2.

For example, consider the specific case where the sample times are t1 = 1,

t2 =
√

2 and t3 = 2 and the amplitudes are A1 = 1, A2 = 0.8 and A3 = 0.6. A

graph of the diagonal function f(xα, x) which results is shown in Figure 4. Suc-

cessive maxima in the sense of (6.1) and (6.2) in Theorem 6.1 are indicated by

heavy lines. The horizontal dotted lines which connect the occurrences of successive

maxima indicate that none have been missed. The vertical dotted lines indicate

the boundaries of intervals in which (bxαe, bxe) have constant values. We see that,

as Theorem 6.1 implies, the successive maxima occur where (bxαe, bxe) are best

homogeneous Diophantine approximations of α (cf. Figure 1).

7. Farey Series

The Farey series of order n, Fn, is simply the series of fractions in lowest terms

in ascending order, such that the denominators of each are positive and less than

or equal to n. Some authors impose the restriction that the series consist only of

fractions between and including 0 and 1. We do not impose this restriction here.

Table 1 lists the Farey series between 0 and 1 for orders one to five.
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Figure 4. Plot of f(xα, x) for Example 6.2 with α =
√

2−1, A1 = 1,

A2 = 0.8 and A3 = 0.6.

Table 1. The Farey series up to order five between 0 and 1.
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1

1

1

0

1

1

2

1

1

0

1

1

3

1

2

2

3

1

1

0

1

1

4

1

3

1

2

2

3

3

4

1

1

0

1

1

5

1

4

1

3

2

5

1

2

3

5

2

3

3

4

4

5

1

1

As a point of history, we note that the Farey series were, in fact, first investigated

by Haros in 1802, but rediscovered by Farey in 1816 (Dickson, 1919; Hardy &

Wright, 1979).

We begin this section by stating an elementary theorem of Farey series. The

theorem and proof are adapted from Hardy & Wright (1979) and Niven &

Zuckerman (1980). We then explore the relationship between the elements of the

Farey series with the convergents and intermediate fractions of the s.c.f. expansions

of real numbers.

Definition 7.1. The mediant of two fractions h/k and h′/k′ is (h+ h′)/k + k′.

Theorem 7.1. If h/k < h′/k′ are adjacent elements of Fn then

(7.1) h′k − hk′ = 1.
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Moreover, the fractions are also adjacent in the Farey series of higher order up to

but not including F(k+k′), in which the mediant, (h+ h′)/(k + k′), is the sole element

separating them.

Proof. The proof is by induction on n. Clearly, (7.1) is satisfied for n = 1.

Suppose it is satisfied for all adjacent elements in Fn for 1 6 n < N . Let H/K be a

new element which occurs in FN which lies between h/k < h′/k′, adjacent elements

in FN−1. Obviously, K = N .

Consider the differences

H

K
− h

k
=
Hk − hK

kK
> 0 and

h′

k′
− H

K
=
h′K −Hk′

k′K
> 0.

Let the numerators of these fractions be r and s, respectively. That is,

r = Hk − hK > 0 and s = h′K −Hk′ > 0.

We solve for H and K, bearing in mind (7.1), to discover that

H = rh′ + sh and K = rk′ + sk.

Now consider the set of all fractions of the form

ah+ bh′

ak + bk′

with a, b ∈ N. If u/v is one such fraction then h/k < u/v < h′/k′ and that fraction

with (uniquely) least denominator is the mediant, (h+ h′)/(k + k′). Thus

H

K
=
h+ h′

k + k′

and therefore the mediant must be the sole element in FN separating h/k and h′/k′.

Also we see again that

Hk − hK = (h+ h′)k − h(k + k′) = 1

and

h′K −Hk′ = h′(k + k′)− (h+ h′)k′ = 1

so the theorem statement is true for n = N also. The process of induction is therefore

complete. �

Theorem 7.1 suggests the following recursive procedure for computing successive

elements of the Farey series of a prescribed order.

Algorithm 7.1.

1 proc farey(h, k, h′, k′, n) ≡
2 if k + k′ 6 n then

3 farey(h, k, h+ h′, k + k′, n);

4 output((h+ h′)/(k + k′));

5 farey(h+ h′, k + k′, h′, k′, n);

6 fi.
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Proposition 7.1. If h/k < h′/k′ are adjacent elements of the Farey series Fm,

for some m, then the procedure farey of Algorithm 7.1 recursively calculates and

outputs in ascending order the elements of Fn which lie strictly between h/k and

h′/k′.

Proof. The proof is immediate from inspection of Algorithm 7.1 and consider-

ation of Theorem 7.1. �

Lemma 7.1. Suppose h/k < h′/k′ are adjacent in Fn and n < 1/ε for some

ε ∈ R. If α ∈ [h/k, h′/k′] and H/K ∈ Fn then

(7.2) |Kα−H| 6 ε ⇒ H

K
∈
{
h

k
,
h′

k′

}
.

Proof. Suppose (7.2) is not satisfied. Assuming, without loss of generality,

that H/K < α, we have

|Kα−H| 6 ε

and there is an adjacent element H ′/K ′ such that

H

K
<
H ′

K ′
6 α.

This implies that ∣∣∣∣α− H

K

∣∣∣∣ > ∣∣∣∣H ′K ′ − H

K

∣∣∣∣ =
H ′K −HK ′

KK ′
=

1

KK ′

from Theorem 7.1. After multiplication throughout by K, we see that

|Kα−H| > 1

K ′
>

1

n
> ε,

contrary to our assumption. �

Lemma 7.2. Suppose h/k < h′/k′ are adjacent in Fn and n + 1 > 1/ε for some

ε ∈ R. If α ∈ [h/k, h′/k′] then either

|kα− h| 6 ε or |k′α− h′| 6 ε.

Proof. Suppose that

(7.3)
h

k
6 α 6

h+ h′

k + k′
.

This implies that ∣∣∣∣α− h

k

∣∣∣∣ 6 ∣∣∣∣h+ h′

k + k′
− h

k

∣∣∣∣ =
1

k(k + k′)

and so

|kα− h| 6 1

k + k′
6

1

n+ 1
6 ε.

If we suppose, instead of (7.3), that

h+ h′

k + k′
6 α 6

h′

k′
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then we find that |k′α− h′| 6 ε. �

Theorem 7.2. Suppose h/k < h′/k′ are adjacent elements of the Farey series Fn

for some n > 0 and pi−1/qi−1 and pi/qi, i > 0, are the (i− 1)th and ith convergents

of the s.c.f. expansion of some real number α. Let

ηi−1 = qi−1α− pi−1 and ηi = qiα− pi.

If

(7.4)
h

k
6 α 6

h′

k′
and

1

|ηi−1|
− 1 6 n <

1

|ηi|
then

pi
qi
∈
{
h

k
,
h′

k′

}
.

Remark 7.1. Firstly, we remark that, for any α satisfying the left-hand inequal-

ities of (7.4), there must be some integer n satisfying the right-hand inequalities

of (7.4) because, from statement (iii) of Proposition 3.2, |ηi| < |ηi−1|.

Proof of Theorem 7.2. Lemma 7.1 implies that if pi/qi ∈ Fn then it is an

element of {h/k, h′/k′}. Lemma 7.2 implies that there is an element of this set, H/K,

which satisfies |Kα−H| 6 |ηi−1|. Proposition 3.5 implies that either (H,K) =

(pi, qi) or K > qi. Thus, pi/qi must be a member of the set. �

Theorem 7.3. The convergent pi/qi and the intermediate fraction

pi−1 + kpi
qi−1 + kqi

of the s.c.f. expansion of a real number α are adjacent in the series Fn for i > 0,

0 < k 6 ai+1 and qi−1 + kqi 6 n < qi−1 + (k + 1)qi.

Proof. We will prove the theorem by induction. Firstly, we see that the theo-

rem is true for i = 0 and k = 1 since (p−1, q−1) = (1, 0) and (p0, q0) = a0, 1 and a0/1

and (a0 + 1)/1 are adjacent in F1.

Assume the theorem is true for i = I and 0 < k < K 6 aI+1. Assume also

that the theorem is true for all 0 6 i < I. Therefore, the convergent pI/qI and the

intermediate fraction [pI−1 + (K − 1)pI ]/[qI−1 + (K − 1)qI ] are adjacent in Fn for

qI−1 + (K − 1)qI 6 n 6 qI−1 + KqI . Clearly, the mediant of these fractions is the

next intermediate fraction, (pI−1 +KpI)/(qI−1 +KqI). From Theorem 7.1, we see

that the theorem is true for i = I and k = K also.

To complete the induction, we observe that if the theorem is true for all 0 < i 6 I

and k = aI+1 then pI/qI and pI+1/qI+1 are adjacent in Fn where qI+1 6 n 6 qI+qI+1.

Therefore, the theorem will again be true for i = I + 1 and k = 1. �

Remark 7.2. From Corollary 3.1, we know that α lies between the adjacent

elements of the Farey series referred to in the previous theorem.
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Theorem 7.4. If h/k < h′/k′ are adjacent elements in a Farey series such that

their mediant is pi/qi, the ith convergent, i > 0, of the s.c.f. expansion of a real

number α 6= pi/qi, then

pi−1

qi−1

=


h

k
if α <

pi
qi

,

h′

k′
otherwise.

Proof. Theorem 7.3 implies that one of the elements of the set {h/k, h′/k′} is

the convergent pi/qi and the other is the intermediate fraction

pi−2 + (ai − 1)pi−1

qi−2 + (ai − 1)qi−1

.

Corollary 3.1 can then be applied for k = ai−1 and k = ai to complete the proof. �

Remark 7.3. If α = pi/qi in the statement of the previous theorem then

pi−1/qi−1 is whichever of the fractions {h/k, h′/k′} has the lesser denominator. This

occurs because ηi = qiα − pi = 0 and Corollary 3.3 implies that ai > 2. Thus,

qi−2 + (ai − 1)qi−1 > qi−1 and hence the convergent pi−1/qi−1 has the lesser denomi-

nator.

In this section, we have seen that the Farey series are closely related to homoge-

neous Diophantine approximation of a real number. We have seen, in Theorem 7.2,

that the best approximations of a given real number within a certain approximation

error can be easily located in the Farey series of appropriate order. We have also

found, in Theorem 7.3, that the elements of a Farey series immediately surrounding

a given real number are always convergents or intermediate fractions of the s.c.f.

expansion of that number.
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GEOMETRY OF NUMBERS

1. Historical Remarks

The geometry of numbers, as its name suggests, has a distinctly geometric

“flavour.” However, it is important to bear in mind that many of the results which

can be reinterpreted in the light of this theory, such as Gauss’ reduction algorithm,

precede it and are couched in terms of the theory of quadratic forms. So, by way of

introduction to this section, we make some historical remarks about the development

of the geometry of numbers. These remarks are mainly drawn from Scharlau &

Opolka (1985).

One of the origins of the geometry of numbers is in the study of the representation

of natural numbers by sums of squares. Diophantos knew some basic theorems

and Fermat developed the theory in the first half of the 17th century, stating (but

not proving) the famous “two-square” and “four-square” theorems.

Theorem 1.1 (Two-Square Theorem). Every prime number of the form 4k + 1

can be written uniquely as a sum of two squares.

Theorem 1.2 (Four-Square Theorem). Every natural number is a sum of four

squares of natural numbers (where zero is allowed as a summand).

Fermat was also interested in certain specific quadratic forms, namely x2 + y2,

x2 +2y2, x2 +3y2 and x2−dy2 (this last form being often associated with Pell). In

particular, he was interested in which (prime) numbers could be expressed by these

forms. However, it was Lagrange (1773) who systematically developed the theory

of the representation of numbers by binary quadratic forms. A binary quadratic

form is a function of two integer variables,

q(x, y) = ax2 + bxy + cy2,

where a, b, c ∈ Z and a and c not zero. Lagrange considered the special form

Q(x, y) = ax2 + 2bxy + cy2.

Lagrange studied the equivalence classes between binary quadratic forms of this

type. Two forms ax2 + 2bxy + cy2 and AX2 + 2BXY + CY 2 are equivalent if

there is an invertible integral linear substitution of variables from (x, y) to (X, Y )

55



56 GEOMETRY OF NUMBER S

which transforms the one form into the other. Thus, the two forms are equivalent if(
x

y

)
= M

(
X

Y

)
where M is a 2 × 2 integral matrix with det M = ±1 (a unimodular matrix; see

Definition 2.4). The two forms are said to be properly equivalent if det M = 1.

Clearly, any number which can be represented by a certain binary quadratic form

can be represented by any equivalent binary quadratic form. Furthermore, the dis-

criminant of the binary quadratic form Q, ∆ = 4(ac− b2), is preserved under these

transformations. Thus, each equivalence class has associated with it a discriminant.

A binary quadratic form Q(x, y) is called positive if Q(x, y) > 0 for all x, y ∈ Z
apart from x = y = 0. A binary quadratic form is positive if and only if its discrim-

inant is positive and the coefficients of the squares (a and c) are positive.

Lagrange identified a member of each proper equivalence class of positive

binary quadratic forms, a so-called reduced form.

Theorem 1.3. A positive binary quadratic form Q′(X, Y ) = AX2+2BXY+CY 2

is properly equivalent to a reduced form Q(x, y) = ax2 + 2bxy + cy2. By reduced we

mean that the coefficients a, b and c satisfy

(1.1)
−a
2
< b 6

a

2
, 0 < a 6 c and a 6

√
∆

3

where ∆ is the discriminant of Q and Q′. Furthermore, if a = c then 0 6 b 6 a/2.

Remark 1.1. The rightmost inequality in (1.1) is implied by the other inequal-

ities because

∆

3
=

4(ac− b2)

3
>

4(a2 − b2)

3
>

4
(
a2 − 1

4
a2
)

3
> a2.

Lagrange was then able to determine that the number of proper equivalence

classes of positive binary quadratic forms for a given discriminant must be finite and

he was able to tabulate these classes on the basis of discriminant and its reduced

form.

Gauss (1801) was the first to emphasise algorithms, describing a method by

which quadratic forms can be reduced. For this reason the lattice basis reduction

algorithm in two dimensions, which we discuss in Section 6.1 is named after him.

However, it was Minkowski (1896b) who invented the geometry of numbers.

He fully understood and exploited the idea of the point lattice to develop the theory.

For the purpose of this thesis, we only require a tiny fraction of this theory. Of his

results, we require only his First and Second Theorems and his notion of a reduced

lattice basis.

We do not set out to detail the results of original research in this chapter. The

purpose is provide a link between the material of the previous chapter on Dio-

phantine approximation and that of the next chapter on simultaneous Diophantine
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approximation, which is most conveniently and elegantly expressed in the language

of the geometry of numbers.

In the next section, we introduce point lattices. We will then define convex bodies

and state Minkowski’s First or Fundamental Theorem in Section 3. After briefly

reviewing the properties of the QR decomposition and the Cholesky decomposition

of a matrix in Section 4, we immediately apply the properties to the formulation

of an algorithm for finding shortest vectors in a lattice in Section 5. However, the

computational infeasibility of this algorithm prompts a review of lattice reduction in

Section 6. To conclude this chapter, we discuss a fast algorithm for lattice reduction,

the so-called LLL algorithm of Lenstra et al. (1982) in Section 7.

2. Point Lattices

Definition 2.1. Consider a set B = {b1,b2, . . . ,bn} of linearly independent

points in Rm, m > n. The set

Ω = {a1b1 + a2b2 + · · ·+ anbn | a1, a2, . . . , an ∈ Z}

is a point lattice (or simply lattice) of rank n in Rm and B is a basis of Ω.

Definition 2.2. A basis matrix of a lattice Ω is a matrix consisting of column

vectors which together form a basis of Ω.

Definition 2.3. A fundamental parallelepiped of a lattice Ω is any par-

allelepiped constructed from a set of basis vectors of Ω.
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Figure 1. Two bases (indicated by vectors) and fundamental paral-

lelograms (indicated by shading) of a lattice of rank two.
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Figure 1 shows an examples of a lattice of rank two. The same lattice is depicted

in both diagrams, but different bases are used. The corresponding fundamental

parallelepipeds (in this case, parallelograms) are indicated by the shaded regions.

Theorems 2.1 to 2.4 are adapted from Siegel (1989).

Theorem 2.1. Let {v1,v2, . . . ,vn} be n linearly independent vectors from a

lattice Ω of rank n. There exists a basis {b1,b2, . . . ,bn} for Ω such that

b1 = c11v1,

b2 = c12v1 + c22v2,

...

bn = c1nv1 + c2nv2 + · · ·+ cnnvn.

where cij ∈ Q for 1 6 i 6 j 6 n and 1/cii ∈ N for 1 6 i 6 n.

The basis of a lattice is not unique. The definition and theorems which follow

describe how other bases can be obtained from a given one.

Definition 2.4. A square n× n integer matrix is unimodular if the value of

its determinant is ±1.

Theorem 2.2. The inverse of a unimodular matrix is unimodular.

Theorem 2.3. Let B,B′ ∈ Rm×n be basis matrices of the lattices Ω and Ω′,

respectively, both of rank n in Rm. The lattices are equal if and only if there exists

some unimodular M ∈ Zn×n such that B = B′M.

Definition 2.5. The real span of a lattice Ω is the set of all linear combina-

tions with real coefficients of the vectors of any basis of Ω.

Similarly, we could refer to the lattice itself as the integer span of any of its

bases, according to a similar definition.

Definition 2.6. The set of linearly independent points V = {v1,v2, . . . ,vq} is

a primitive basis of the lattice Ω of rank n > q if every point of Ω which also lies

in the real span of V is a point of the lattice generated by V .

Theorem 2.4. If V = {v1,v2, . . . ,vq} is a primitive basis of a lattice Ω of rank

n > q then there exist n− q vectors bq+1,bq+2, . . . ,bn such that

B = {v1,v2, . . . ,vq,bq+1,bq+2, . . . ,bn}

is a basis of Ω.

Definition 2.7. Consider a set V = {v1,v2, . . . ,vq} of linearly independent

points in Rn. The set

O(V) = {µ1v1 + µ2v2 + · · ·+ µqvq | µ1, µ2, . . . , µq ∈ R;

|µ1|+ |µ2|+ · · ·+ |µq| 6 1}

is the hyperoctahedral of V .
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Definition 2.8. The hyperoctahedral O of V = {v1,v2, . . . ,vq} is perfect in

a lattice Ω if

O(V) ∩ Ω ⊆ {0,±v1,±v2, . . . ,±vq},

where ± designates both its argument and its additive inverse (symmetric point).

Theorem 2.5. If v1 and v2 are points in a lattice Ω and the hyperoctahedral of

{v1,v2} is perfect in Ω then {v1,v2} is a primitive basis of Ω.

Remark 2.1. Obviously, in this case, the hyperoctahedral of {v1,v2} is simply

a parallelogram with vertices at ±v1 and ±v2.

Proof of Theorem 2.5. If V = {v1,v2} do not form a primitive basis of Ω

then there exists a non-zero point c1v1 +c2v2 ∈ Ω with c1, c2 ∈ Q and 0 6 c1, c2 < 1.

It follows that

(c1 − bc1e)v1 + (c2 − bc2e)v2 ∈ O(V) ∩ Ω,

contradicting the assumption that O(V) is perfect in Ω. �

The following theorem is due to Furtwängler (1927).

Theorem 2.6. If v1, v2 and v3 are linearly independent points in a lattice Ω

and the hyperoctahedral of {v1,v2,v3} is perfect in Ω then either {v1,v2,v3} or

{v1,v2, (v1 + v2 + v3)/2} is a primitive basis of Ω.

Proof. Every lattice point of Ω in the real span of v1, v2 and v3 can be ex-

pressed as a linear combination of these vectors with rational coefficients. Let us

discuss the conditions under which V = {v1,v2,v3} can define a perfect octahedral

and yet not form a primitive basis of Ω. Suppose v1, v2, v3 does not form a primitive

basis, so there must exist some u ∈ Ω that can be expressed

u =
c1v1 + c2v2 + c3v3

d

where c1, c2, c3, d ∈ Z and this fraction is expressed in its lowest terms with d > 1.

This lattice point will lie within the octahedral if |c1|+ |c2|+ |c3| 6 d.

Now, assume there is no integer q for which

(2.1) qc1 ≡ 1 (mod d).

Then there exists an r = d/gcd(c1, d) < d such that

rc1 ≡ 0 (mod d).

We can write

ru = a1v1 + a2v2 + a3v3 +
b2v2 + b3v3

d
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where a1, a2, a3 ∈ Z are chosen so that −d/2 < b2, b3 6 d/2 and b2 and b3 are not

both zero because otherwise u would not have been expressed in its lowest terms.

Hence,

u′ =
b2v2 + b3v3

d
is a lattice point and |b2|+ |b3| 6 d so u′ ∈ O(V), contrary to our assumption.

On the other hand, suppose (2.1) holds for some q. Then

qu = a1v1 + a2v2 + a3v3 +
v1 + b2v2 + b3v3

d

where, once again, a1, a2, a3 ∈ Z are chosen so that −d/2 < b2, b3 6 d/2. Again,

u′ =
v1 + b2v2 + b3v3

d

must also be a lattice point in Ω.

Unless b2 = b3 = d/2, we will have 1 + |b2| + |b3| 6 d and therefore u′ ∈ O(V)

and the octahedral is not perfect. However, if b2 = b3 = d/2 then

2u′ =
2v1

d
+ v2 + v3

and 2v1/d will also be a lattice point. If d > 2 then 2u′ ∈ O(V). This leaves only

one possibility.

Therefore, unless (v1 + v2 + v3)/2 is a lattice point, V forms a primitive basis of

Ω. If (v1 + v2 + v3)/2 is a lattice point then a set consisting of this point and any

two of {v1,v2,v3} forms a primitive basis. �

3. Convex Bodies and Minkowski’s Theorem

The presentation of definitions and theorems in this subsection is essentially a

summary of Lectures I–III of Siegel (1989).

Definition 3.1. A non-empty set S in Rn is convex if, for every pair of ele-

ments x and y of S,

λx + (1− λ)y ∈ S

for all 0 6 λ 6 1, λ ∈ R.

Definition 3.2. A point x in a set S in Rn is an interior point of S if there

exists a metric ball centred at x which is contained in S.

Definition 3.3. A set S in Rn is open if it consists only of interior points.

Definition 3.4. The interior of a set S in Rn is the set of interior points of

S.

We use the notation IntS to denote the interior of S.

Definition 3.5. A convex body is a set in Rn which is convex, open and

bounded.
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Definition 3.6. A set S in Rn is centrally symmetric if there exists a point

c ∈ S, the centre of S, such that, for all x ∈ S, 2c− x ∈ S.

Definition 3.7. The characteristic function of a set S in Rn is mapping

from Rn to R taking the value 1 when the argument is an element of S and 0

otherwise.

The following definition of volume is not the most general possible, but it will

be sufficient for our purposes.

Definition 3.8. If the characteristic function of a set S in Rn is Riemann

integrable then its integral is the volume of S.

We will use the notation volS to denote the volume of S.

Theorem 3.1. Let B ∈ Rn×n be a basis matrix of a lattice Ω of rank n in Rn.

Then the volume of any fundamental parallelepiped of Ω is det B.

We are now in a position to state Minkowski’s First (or Fundamental) Theorem.

Theorem 3.2. Let S be a centrally symmetric convex body about the origin in

Rn and let Ω be a lattice of rank n in Rn. Let ∆ be the volume of a fundamental

parallelepiped of Ω. If volS > 2n∆ then there exists a non-zero lattice point of Ω in

S.

4. The QR decomposition and the Cholesky decomposition

Although the QR decomposition and the Cholesky decomposition of matrices

are more often associated with linear algebra than with the geometry of numbers,

we nevertheless find it necessary to recall these basic results.

Recall the following definitions of a (column) orthogonal, an upper (lower) tri-

angular and a positive definite matrix.

Definition 4.1. A matrix Q ∈ Rm×n is column orthogonal if QTQ = I. A

matrix is orthogonal if it is square and column orthogonal.

Definition 4.2. A matrix R ∈ Rn×n is upper (lower) triangular if rij = 0

whenever i > j (i < j).

Definition 4.3. A matrix P ∈ Rn×n is positive definite if xTPx > 0 for all

non-zero x ∈ Rn.

Consider the following algorithm, operating on an input m× n matrix B of full

column rank to produce an m× n matrix Q and an n× n matrix R.
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Algorithm 4.1 (Gram-Schmidt orthonormalisation).

1 begin

2 R := 0;

3 for k := 1 to n do

4 qk := bk;

5 for j := 1 to k − 1 do

6 rjk := qj · bk;
7 qk := qk − rjkqj;
8 od;

9 rkk :=
√

qk · qk;
10 qk := qk/rkk;

11 od;

12 output(Q,R);

13 end.

This algorithm serves as proof of

Theorem 4.1 (“Skinny” QR decomposition). A matrix B ∈ Rm×n of full col-

umn rank can be uniquely expressed as

B = QR

where Q is an m× n column orthogonal matrix and R is an n× n upper triangular

matrix with positive diagonal entries.

Inspection of the algorithm reveals that it requires O(n2) iterations through the

inner loop on lines 5–8. On each of these iterations, operations are performed on

vectors of m elements and so the total number of arithmetic operations is O(mn2).

The Gram-Schmidt orthonormalisation procedure as described in Algorithm 4.1

is not the best method for performing the QR decomposition of a matrix from the

point of view of numerical accuracy (Golub & van Loan, 1989).

For any matrix B ∈ Rn×n of full column rank it is clear that

xTBTBx = (Bx) · (Bx) > 0

for all non-zero x ∈ Rn. If we write P = BTB then P is positive definite. From the

QR decomposition of B as B = QR we find that we can also express P in terms of

upper triangular matrices so that P = RTR. The following theorem shows that all

symmetric positive definite matrices can be decomposed in this way.

Theorem 4.2 (Cholesky decomposition). If P ∈ Rn×n is a symmetric, positive

definite matrix then there exists a unique upper triangular matrix R ∈ Rn×n such

that P = RTR.
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Although we will not bother to state and prove an algorithm for Cholesky de-

composition here, it is not surprising that algorithms for Cholesky decomposition

are very similar in principle to algorithms for QR decomposition.

Now, let us briefly consider the extension of QR decomposition to matrices

which do not have full column rank. If B is an m × n matrix with column rank d

then Algorithm 4.1 will produce a m × n matrix Q which will have n − d columns

consisting only of zeros. Similarly, there will be n − d rows of the n × n matrix R

which will consist only of zeros. We must also take care to avoid the problem of

division of zero by zero. Where this would occur, we assign zero as the result. The

QR decomposition of a matrix without full column rank obtained this way does not

therefore have the property that R has positive diagonal entries, although they will

be non-negative. Furthermore, the uniqueness of the decomposition no longer holds

since, for example, any row of R which consists only of zeros can be replaced by a

row of arbitrary values.

5. Finding Short Vectors in a Lattice

Consider the problem of finding short or shortest vectors in a lattice. We know

from Theorem 2.3 that, for any given lattice of rank greater than one, there exist

infinitely many bases. How do we find the shortest vector from a given basis? We

now discuss this problem, following Cohen (1993), §2.7.3. To define exactly what we

mean by “short,” we require the concept of a norm. Firstly, we recall the definitions

of a norm, a p-norm and the sup-norm.

Definition 5.1. A norm ‖·‖ in dimension n is a map from Rn to R such that,

for all x,y ∈ Rn, x 6= 0, and for all λ ∈ R,

(i) ‖x‖ > 0,

(ii) ‖λx‖ = |λ| ‖x‖ and

(iii) ‖x + x‖ 6 ‖x‖+ ‖y‖

All norms are similar in a sense which is made precise by the following theorem.

Theorem 5.1. For any two norms ‖·‖ and ‖·‖′ in dimension n there exists

µ1, µ2 ∈ R, 0 < µ1 < µ2 such that, for all x ∈ Rn,

µ1 ‖x‖ 6 ‖x‖′ 6 µ2 ‖x‖ .

Definition 5.2. A p-norm ‖·‖p for some p ∈ R, p > 1, in dimension n is a map

from Rn to R which can be expressed for x = (x1, x2, . . . , xn) ∈ Rn as

‖x‖p = (|x1|p + |x2|p + · · ·+ |xn|p)
1
p .

Definition 5.3. The sup-norm ‖·‖∞ in dimension n is a map from Rn to R
which can be expressed for x = (x1, x2, . . . , xn) ∈ Rn as

‖x‖∞ = max {|x1|, |x2|, . . . , |xn|}.
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Theorem 5.2. A p-norm and the sup-norm are norms in any dimension.

We use the notation ‖·‖∞ for the sup-norm because, for any x ∈ Rn,

‖x‖∞ = lim
p→∞
‖x‖p .

We will usually refer to the 2-norm as the Euclidean norm.

Let us now devise a näıve algorithm for finding the shortest vector in R2 from a

lattice Ω of rank 2 with respect to the Euclidean norm, ‖·‖2. Given a basis {b1,b2}
of Ω, we arrange the basis so that ‖b1‖2 > ‖b2‖2. We seek all lattice points v ∈ Ω

such that ‖v‖2 < ‖b2‖2. Obviously, there are only finitely many. Consider the

function

f(λ1, λ2) = ‖λ1b1 + λ2b2‖2
2 .

From partial differentiation of f with respect to λ1, we find that f is minimised with

respect to λ1 when

λ1 =
−λ2b1 · b2

b1 · b1

and thus we can deduce that f(λ1, λ2) > ‖b2‖2
2 = f(0, 1) if

(5.1) λ2 >
1

sin θ

where

(5.2) θ = arccos
b1 · b2

‖b1‖2 ‖b2‖2

is the acute angle between b1 and b2 (that is, 0 6 θ < π).

For a given λ1 which does not satisfy (5.1), we find that

(5.3) f(λ1, λ2) < ‖b2‖2
2

whenever

(‖b1‖2 λ1 + ‖b2‖2 λ2 cos θ)2 < ‖b2‖2
2

(
1− λ2

2 sin2 θ
)
.

This suggests the following algorithm and proposition.

Algorithm 5.1.

1 begin

2 if ‖b1‖2 < ‖b2‖2 then swap(b1,b2) fi;

3 v := b2;

4 c := (b1 · b2)/(‖b1‖2 ‖b2‖2);

5 s :=
√

1− c2;

6 r := ‖b2‖2 / ‖b1‖2 ;

7 for k := 1 to b1/sc do

8 A := −kc;
9 B :=

√
1− k2s2;
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10 for j := dr(A−B)e to br(A+B)c do

11 if ‖jb1 + kb2‖2 < ‖v‖2 then v := jb1 + kb2; fi;

12 od;

13 od;

14 output(v);

15 end.

Proposition 5.1. If Algorithm 5.1 is executed with the basis {b1,b2} of a lattice

Ω of rank 2 in R2 as its input then, after a finite number of iterations, the algorithm

terminates yielding a lattice point v ∈ Ω such that, for all 0 6= w ∈ Ω, ‖v‖2 6 ‖w‖2.

Proof. We identify c with cos θ and s with sin θ as defined in (5.2). The proof

is then by inspection of the algorithm and the preceding discussion. �
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Figure 2. Graphical interpretation of the operation of Algorithm 5.1

on a lattice specified by the basis vectors {b1,b2}.

Figure 16 illustrates the operation of Algorithm 5.1 on a lattice which has been

specified by the basis vectors {b1,b2}. The outer circle, depicted with a solid line,

is the circle of radius ‖b2‖2 about the origin. The algorithm then tests each of the

lattice points indicated by a bullet (•), comparing their norm against the shortest

found so far. Finally, the algorithm outputs the vector v. The inner circle, depicted

with a dotted line, indicates the metric ball of radius ‖v‖2 about the origin. Clearly,

there are no lattice points other than the origin within the inner circle.

We see that the number of iterations through the outer loop of Algorithm 5.1

is governed by the inverse of the sine of the angle between the initial basis vectors.

Moreover, because the algorithm tests every lattice point with norm less than ‖b2‖2

(after the swap), the time required by the algorithm is proportional to ‖b2‖2
2.
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We could easily adapt Algorithm 5.1 to find the shortest vector with respect

to other norms. For the p-norms, the algorithm can be adapted by reworking the

formulae to find roots of polynomials of degree p, in place of the quadratic polynomial

resulting from (5.3). For p = 1, 2, 3, 4 (and for the sup-norm) this can be done

without fuss, but for integer p > 4 or non-integer p we need to resort to numerical

methods. However, we only need to know the roots with sufficient accuracy to locate

the nearby integer, so we expect that the computational overhead for such methods

would not be great. Generalised to any norm ‖·‖, the total number of iterations

through the inner loop of Algorithm 5.1 is still O
(
‖b2‖2).

Now consider the generalisation of this algorithm to lattices of arbitrary rank.

For simplicity, consider finding the shortest vector with respect to the Euclidean

norm. For this, we require QR decomposition of matrices. Equipped with a pro-

cedure QRdecompose for QR decomposition and a procedure sortnorm for sorting

(permuting) the columns of its matrix argument in descending order of Euclidean

norm, we can now state an algorithm which is analogous to Algorithm 5.1 for lat-

tices of arbitrary rank n in Rm given B, an input basis. The variable k is an integer

vector and the variable s is a real vector and both have dimension n.

Algorithm 5.2.

1 begin

2 sortnorm(B);

3 QRdecompose(B,Q,R);

4 k := 0;

5 j := 1;

6 while j 6 n do

7 kj := kj + 1;

8 s := Rk;

9 S := 0;

10 for l := j to n do S := S + s2
l od;

11 if S < ‖bn‖2
2 then

12 ρ :=
√
‖bn‖2

2 − S;

13 if j > 1 then

14 j := j − 1;

15 kj := b−(ρ+ sj)/rjjc;
16 else

17 if S < ‖v‖2
2 then v := Bk fi;

18 fi;

19 else

20 kj := 0;

21 j := j + 1;

22 fi;
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23 od;

24 output(v);

25 end.

Inspection of this algorithm reveals that, for n = 2, Algorithm 5.2 is equivalent

to Algorithm 5.1. It is also similar to an algorithm of Fincke & Pohst (1985),

although that algorithm is stated in terms of minimising a quadratic form and, as a

consequence which will be discussed in Section 6, it uses the Cholesky decomposition

instead of the QR decomposition. We can state the following proposition.

Proposition 5.2. If Algorithm 5.2 is executed on a basis matrix B of a lattice

Ω of rank n in Rm then the algorithm terminates in a finite number of iterations and

a non-zero vector v ∈ Ω is output such that, for all non-zero w ∈ Ω, ‖v‖2 6 ‖w‖2.

Proof. To show that Algorithm 5.2 finds the shortest vector with respect to

the Euclidean norm from a given lattice basis matrix, B, we describe the operation

of the algorithm. All references to bj refer to the value of B after the sortnorm

operation. The algorithm is essentially a series of nested for loops which cycles

through a range of values for the kj from j = n (on the outermost level) down

to j = 1 (on the innermost). The algorithm is not written out this way because

the number of nested for loops is not known a priori.1 In the innermost “loop,”

the algorithm tests lattice points constructed using the index vector k against the

shortest lattice point yet found, v, by testing on line 17 whether

‖Bk‖2
2 = ‖QRk‖2

2 = ‖Rk‖2
2 = S < ‖v‖2

2 .

We will see that, for each test of this type, we have a value for k which ensures that,

at the very least, ‖Bk‖2 < ‖bn‖2. We will also see that every lattice point shorter

than ‖bn‖2 is tested, up to symmetry. Specifically, we will see that the algorithm

only tests those values of k for which kd > 0 where d is the maximum index for

which kd 6= 0.

Let κ be the vector consisting of the last n− j + 1 elements of k. That is,

κ = (kj, kj+1, . . . , kn).

For a given j, consider the partitioning of R so that

R =

(
X Y

0 Z

)
where X is a (j − 1)×(j − 1) upper diagonal matrix with positive diagonal elements

(and hence invertible), Y is a (j − 1)× (n− j + 1) matrix and Z is a (n− j + 1)×

1We could have used instead a recursive style to present the algorithm, but it is the author’s

opinion that, in this case, it would not have enhanced the clarity of the exposition.
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(n− j + 1) upper diagonal matrix. Let e ∈ Rn be given by

e =

(
ε

0

)
.

where

ε = −X−1Yκ.

Then

R(k + e) =

(
Xε + Yκ

Zκ

)
=

(
0

Zκ

)
It then becomes clear that

S = ‖Zκ‖2
2 = ‖R(k + e)‖2

2

and that, for any e′ ∈ Rn of the form

e′ = (e′1, e
′
2, . . . , e

′
j−1︸ ︷︷ ︸

ε′

, 0, 0, . . . , 0︸ ︷︷ ︸
n− j + 1 times

),

we have

‖B(k + e + e′)‖2
2 = ‖R(k + e + e′)‖2

2 =

∥∥∥∥∥
(

Xε′

Zκ

)∥∥∥∥∥
2

2

= ‖Xε′‖2
2 + ‖Zκ‖2

2 > S.

We conclude that if S > ‖bn‖2
2 (which is tested on line 11), then modifications to any

of the kl for l < j will not produce a k for which ‖Bk‖2 < ‖bn‖2. On the other hand,

if S 6 ‖bn‖2
2 then modifications to the kl with l < j may produce an index vector

k satisfying this criterion. The algorithm reflects this by incrementing j (thereby

exiting the “loop” on that level) if the test on line 11 fails or by decrementing j

(thereby entering the next nested “loop”), if it succeeds and if j > 1.

If the algorithm decrements j, the algorithm chooses a value for the new kj such

that if kj were any less then the test on line 11 would fail on the next iteration. To

see this, we observe that the value S on the next iteration, S ′, will be S ′ = ‖Z′κ′‖2
2

where

Z′ =

(
rjj η

0 Z

)
and κ′ =

(
kj

κ.

)
and η = (rj,j+1, rj,j+2, . . . , rjn). Noting that ηκ = sj, we have

S ′ = ‖Z′κ′‖2
2 =

∥∥∥∥∥
(
rjjkj + ηκ

Zκ

)∥∥∥∥∥
2

2

= (rjjkj + sj)
2 + S.

It is now clear that if the assignment for kj, made on line 15, were to be replaced by

an expression that made kj smaller, then S ′ > ‖bn‖2
2. Since kj > (ρ− sj)/rjj also

implies that S ′ > ‖bn‖2
2, we see that the number of iterations in each “loop” must

be finite and so the algorithm must terminate after a finite number of iterations. �
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We could consider modifying Algorithm 5.2 to find the shortest vectors according

to norms other than the Euclidean norm as we discussed for Algorithm 5.1. This

would not pose a great problem because the underlying principle of the algorithm

— to find all lattice points shorter than the smallest of the vectors in the input basis

and output the shortest of these — is not very complex. However, for other norms,

the QR decomposition which is employed extensively in Algorithm 5.2 may not be

useful. Methods for numerical solutions may be required.

Another trivial modification to Algorithm 5.2 which could be considered is to

have it output all non-zero lattice points with Euclidean norm less than some pre-

scribed constant, c. This would merely involve replacing all occurrences of “‖bn‖2”

with “c” and modifying the location of the output statement.

Now, since Algorithm 5.2 tests every lattice point shorter than ‖bn‖2, up to

symmetry, we expect that the running time of the algorithm will be at least pro-

portional to ‖bn‖n2 and this will be true also for generalisations of the algorithm in

the ways described above. Thus the time required to find the shortest lattice point

using this method is exponential in the rank of the lattice.

Can we perform this search substantially more quickly, say in an amount of time

which is bounded above by a polynomial in the rank of the lattice? Unfortunately

(depending on your point of view), the answer is probably no. van Emde Boas

(1981) has shown that the problem of finding the shortest vector with respect to

the sup-norm is an NP-complete problem. Thus, it is believed that the problem is

probably computationally infeasible. We must resort to methods which find “almost

shortest” or “sufficiently short” vectors in a reasonable amount of time. Such a

method has been discovered by Lenstra et al. (1982). Before discussing their

algorithm, the so-called LLL algorithm, we introduce the topic of lattice reduction.

6. Lattice Reduction

We have already introduced the idea of reduction of quadratic forms in Section 1.

We now consider reduction of lattices. In the most general sense, a reduced basis is

a basis having some extremal property with respect to the set of all possible bases

of that lattice. There are a number of definitions for a reduced basis. We will

discuss reduction in the senses defined by Gauss, Minkowski, Hermite, Korkin

& Zolotarev and Lovász. In each case, the extremal property is related to the

“shortness” of the vectors in the basis or to their orthogonality. Let us begin with

reduction according to Gauss.

6.1. Gaussian Reduction.

Definition and Algorithm for Point Lattices.

Definition 6.1. A basis {b1,b2} of a lattice Ω of rank 2 is Gauss-reduced if

(6.1) ‖b1‖2 6 ‖b2‖2 and |b1 · b2| 6 1
2
‖b1‖2

2 .
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As we will prove in Proposition 6.1, a Gauss-reduced basis can be obtained by

application of the following algorithm.

Algorithm 6.1.

1 begin

2 repeat

3 swap(b1,b2);

4 b2 := b2 −
⌊

b1 · b2

b1 · b1

⌉
b1;

5 while ‖b1‖2 > ‖b2‖2 ;

6 output(b1,b2);

7 end.

Proposition 6.1. If Algorithm 6.1 is executed on a basis {b1,b2} of a lattice

Ω of rank 2 then the algorithm will terminate after a finite number of iterations and

will output a Gauss-reduced basis of Ω.

Proof. It is evident from inspection of Algorithm 6.1 that a basis of Ω is always

maintained. After executing line 4, which we call a size reduction step, it is

clear that the right-hand inequality of (6.1) will be satisfied. If the test on line 5

fails and the algorithm terminates then the left-hand inequality of (6.1) must also

be satisfied and the algorithm outputs a Gauss-reduced basis of Ω. It remains to

show that the algorithm terminates after a finite number of iterations.

Suppose the algorithm never terminates. Consider the state of the basis {b1,b2}
just prior to the size reduction step on line 4 on some iteration through the main

loop other than the initial iteration. Because the algorithm did not terminate on

the previous iteration, we have

‖b1‖2 < ‖b2‖2(6.2)

and

|b1 · b2| < 1
2
b2 · b2.(6.3)

Let

r =

⌊
b1 · b2

b1 · b1

⌉
.

Let b′2 be the value which is assigned to b2 after execution of the size reduction

step. Thus,

b′2 = b2 − rb1.

If r = 0 then b′2 = b2 and the algorithm will terminate with a Gauss-reduced basis

because of (6.2), contrary to our assumption. If r = 1 then

b1 · b2 > 1
2
b1 · b1
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and so

‖b′2‖
2
2 = b′2 · b′2 = b2 · b2 − 2b1 · b2 + b1 · b1 > b1 · b1 = ‖b1‖2

2

and the inequality arises because of (6.3). Therefore, the algorithm will terminate

with a Gauss-reduced basis, contrary to our assumption. Through similar reasoning,

we see that if r = −1 then the algorithm must terminate with a Gauss-reduced basis.

So, if the algorithm never terminates (as we have supposed for the sake of argu-

ment) then on each iteration apart from the first, we have |r| > 2 at the commence-

ment of execution of the size reduction step. Now, this implies that

3

2
6 |r| − 1

2
6
|b1 · b2|
b1 · b1

6
‖b2‖2

‖b1‖2

which implies that

‖b1‖2 6
2

3
‖b2‖2 .

Thus, unless ‖b′2‖2 <
2
3
‖b2‖2, the algorithm will terminate. But this implies that

the algorithm will produce lattice vectors of arbitrarily small length. Since the

lattice contains a vector of smallest length, we have a contradiction. We conclude

that the algorithm must terminate after a finite number of iterations. �

Proposition 6.1 leads directly to the following corollary.

Corollary 6.1. For every lattice Ω of rank 2 there exists a Gauss-reduced basis.

Theorem 6.1. If {b1,b2} is a Gauss-reduced basis of a lattice Ω of rank 2 then

(6.4) ‖v‖2 > ‖b1‖2

for all v ∈ Ω \ {0} and

(6.5) ‖w‖2 > ‖b2‖2

for all w ∈ Ω\{a1b1 | a1 ∈ Z}, that is, for all w ∈ Ω which are linearly independent

of b1.

Proof. If v = kb1, k ∈ Z, k 6= 0, then ‖v‖2 > ‖b1‖2. Suppose w ∈ Ω is

linearly independent of b1. Therefore, we can express w as

w = a1b1 + a2b2

with a1, a2 ∈ Z and a2 6= 0. Now,

‖w‖2
2 = w ·w = a2

1b1 · b1 + 2a1a2b1 · b2 + a2
2b2 · b2.

If |a1| < |a2| then

‖w‖2
2 > a2

1b1 · b1 − 2
(
a2

2 − 1
)
|b1 · b2|+ a2

2b2 · b2 > a2
1b1 · b1 + b2 · b2 > ‖b2‖2

2
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through the application of (6.1). On the other hand, if |a1| > |a2| then

‖w‖2
2 > a2

1b1 · b1 − 2a2
1|b1 · b2|+ a2

2b2 · b2 > a2
2b2 · b2 > ‖b2‖2

2 .

�

Theorem 6.1 implies that a Gauss-reduced basis contains the shortest possible

vectors in the sense defined by (6.4) and (6.5).

Relationship with Binary Quadratic Forms. Let us now briefly explore the con-

nection between the Gaussian reduction of bases and the reduction of binary qua-

dratic forms, the language in which the algorithm was originally expressed by Gauss

(1801), art. 171. Let B be the m× 2 matrix whose columns represent the basis vec-

tors of a lattice Ω of rank 2 in Rm. Then any lattice point v ∈ Ω can be expressed

v = Bk

where k ∈ Z2. The square Euclidean norm of v is

(6.6) ‖v‖2
2 = vTv = kTBTBk = kTQk

where Q = BTB is a 2× 2 symmetric, positive definite matrix. If we write

(6.7) Q =

(
a b

b c

)
and k =

(
x

y

)
then we can express that square Euclidean norm of v as a function of the indices x

and y so that

‖v‖2
2 = Q(x, y) = ax2 + 2bxy + cy2.

If a, b, c ∈ Z also then Q(x, y) is a positive binary quadratic form. Thus, finding a

shortest vector in a lattice which is a subset of Z2 can be expressed as a problem

of minimising a positive binary quadratic form. The opposite is also true since we

can write any positive binary quadratic form such as (8) as a matrix equation such

as (6.6) and (6.7). We can then use Cholesky decomposition (see Theorem 4.2) to

decompose Q into Q = BTB where B is a 2 × 2 upper diagonal matrix which can

be regarded as consisting of the basis vectors of a lattice.

Furthermore, if we represent a binary quadratic form by a positive definite matrix

in the way we have just described then it is easily confirmed that two such positive

definite matrices Q and Q′ represent equivalent (properly equivalent) positive binary

quadratic forms if and only if

Q = MTQ′M

where M is a unimodular matrix with det M = ±1 (det M = 1).

We will now see that reduction of binary quadratic forms is very nearly the

same as Gaussian reduction of lattices. Suppose that we represent a positive binary

quadratic form Q′(x, y) by a positive definite matrix Q′ and decompose Q′ so that
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Q = B′TB′ (the Cholesky decomposition of Q′) and let B′ represent the basis of a

lattice. If we calculate a Gauss-reduced basis B of B′ then

B = B′M

where M is a unimodular matrix with det M = 1 (which we can ensure by replacing

one of the elements of the basis with its additive inverse, if necessary). Now let

Q = BTB = MTQ′M =

(
b1 · b1 b1 · b2

b1 · b2 b2 · b2

)
=

(
a b

b c

)
.

It is clear that a, b and c fulfill the conditions of (1.1) in Theorem 1.3, except the

condition that −a/2 < b where we have only −a/2 6 b. Apart from this trivial

difference (which can be easily overcome by the replacement of b2 by b2 + b1 if

−a/2 = b), we see that the binary quadratic form represented by Q is a reduced

form of Q′(x, y).

Relationship with the Centred Continued Fraction. Let us now examine the re-

lationship between Gaussian reduction and continued fractions. Consider some

α ∈ C \ Z such that either |α−1| < 1 or R{α−1} < 0 or R{α−1} > 1
2
. We can

write α as

α = m0 +
ε0
ξ1

where

m0 = bR{α}e and ε0 = sgn(R{α} − bR{α}e).

The complex number ξ1 then has the property that 0 6 R
{
ξ−1

1

}
6 1

2
. Suppose

|ξ1| > 1, ξ1 6∈ Z and we repeat this expansion on ξ1 so that we have

α = m0 +
ε0

m1 +
ε1

ξ2

where again 0 6 R
{
ξ−1

2

}
6 1

2
. We can imagine continuing this fraction until, for

some k, |ξk| 6 1 or ξk ∈ Z. Thus, we can expand a complex number α in this way

to a (possibly infinitely) continued fraction of the form

α = m0 +
ε0

m1 +
ε1

m2 +
ε2

m3 + . . .

where the εi = ±1, mi ∈ Z and mi > 0 when i > 0. We call an expansion of this

type a centred continued fraction expansion of α. The expansion so defined

is clearly also unique according to the procedural definitions we have given, up to

the choice of the nearest integer function b·e. We now formalise these procedures

into an algorithm.
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Algorithm 6.2.

1 begin

2 η−1 := −1; η−2 = α;

3 p−1 := 1; p−2 := 0;

4 q−1 := 0; q−2 := 1;

5 ξ0 := α;

6 n := 0;

7 while ξn 6∈ Z ∧
(
|ξ−1
n | < 1 ∨ R{ξ−1

n } < 0 ∨ R{ξ−1
n } > 1

2

)
do

8 mn := bR{ξn}e;
9 εn := sgn(R{ξn} −mn);

10 ηn := εn(ηn−2 +mnηn−1);

11 n := n+ 1;

12 ξn :=
−ηn−2

ηn−1

;

13 od;

14 end.

It is not surprising that this algorithm bears a strong resemblance to Algo-

rithm 3.2 of Chapter 2 for computing the s.c.f. expansion of a real number. To

show that it calculates the centred continued fraction expansion it remains only to

show that ξn = −ηn−2/ηn−1 corresponds to the definition implied in the preceding

discussion. We show this by induction. If we label ξ0 = α then it is true for n = 0.

Suppose it is true for all 0 6 n < N . We have

ξN =
εN−1

ξN−1 −mN−1

=
−εN−1ηN−2

ηN−3 +mN−1ηN−2

=
−ηN−2

ηN−1

and so it is true for n = N also.

To see the similarity of the centred continued fraction algorithm of Algorithm 6.2

with the Gaussian reduction algorithm of Algorithm 6.1, consider the following

characterisation of a basis {b∗1,b∗2}, represented by the matrix B∗, of a lattice Ω∗ of

rank 2 in R2 by a complex number α. Let T be a linear transformation consisting

of a rotation with scaling such that Tb∗1 = (−1, 0)T . Let B = TB∗ be a basis of a

new lattice Ω in R2. A Gauss-reduced basis of Ω will correspond to a Gauss-reduced

basis of Ω∗ through the application of the inverse transformation, T−1. Now, set

η−1 = −1 = b11 + ib21 and η−2 = α = b21 + ib22. The pair {1, α} defined in this way

can be regarded as the basis of a lattice in C. From inspection of Algorithm 6.2,

we see that the pair {ηn, ηn−1} always maintains a basis. Bearing in mind the

obvious relationships of the magnitude of the ratio |ηn−2/ηn−1| with the ratio of the

Euclidean norms of their equivalent lattice points and of R{ηn−2/ηn−1} with the
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scalar product, we see that the two algorithms, Algorithm 6.1 and Algorithm 6.2,

are essentially the same. A point of difference arises in that Algorithm 6.2 negates

the “new lattice point” ηn if its “angle” with ηn−1 would otherwise be acute through

the use of the εn. However, this is hardly a substantial difference. Because of the

similarity with Gaussian reduction, we can state the following theorem, which is

really a corollary of Proposition 6.1.

Theorem 6.2. If α ∈ C and I{α} 6= 0 then the centred continued fraction

expansion of α is finite.

Complexity of Algorithm 6.1. We have already witnessed in the proof of Propo-

sition 6.1 that, on each iteration of Algorithm 6.1 apart from the first on which the

algorithm does not terminate, the Euclidean norm of the basis vector b2 is reduced

by at least one third. To bound the number of iterations required by the algorithm,

we introduce the inertia of a lattice basis.

Definition 6.2. The inertia of a lattice basis is the sum of the squared Eu-

clidean norms of the basis vectors.

Theorem 6.3. If I∗ is the inertia of a Gauss-reduced basis of a lattice Ω and I

is the inertia of any other basis of Ω then I∗ 6 I.

Proof. The proof follows immediately from Theorem 6.1. �

Consider the number of iterations required in terms of inertia using only our

arguments from the proof of Proposition 6.1. If In is the inertia of the basis on the

nth iteration after the size reduction step and I0 is the inertia of the input basis then

In 6

(
2

1 +
(

3
2

)2

)n−1

I0 =

(
8

13

)n−1

I0.

If the inertia of the Gauss-reduced basis is I∗ then the number of iterations, N ,

required by Algorithm 6.1 to produce a Gauss-reduced basis is bound above by

(6.8) N 6 log 13
8

I0

I∗
+ 1.

Lagarias (1980) was the first to discover a logarithmic upper bound of this type on

the running time of algorithms for Gaussian reduction. Vallée (1991) considered

the worst-case running time of a Gaussian reduction algorithm for lattices which are

subsets of Z2. For these lattices, I∗ > 2. The maximum number of iterations in this

case can therefore be stated without reference to I∗. She found that

(6.9) N 6 1
2

[
log1+

√
2

(
2
√

2

3
I0

)
+ 1

]
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and that this bound is the best possible of its type.2 Comparing the leading terms

of (6.8) to (6.9) for lattices in Z2 we see that the former gives

N 6 2.06 log I0 +O(1)

whereas the latter gives

N 6 0.568 log I0 +O(1),

which is clearly a substantial improvement.

More recently, Daudé et al. (1994) carried out, amongst other things, an analysis

of the average-case complexity of Gauss’ algorithm. They found that the number

of iterations required by the algorithm obeys a geometric law and is thus O(1) “on

average” where this term is defined in an appropriate sense.

Generalisations. If we had instead defined a Gauss-reduced basis in terms of

the properties stated in Theorem 6.1 then we can readily generalise the definition to

other norms. To generalise Gauss’ algorithm, such as we presented in Algorithm 6.1,

we (naturally) replace all references to the Euclidean norm with the desired norm

and replace the size reduction step on line 4 with

b2 := b2 − b1 arg min
k∈Z
{‖b2 − kb1‖}.

Kaib (1994) has considered such generalisations and has obtained sharp upper

bounds on the number of iterations required.

Gauss (1801), art. 272–275, also defines a reduced form for ternary qua-

dratic forms, that is, quadratic forms in three variables, and describes a proce-

dure for reducing such forms (corresponding to lattices of rank 3). However, it does

not suit our purposes to discuss it further, save to mention that Lagarias (1980)

has analysed the computational complexity of the algorithm.

6.2. Minkowski Reduction. Minkowski invented the notion of the succes-

sive minima of a lattice.

Definition 6.3. The successive minima λ1, λ2, . . . , λn of a lattice Ω of rank

n in Rm with respect to a norm ‖·‖ are the least real numbers for which it is true

that, for each 1 6 k 6 n, there exists a set of k linearly independent lattice vectors

v1,v2, . . . ,vk such that

max {‖v1‖ , ‖v2‖ , . . . , ‖vk‖} = λk.

We now discuss a geometric interpretation of this definition. Consider the cen-

trally symmetric convex body consisting of all points x ∈ Rm with ‖x‖ < λ. As λ

is increased from 0, we know from Theorem 3.2 that there exists some λ1 6 2r∆ for

2The algorithm presented by Vallée (1991) differs from Algorithm 6.1 in that it only performs

the swap operation on line 3 if ‖b1‖ > ‖b2‖. Therefore, the swap operation might not be performed

on the first iteration and so the upper bound of (6.9) should perhaps be increased by 1 in reference

to Algorithm 6.1.
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which a lattice point of Ω other than the origin, say v1, lies on the surface of the

body. Obviously, v1 is the shortest vector in the lattice with respect to ‖·‖. This

is the first successive minimum. As λ is further increased, a value λ2 is reached at

which point a non-zero lattice point, say v2, linearly independent of v1, is encoun-

tered. λ2 is the second successive minima. We can continue to increase λ in this way

until all the successive minima and associated minimal vectors v1,v2, . . . ,vn are

found. The minimal vectors are not unique, since any of them can be replaced by

their additive inverses.

The following theorem regarding successive minima is also due to Minkowski,

and is sometimes called his Second Theorem.

Theorem 6.4. Let S = {x ∈ Rn | ‖x‖ < 1} and let Ω be a lattice of rank n in

Rn. If λ1, λ2, . . . , λn denote the successive minima of Ω then

λ1λ2 · · ·λn volS 6 2n.

Now, the minimal vectors of Ω, although linearly independent, may not form a

basis. Minkowski proposed a definition of a reduced basis which is analogous to

that of the minimal vectors.

Definition 6.4. A basis {b1,b2, . . . ,bn} of a lattice Ω of rank n in Rm is

Minkowski-reduced with respect to a norm ‖·‖ if

‖v‖ > ‖bi‖

for all v ∈ Ω which are linearly independent of {b1,b2, . . . ,bi−1} when 2 6 i 6 n

or for all non-zero v ∈ Ω when i = 1.

This is the same property which we proved that a Gauss-reduced basis enjoys in

Theorem 6.1. Thus, we can think of Minkowski reduction as a natural generalisation

of Gaussian reduction to lattices of rank greater than 2.

In an example attributed to H. W. Lenstra, Jr., Lagarias (1994) describes a

lattice of rank 14 with the property that, in constructing a Minkowski-reduced basis,

a change in the ordering of a number of vectors in the basis which have equal length

can make a difference to the choice of subsequent basis vectors and hence their

length. Therefore, he proposes the idea of a lexicographically Minkowski-

reduced basis which is that Minkowski-reduced basis which is lexicographically

least according to the usual lexicographic ordering of the norms of the ordered

Minkowski-reduced vectors (‖b1‖ , ‖b2‖ , . . . , ‖bn‖).

Definition 6.5. The usual lexicographic ordering of Rn is that for which

u = (u1, u2, . . . , un) < v = (v1, v2, . . . , vn)

if there exists some k, 1 6 k 6 n, such that uk < vk and ui = vi for i = 1, 2, . . . , k.
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From an algorithmic point of view, it is probably computationally infeasible to

calculate a (lexicographically) Minkowski-reduced basis for a given input basis, since

it involves finding the shortest vector in the lattice.

6.3. Hermite Reduction. We briefly mention a notion of reduction due to

Hermite (1850). Although, it is not a very “strong” form of reduction, in that

there are no bounds on the lengths of vectors in the reduced basis with respect to

the shortest possible, it does ensure a degree of orthogonality. More importantly, it

underlies the definitions of reduction which we will discuss afterwards.

Definition 6.6. Let B = QR be the QR decomposition of the m × n matrix

B, the columns of which represent the basis vectors of a lattice Ω of rank n in Rm.

The basis represented by B is Hermite-reduced if

(6.10) |rij| 6 1
2
rii

for all 1 6 i < j 6 n.

The following simple algorithm effects Hermite reduction.

Algorithm 6.3.

1 begin

2 QRdecompose(B,Q,R);

3 for j := 1 to n do

4 for i := j − 1 to 1 step − 1 do

5 k :=

⌊
rij
rii

⌉
;

6 bj := bj − kbi;
7 rj := rj − kri;
8 od;

9 od;

10 output(B);

11 end.

Proposition 6.2. If Algorithm 6.3 is executed on an m × n matrix B, the

columns of which represent the basis vectors of a lattice Ω of rank n in Rm, then,

after at most n(n− 1)/2 iterations through the inner loop on lines 4–8, the algorithm

terminates and outputs an Hermite-reduced basis.

Proof. The proof is by inspection of the algorithm. �

Observe that each iteration through the inner loop of Algorithm 6.3 on lines 4-

8 involves operations on vectors of m elements. The total number of arithmetic

operations is therefore O(mn2).

If, for Algorithm 6.3, we label the input B and the output B′ then

(6.11)
∥∥b′j∥∥2

6 ‖bj‖2



LATT I CE REDUCT ION 79

for all j = 1, 2, . . . , n. This is because ‖bj‖2 = ‖rj‖2 and because rij is left unchanged

by the algorithm if i > j or if |rij| < 1
2
|rii|, but otherwise reduced to ensure (6.10).

It is because of (6.11) that many authors refer to this operation as size reduction

(as we did ourselves for the operation on line 4 of Algorithm 6.1).

6.4. Korkin-Zolotarev Reduction. The last of the classical (that is, pre-20th

century) notions of reduction we will discuss is that of Korkin and Zolotarev.

While a Minkowski-reduced basis consists of the shortest possible vectors and is

easily generalised to all norms, the definition of a Korkin-Zolotarev-reduced basis,

which we are about to give, is more concerned with the orthogonality of the con-

stituent vectors and more closely tied to the Euclidean norm. The original definition

is recursive and expressed in the language of quadratic forms. The definition we give

here is an equivalent non-recursive definition, adapted from Lagarias et al. (1990).

Definition 6.7. Let B = QR be the QR decomposition of the m×n matrix B,

the columns of which represent the basis vectors of a lattice Ω of rank n in Rm. The

basis represented by B is Korkin-Zolotarev-reduced if it is Hermite-reduced

and, for all v ∈ Ω expressed as v = Bk, k ∈ Zn, for which kj 6= 0, 1 6 j 6 n, it is

true that

(6.12) ‖ρ‖2 > rjj

where ρ is the vector formed from the last n− j + 1 elements of Rk.

We now give a geometric interpretation to this definition. The condition (6.12)

means that a given vector bj in the ordered Korkin-Zolotarev-reduced basis must

belong to the set of shortest vectors which are linearly independent of the preceding

vectors (b1,b2, . . . ,bj−1) when that part of the vector is measured which lies in the

orthogonal subspace to the span of those basis vectors. We say bj “belongs to the

set of shortest vectors” because the addition of any integer linear combination of

the preceding basis vectors will not change the length of that part of it which lies

in the orthogonal subspace. In particular, this means that b1 is the shortest lattice

vector in Rn, the part of b2 which is orthogonal to b1 is the shortest of all lattice

points which are linearly independent of b1 and so on.

The condition that the reduced basis should also be Hermite-reduced is intended

to ensure that the basis vector bj should be as orthogonal as possible with respect

to the preceding vectors (b1,b2, . . . ,bj−1) in the ordered Korkin-Zolotarev-reduced

basis.

From an algorithmic point of view, a Korkin-Zolotarev-reduced basis is proba-

bly computationally infeasible to compute from an arbitrary given basis, just as a

Minkowski-reduced basis is, because it involves finding the shortest vector in the

lattice.
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6.5. Lovász Reduction. A major breakthrough in the computational com-

plexity of finding sufficiently short vectors was achieved with the discovery by

Lovász of a new notion of reduction and announced, along with an algorithm

for constructing a reduced basis, in Lenstra et al. (1982).

Definition 6.8. Let B = QR be the QR decomposition of the m × n matrix

B, the columns of which represent the ordered basis vectors of a lattice Ω of rank

n in Rm. The basis represented by B is Lovász-reduced if it is Hermite-reduced

and

(6.13) r2
j,j 6 2r2

j+1,j+1

for all 1 6 j < n.

The condition (6.13) is the so-called Siegel reduction condition. It is not

the condition that was used in the original paper of Lenstra et al. (1982). There,

the condition used in place of (6.13) was that

r2
j,j

(
3

4
−

r2
j,j+1

r2
j+1,j+1

)
6 r2

j+1,j+1

for all 1 6 j < n. These conditions are equivalent in that all of the important prop-

erties (such as we prove in Theorem 6.5) of the reduced bases are shared. However,

we prefer the Siegel reduction condition because of its simplicity.

At first glance, it is not clear why the reduction condition of (6.13) should ensure

that the reduced basis will consist of short vectors. The following theorem and proof,

adapted directly from Lenstra et al. (1982), shows that it does.

Theorem 6.5. Let B = QR be the QR decomposition of the m× n matrix B,

the columns of which represent the ordered basis vectors of a lattice Ω of rank n in

Rm. If the basis represented by B is Lovász-reduced then

(6.14) ‖bi‖2
2 6 2j−1r2

jj

for all i, j such that 1 6 i 6 j 6 n and

(6.15) ‖b1‖2
2 6 2n−1 ‖v‖2

2

for all non-zero v ∈ Ω and, more generally,

(6.16) ‖bj‖2
2 6 2n−1 max

{
‖v1‖2

2 , ‖v2‖2
2 , . . . , ‖vj‖

2
2

}
whenever v1,v2, . . . ,vj are linearly independent lattice vectors and 1 6 j 6 n.

Proof. From (6.13), we see at once that

r2
ii 6 2j−ir2

jj
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for all i, j such that 1 6 i 6 j 6 n. Now, it follows that

‖bj‖2
2 =

j∑
i=1

r2
ij

6 r2
jj +

1

4

j−1∑
i=1

r2
ii

6 r2
jj +

1

4
r2
jj

j−1∑
i=1

2j−i

6 2j−1r2
jj

and so

‖bi‖2
2 6 2i−1r2

ii 6 2j−1r2
jj.

To prove the truth of (6.15) consider the expression of the lattice point v as

v = Bk where k ∈ Zn. Let s = Rk. Now,

‖v‖2
2 =

n∑
i=1

s2
i .

Also, if j is the largest index such that kj 6= 0 then it follows from the upper

triangular nature of R that sj = kjrjj. Therefore

‖v‖2
2 > k2

j r
2
jj > r2

jj

and so, applying (6.14), we have

‖b1‖2
2 6 2j−1r2

jj 6 2n−1r2
jj 6 2n−1 ‖v‖2

2 .

Now consider (6.16). Let V be an m×j matrix, the columns of which are linearly

independent lattice vectors vi, i = 1, 2, . . . , j. Therefore, we can write V = BK

where K is an n × j integer matrix with full column rank. Let t be the maximum

index such that there exists some index u such that ktu 6= 0. Clearly, t > j, otherwise

K would not have full column rank. Let S = RK. Now,

‖vu‖2
2 =

t∑
i=1

s2
iu

and stu = kturtt because of the upper triangular nature of R. Therefore,

‖vu‖2
2 > k2

tur
2
tt > r2

tt

and so, applying (6.14), we have

‖bj‖2
2 6 2t−1r2

tt 6 2n−1r2
tt 6 2n−1 ‖vu‖2

2

and (6.16) follows. �
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We have shown in Theorem 6.5 that there is an upper bound to the ratio of

the first basis vector in a Lovász-reduced basis and the smallest non-zero vector

in the lattice. This ratio is unfortunately exponential in the rank of the lattice.

However, given that the LLL algorithm produces a Lovász-reduced basis in a number

of iterations which is bounded above by a polynomial in the rank of the lattice, we

may be prepared to accept this gap between what is feasibly computable and the

best possible.

7. The LLL Algorithm

We now present a version of the LLL algorithm, expressed in the “language” of

QR decomposition whereas the original in Lenstra et al. (1982) used a notation

based on an unnormalised Gram-Schmidt orthogonalisation procedure. The algo-

rithm presented here also makes use of the Siegel reduction condition and does not

make use of intermediate size reduction steps (we will discuss the implications of this

later). Nevertheless, the theoretical results are adapted directly from the original

paper.

The algorithm below makes use of the procedures swap and QRdecompose for

swapping values and for QR decomposition, which we have used previously, and a

procedure HermiteReduce, which performs Hermite reduction (size reduction) on its

argument in the way described by Algorithm 6.3.

Algorithm 7.1.

1 begin

2 QRdecompose(B,Q,R);

3 j := 1;

4 while j < n do

5 if r2
j,j > 2r2

j+1,j+1 then

6 k :=

⌊
rj,j+1

rj,j

⌉
;

7 bj+1 := bj+1 − kbj;
8 rj+1 := rj+1 − krj;
9 swap(bj,bj+1);

10 QRdecompose(B,Q,R);

11 if j > 1 then j := j − 1; fi;

12 else

13 j := j + 1;

14 fi;

15 od;

16 HermiteReduce(B);

17 output(B);

18 end.
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Without even fully understanding the properties of the algorithm, we can see

that it appears somewhat inefficient to recalculate the whole QR decomposition of

B just because we have swapped the order of two of the basis vectors, as we do on

line 10. It is also obvious that we are making no use of the Q matrix. Therefore, we

only need to update R and it is a simple matter to confirm that this can be achieved

by applying the transformation

(7.1) R′ = HGRH

where R′ represents the updated value of R and

G =

Ij−1 0

G′

0 Ir−j−1

 and H =

Ij−1 0

H′

0 Ir−j−1


and

G′ =
1√

r2
j,j+1 + r2

j+1,j+1

(
rj+1,j+1 −rj,j+1

rj,j+1 rj+1,j+1

)
and H′ =

(
0 1

1 0

)
.

The pre- and post-multiplication by H serves to swap the jth and (j+ 1)th rows and

columns of GR. The transformation G is a Givens rotation. A Givens rotation

requires much less computational effort than a full QR decomposition (in this case,

only the jth and (j + 1)th rows will be affected) and it can be implemented in a

numerically stable way (Golub & van Loan, 1989). This discussion has prepared

us for the following proposition.

Proposition 7.1. If Algorithm 7.1 is executed on an m×n basis matrix B of a

lattice Ω of rank n in Rm, and, on some iteration, the test on line 5 succeeds then,

at line 10 on the same iteration,

r′j,j
2 6

3

4
r2
j,j, r′j+1,j+1

2 6 r2
j,j and r′j,jr

′
j+1,j+1 = rj,jrj+1,j+1

where r′j,j and r′j+1,j+1 are the new values of rj,j and rj+1,j+1 after the recalculation

of the QR decomposition (or Givens rotation).

Proof. If the test on line 5 succeeds then r2
j,j > 2r2

j+1,j+1. The execution of

lines 6–8 ensures that |rj,j+1| 6 1
2
rj,j. From consideration of (7.1) we find that

r′j,j
2

= r2
j,j+1 + r2

j+1,j+1 6
3

4
r2
j,j,

r′j+1,j+1
2

=
r2
j,jr

2
j+1,j+1

r2
j,j+1 + r2

j+1,j+1

6 r2
j,j

and that

r′j,jr
′
j+1,j+1 =

√
r2
j,j+1 + r2

j+1,j+1

rj,jrj+1,j+1√
r2
j,j+1 + r2

j+1,j+1

= rj,jrj+1,j+1.

�
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Before proving the main result of this section, we require the following widely

known facts from the geometry of numbers.

Theorem 7.1. If B = QR is the QR decomposition of the m× n basis matrix

B of a lattice Ω of rank n in Rm then det R = c where c is constant which depends

only on Ω.

Proof. Let B and B′ be two matrices representing bases of Ω. Therefore B′ =

BM = QRM, where M is a unimodular matrix, so det (RM) = det R. If the QR

decomposition of RM is PR′ then det R′ = det R since P is orthogonal. Now, QP

is column orthogonal so (QP)R′ is the QR decomposition of B′. �

Theorem 7.2. If B = QR is the QR decomposition of the m × n matrix B,

the columns of which represent the basis vectors of a lattice Ω of rank n in Rm then

there exists a non-zero v ∈ Ω such that

(7.2) ‖v‖2 6 γn
n
√

det R

where γn ∈ R is a positive constant which depends only on n.

Proof. Consider the parameterised set

S(µ) = {x ∈ Rn | ‖x‖2 < µ}.

This is a hypersphere of radius µ centered about the origin. Recall that volS(µ) =

Jnµ
n where

Jn =
π

1
2
n

Γ
(

1
2
n+ 1

)
(see, for example Siegel, 1989, p. 26).

Consider the lattice Ω′ of rank n in Rn constructed from the column vectors of

R. Every lattice point v ∈ Ω can be expressed as v = Bk where k ∈ Zn and there

is an equivalent point v′ = Rk ∈ Ω′ such that ‖v′‖2 = ‖v‖2. Since S(µ) is a convex

body we can use Minkowski’s First Theorem (Theorem 3.2) to show that if

µ > 2 n

√
det R

Jn

then there is a non-zero lattice point v′ ∈ Ω′ in S(µ). Thus, setting

γn =
2

n
√
Jn

we achieve the desired result. �

Remark 7.1. The smallest possible values for γn in (7.2) are known as the

Hermite constants. Their values are known only for 2 6 r 6 8.

The following theorem places an upper bound on the Hermite constants.
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Theorem 7.3. Theorem 7.2 is still true when γn is replaced by (4/3)
1
2

(n−1)

in (7.2).

Proof. See Cassels (1971). �

We can now state and prove the main result for this section.

Proposition 7.2. Let B = QR be the QR decomposition of the m × n basis

matrix B of a lattice Ω of rank n in Rm. If Algorithm 7.1 is executed on B then,

after a finite number of iterations through the main loop of lines 4–15, the algorithm

terminates with a Lovász-reduced basis as its output.

The number of iterations required is O(n2(n+ log(M/L))), where

M = max {‖b1‖2 , ‖b2‖2 , . . . , ‖bn‖2},

and L is the Euclidean length of the shortest vector in Ω.

Proof. By inspection of the algorithm, we can confirm that if the algorithm ter-

minates, it produces a Lovász-reduced basis. It remains to show that the algorithm

terminates within the number of iterations specified.

Let di represent the value at line 5 of the determinant of the i× i submatrix of R

consisting of its first i rows and columns. Since this submatrix is upper triangular,

di = r11r22 · · · rii.

Consider the sublattice of Ω which is generated by the first i columns of B. Let v∗i
be the shortest vector in this lattice. From Theorem 7.2 we know that

‖v∗i ‖2 6 γi
i
√
di

and so, from Theorem 7.3,

di >
‖v∗i ‖

i
2

γi
>
(

3
4

)1
2
i(i−1) ‖v∗n‖

i
2 ,

where γi is a positive constant which depends only on i.

Now, let D = d1d2 . . . dn. Then, at all times throughout the execution of the

algorithm,

(7.3) D >
L

1
2
n(n+1)

γ1γ2 · · · γn
>
(

3
4

)1
6(n3−n)

L
1
2
n(n+1)

Since rjj 6 ‖bj‖2 for 1 6 j 6 n, when the algorithm commences we have

(7.4) D 6M
1
2
n(n+1).

If the algorithm does not terminate then it must pass through the exchange

step on line 9 infinitely often. Let d′i represent the value of di for each 1 6 i 6 n

and D′ represent the value of D after the QR decomposition (or Givens rotation) on
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the next line is calculated for an iteration in which the exchange step is undertaken.

Proposition 7.1 implies that

d′j 6

√
3

2
dj

but d′i = di for 1 6 i 6 n, i 6= j. Therefore, we also have D′ 6
√

3D/2. Bearing

in mind the lower and upper bounds of (7.3) and (7.4), we see that the number of

exchange steps E which can be performed by the algorithm is bounded by

E 6 n(n+ 1)

[
1
3
(n− 1) + 1

2
log2/

√
3

M

L

]
.

We can therefore conclude that the algorithm must terminate after a finite num-

ber of iterations. Furthermore, because there can be no more than n − 1 more

iterations than the number of iterations which involve an exchange step (because j

is incremented whenever an exchange does not take place), we can verify that the

total number of iterations is indeed O(n2(n+ log(M/L))). �

The number of iterations required by the algorithm does not, in this case, amount

to the number of arithmetic operations required. The subtraction of vectors of m

elements on line 7 adds a further factor of m to the arithmetic complexity and so

O(mn2(n+ log (M/L))) arithmetic operations are required. We mentioned at the

beginning of this section that we have omitted from Algorithm 7.1 a size reduction

procedure in which bj+1 is size reduced after each exchange step. This results in a

saving of a factor of n in the complexity of the algorithm. However, in a practical

implementation the size reduction is required to keep the sizes of matrix entries

small.

It has been observed that the upper bound for the number of iterations required

by Algorithm 7.1 and for the lengths of the vectors in the Lovász-reduced basis it

produces as given by Theorem 6.5 are quite pessimistic in practice (see, for example

Cohen, 1993; Schnorr & Euchner, 1994).

We conclude this section, and this chapter, by remarking that this algorithm

has created a lot of interest because of its application to a wide range of problems

such as cryptography, integer programming, algebra and simultaneous Diophantine

approximation. New variants of the algorithm are appearing regularly. They aim to

improve speed or tailor its performance in some other respect. We will not explore

any of these applications or variants, except as regards simultaneous Diophantine

approximation, which we will treat in the next chapter, and, as a consequence, prob-

lems in pulse train signal processing. Vallée (1991) and Schnorr & Euchner

(1994) give many references to the aforementioned applications and variants.



C H A P T E R 4

SIMULTANEOUS

DIOPHANTINE APPROXIMATION

1. Introduction

Simultaneous Diophantine approximation has many possible definitions. One

possible “definition” is that it is the theory or process by which one selects lattice

points from a lattice of rank n > 2 which lie “close” to a linear form. Many

authors restrict the linear form to being one-dimensional, i.e. a line. The sense in

which the lattice point is close can be measured in either an absolute sense or

a relative sense. In the absolute sense, the closeness is measured by projecting

the lattice point onto, for instance, the orthogonal complement of the linear form

to be approximated and taking the norm of the projection. For example, given a

projection matrix

P = I− ααT

αTα
, α ∈ Rn,

which projects along the line Rα, the problem of finding an integer vector k ∈ Zn

which makes ‖Pk‖ small is simultaneous Diophantine approximation of the line

Rα by elements of Zn in the absolute sense with respect to the norm ‖·‖. By

approximation in the relative sense, we mean that the distance from the lattice

point to the linear form is normalised by the distance of the lattice point from the

origin. To use our previous example again, finding an integer vector k ∈ Zn which

makes ‖Pk‖ / ‖k‖ small is simultaneous Diophantine approximation of Rα in the

relative sense.

In particular, reference is frequently made in the literature to simultaneous Dio-

phantine approximation problems that, given n − 1 real numbers α1, α2, . . . , αn−1,

involve finding n integers p1, p2, . . . , pn−1, q such that

max
i=1,2,...,n−1

{|qαi − pi|}

is made small or that

max
i=1,2,...,n−1

{∣∣∣∣αi − pi
q

∣∣∣∣}
is made small. The former instance is simultaneous Diophantine approximation in

the absolute sense and the latter in the relative sense.

As we mentioned above, some authors restrict the definition of simultaneous

Diophantine approximation to encompass only the approximation of lines and not

87
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higher-dimensional linear forms. Another form of approximation can then be dis-

tinguished that, given n real numbers α1, α2, . . . , αn, involves finding n integers

k1, k2, . . . , kn in order to make

|k1α1 + k2α2 + · · ·+ knα|

as small as possible. If this expression can be made zero then an integer relation

for α1, α2, . . . , αn has been found.

One of the problems we address in this chapter is the problem of finding best

simultaneous Diophantine approximations (or best approximate integer relations).

This can be defined as the problem of finding lattice points that, of all lattice points

which are of the same or smaller distance from the origin, most closely approximates

the linear form of interest (a more general definition is forthcoming in Definition 2.7).

In this chapter, we consider two aspects of simultaneous Diophantine approxima-

tion. Firstly, we develop a theory regarding certain types of minimal sets of lattice

points which are employed in algorithms for finding best simultaneous Diophantine

approximations. This leads to realisable algorithms for lattices of ranks 2 and 3.

Secondly, we review developments towards computationally feasible algorithms for

finding good (but not necessarily best) simultaneous Diophantine approximations

for lattices of arbitrary rank.

The definition of simultaneous Diophantine approximation we shall use is similar

to that proposed by Lagarias (1983), which is a generalisation of the more classical

definitions, of which those given in Cassels (1957) and Hardy & Wright (1979)

are examples. From this definition, we produce a theory of (ρ, h)-minimal sets of

lattice points. Through finding sequences of (ρ, h)-minimal sets, we show that best

simultaneous Diophantine approximations can be found. We also introduce the idea

of an extended norm which, while not contributing significantly to the complexity

of the theory, extends the applicability of the algorithms we develop.

We apply this theory to construct algorithms for finding best simultaneous Dio-

phantine approximations in lattices of ranks 2 and 3. Under appropriate conditions,

we show that (ρ, h)-minimal sets always form bases of the lattice. In lattices of rank

2, we observe that the algorithm reduces to a simple additive continued fraction al-

gorithm. We show that, for certain types of approximation problems, the algorithm

will behave like Euclid’s algorithm and produce outputs which can be interpreted

as intermediate fractions of a simple continued fraction expansion of a real number.

In other types of approximation problems, the algorithm will behave like Gauss’

algorithm for lattice reduction.

For lattices of rank 3, we construct an algorithm which we show will find all best

approximations (or their equivalents ; see Definition 2.8) under appropriate condi-

tions. The algorithm which we construct bears a strong resemblance to earlier algo-

rithms for best simultaneous Diophantine approximation in lattices of rank 3, such
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as the algorithms of Minkowski (1896a), Voronŏı (1896)1 and Furtwängler

(1927). Our algorithm is not as fast the algorithms just mentioned, but it does

have two advantages. Firstly, the new algorithm is capable of finding best approx-

imations for a quite general class of approximation problems on lattices of rank 3

and, secondly, the algorithm has a fairly simple, additive nature (although it is not,

strictly speaking, an additive continued fraction algorithm).

We demonstrate the operation of the algorithm for lattices of rank 3 with some

numerical examples. We apply the algorithm to find best approximations of linear

forms of a single variable (that is, simultaneous Diophantine approximation in the

“traditional” sense) and of two variables (that is, approximate integer relations).

We also develop an accelerated version of the algorithm. This algorithm is able

to find best simultaneous Diophantine approximations much more quickly. It does

this at the expense of skipping a number of intermediate (ρ, h)-minimal sets. This

algorithm is a generalisation of the algorithm of Furtwängler (1927).

Unfortunately, we do not have upper bounds on the running time required by

either of the algorithms we present for lattices of rank 3. However, we present some

numerical data that shows that both algorithms can find best approximations with

an approximation error less than a prescribed bound in a “reasonable” amount of

time.

Finally, we review developments towards computationally feasible algorithms

for simultaneous Diophantine approximation with lattices of arbitrary rank. We

briefly discuss the historical development of multi-dimensional continued fraction

algorithms and explain one of the best-known examples: the algorithm of Brun

(1919, 1920). We will see that, although it has a rather natural geometrical inter-

pretation, it is known that it does not always find good approximations. Ideally, we

would like an algorithm that produces best approximations for lattices of any rank.

However, Lagarias (1982) has shown, following the result of van Emde Boas

(1981) concerning lattice reduction, that certain (representative) best simultaneous

Diophantine approximation problems are NP-hard. With the advent of the LLL al-

gorithm, algorithms for finding good simultaneous Diophantine approximation have

become computationally feasible. We conclude the chapter by discussing a close rel-

ative of the LLL algorithm, the HJLS algorithm, due to Hastad et al. (1989), and

some similar algorithms. To conclude, we compare the bases produced by Brun’s

algorithm and the HJLS algorithm with our other algorithms through a numerical

example for a lattice of rank 3.

2. Mathematical Preliminaries

2.1. Extended Norms. In this subsection we introduce extended norms and

semi-norms and illustrate some of the properties we will subsequently require.

1This algorithm is known to the author only through the descriptions of Delone & Faddeev

(1964) and Williams et al. (1980)



90 S IMULTANEOUS D IOPHANT INE APPROX IMAT ION

Definition 2.1. An extended semi-norm ‖·‖ = (ν1(·), ν2(·), . . . , νn(·)) is a

map from a real vector space Rm to Rn such that, for all x,y ∈ Rm and for all

λ ∈ R,

(i) ν1(x) > ν2(x) > . . . > νn(x) > 0,

(ii) ‖λx‖ = |λ| ‖x‖ and

(iii) ‖x + y‖ 6 ‖x‖+ ‖y‖
where < is defined according to the usual lexicographic ordering of Rn.

An extended semi-norm ‖·‖ is degenerate if ‖x‖ = 0 for all x ∈ Rm.

Definition 2.2. An extended norm ‖·‖ is an extended semi-norm for which

it is true that

(i’) ‖x‖ > 0 if x 6= 0.

Remark 2.1. Obviously a norm is also an extended norm and a semi-norm is

also an extended semi-norm.

Remark 2.2. If ‖·‖ = (ν1(·), ν2(·), . . . , νn(·)) is an extended norm (extended

semi-norm) then ν1(·) is a norm (semi-norm).

Definition 2.3. An extended semi-norm (extended norm) is strictly convex

if condition (iii) of Definition 2.1 is supplemented with

(iii’) ‖x + y‖ = ‖x‖+ ‖y‖ ⇒ ∃λ ∈ R, λ > 0 such that ‖x− λy‖ = 0.

Theorem 2.1. Let ‖·‖ be an extended semi-norm on Rm and let Φ(x), x ∈ Rm,

be the set

Φ(x) = {y ∈ Rm | ‖y‖ 6 ‖x‖}.
The set Φ(x) is convex and centrally symmetric and if ‖·‖ is also an extended norm

then Int Φ(x) is a centrally symmetric convex body.

Proof. That Φ(x) is convex follows from condition (iii) of Definition 2.1. That

it is centrally symmetric follows from condition (ii). Now, Int Φ(x) is an open

convex set, so to show that Int Φ(x) is a convex body if ‖·‖ is an extended norm, we

need only show that Int Φ(x) is bounded. To see this, consider any non-zero vector

y ∈ Rm. Since ‖y‖ > 0, we see that ν1(y) > 0 as a consequence of condition (i).

Thus, there exists some λ ∈ R, λ > 0 such that ‖λy‖ > ‖x‖ and so Φ(x), and

therefore its interior, is bounded. �

Theorem 2.2. A non-degenerate extended semi-norm ‖·‖ : Rm → Rn is not an

extended norm if and only if we can decompose ‖·‖ according to

(2.1) ‖x‖ =
∥∥PTx

∥∥′ ,
where PT ∈ Rm′×m is a matrix with 0 < m′ < m and ‖·‖′ : Rm′ → Rn is an extended

norm. Furthermore, if ‖·‖ is strictly convex then we can decompose it according

to (2.1) with a strictly convex extended norm ‖·‖′.
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Proof. The sufficiency of the first part of the theorem statement is obvious.

We will prove its necessity by construction. Let

S = {x ∈ Rm | ‖x‖ = 0}.

Now, S must be a vector subspace of Rm with 0 < dim(S) < m. Consider an

orthonormal basis of S. Let Q be the matrix of vectors in the basis, arranged as

columns. Let P be matrix of vectors of an orthonormal basis of the orthogonal

complement of S. Then P ∈ Rm×m′ where 0 < m′ = m− dim(S) < m. It is readily

deduced that

PPT + QQT = I.

We define the extended norm ‖y‖′ =
∥∥PTy

∥∥ for all y ∈ Rm′ . Then

‖x‖ =
∥∥(PPT + QQT

)
x
∥∥ =

∥∥PPTx
∥∥ =

∥∥PTx
∥∥′ .

�

Corollary 2.1. An extended semi-norm ‖·‖ on Rm can be expressed as the

extended norm of a linear map from Rm to Rm′ with 0 6 m′ 6 m.

Definition 2.4. Two extended semi-norms ‖·‖∗ and ‖·‖†, both defined on Rm,

are transverse with respect to each other if{
x ∈ Rm | ‖x‖∗ = ‖x‖† = 0

}
= {0}.

Definition 2.5. An extended norm ‖·‖† is an extension of another extended

norm ‖·‖∗ if both are defined on Rm and, for all x,y ∈ Rm,

‖x‖∗ < ‖y‖∗ ⇒ ‖x‖† < ‖y‖† .

Theorem 2.3. For every norm ‖·‖∗ defined on Rm there exists a strictly convex

extended norm ‖·‖† extended from it.

Proof. The proof is by construction. The Euclidean norm ‖·‖2 is strictly con-

vex. Because all norms on Rm are similar we know that there exists some µ ∈ R,

µ > 0 such that, for all x ∈ Rm, ‖x‖∗ > µ ‖x‖2. Consider the extended norm

‖x‖† = (‖x‖∗ , µ ‖x‖2) where ‖·‖† : Rm → R2. It can be easily verified that ‖·‖† is

strictly convex and extended from ‖·‖. �

In Theorem 2.3 we have the most important reason for introducing extended

norms and semi-norms which is that norms which otherwise are not strictly convex

(such as the sup-norm) can be extended to meet this criterion. The strict convexity is

an important ingredient in what follows as it allows many of the theorem statements

to be simplified and removes a number of special cases from consideration.
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2.2. Simultaneous Diophantine Approximation.

Definition 2.6. A system for simultaneous Diophantine approximation con-

sists of a lattice Ω together with two non-trivial, transverse extended semi-norms

which we call the radius function and height function of the system.

Simultaneous Diophantine approximation involves finding elements of Ω that

have “small” radius without having a height that is “too large.”

Frequently, we will not refer to a system for simultaneous Diophantine approxi-

mation directly. Rather, its existence is implied from the context.

We can define best approximations in the following way.

Definition 2.7. A non-zero lattice point x in a lattice Ω is a best approxi-

mation in the absolute sense with respect to a radius function, ρ, and a height

function, h, if, for all non-zero y ∈ Ω,

ρ(y) 6 ρ(x) ⇒ h(y) > h(x)

and

h(y) 6 h(x) ⇒ ρ(y) > ρ(x).

For the rest of this chapter, the only notion of best approximation we require is

that of best approximation in the absolute sense. For this reason, we will omit the

qualification “in the absolute sense.”

Definition 2.8. Two lattice points x and y in a simultaneous Diophantine

approximation system are equivalent with respect to the radius function, ρ, and

a height function, h, if ρ(x) = ρ(y) and h(x) = h(y).

Definition 2.9. In a simultaneous Diophantine approximation system, we will

say that the radius function ρ and the height function h are complementary on

the lattice Ω of rank n if ρ and h can be decomposed so that ρ(x) =
∥∥PTx

∥∥∗
and h(x) =

∥∥RTx
∥∥† where ‖·‖∗ and ‖·‖† are extended norms and PT and RT are

matrices such that there are n1 columns of P and n2 columns of R in the real span

of Ω and n1 + n2 = n.

Suppose ρ : Rm → Rn1 and h : Rm → Rn2 . We define ρh(·) = (ρ(·), h(·)), a

map from Rm to R(n1+n2). Similarly, we define hρ(·) = (h(·), ρ(·)). With the usual

lexicographic ordering of R(n1+n2), we notice that ρh(·) and hρ(·) are somewhat like

extended semi-norms. In fact, they obey all the conditions of Definition 2.1 except

condition (i). In its place, we can only say that ρh(x) > 0 and, because ρ and h are

transverse, ρh(x) > 0 if x 6= 0. Of course, the same is true for hρ(·).
We now introduce the (ρ, h)-minimal set, upon which the theory of the following

three sections are based.
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Definition 2.10. An n-tuple of linearly independent points (v1,v2, . . . ,vn) in

a lattice Ω of rank n is (ρ, h)-minimal for the radius function ρ and height function

h if

(2.2) ρh(vi) 6 ρh(vj)

when i 6 j and if, for each 1 6 j 6 n and for all non-zero w ∈ Ω which are linearly

independent of {v1, . . . ,vj−1}, it is true that either

ρh(w) > max
16i6j

{ρh(vi)}(2.3)

or

hρ(w) > max
16i6n

{hρ(vi)}(2.4)

Remark 2.3. If ρ = h is a norm (or extended norm) then a (ρ, h)-minimal set

of the lattice is simply a set of minimal vectors with respect to that norm.

Remark 2.4. If (v1,v2, . . . ,vn) is (ρ, h)-minimal then v1 is a best approxima-

tion.

3. (ρ, h)-Minimal Sets

3.1. General Properties.

Theorem 3.1. If X = (x1,x2, . . . ,xn) is an ordered set of linearly independent

points in a lattice Ω of rank n in Rm such that ρh(xi) 6 ρh(xj) whenever i 6 j then

there exists a (ρ, h)-minimal set V = (v1,v2, . . . ,vn) such that

(3.1) ρh(vi) 6 ρh(xi)

for all i = 1, 2, . . . , n and

(3.2) max
16i6n

{hρ(vi)} 6 max
16i6n

{hρ(xi)}.

Proof. We will describe a procedure through which a (ρ, h)-minimal set can be

constructed which satisfies (3.1) and (3.2). The procedure iterates through n steps.

At each step k, we construct an intermediate ordered set of linearly independent

points V(k) =
(
v

(k)
1 ,v

(k)
2 , . . . ,v

(k)
n

)
from the previous set, V(k−1). To initialise, we

set V(0) = X .

Consider the sets

∆
(k)
j =

{
z ∈ Rm

∣∣∣ ρh(z) < ρh
(
v

(k)
j

)
; hρ(z) < max

16i6n

{
hρ
(
v

(k)
i

)}}
.

The ∆
(k)
j are bounded, centrally symmetric convex sets. The convexity and central

symmetry of these sets are straightforward consequences of properties (ii) and (iii)

of extended semi-norms in Definition 2.1. To see that the ∆
(k)
j are bounded, write

ρ(·) = (ρ1(·), ρ2(·), . . . , ρn1(·)) and h(·) = (h1(·), h2(·), . . . , hn2(·)). Consider z ∈ ∆
(k)
j
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for some j and k. Because ρ and h are transverse, either ρ1(z) > 0 or h1(z) > 0. If

ρ1(z) > 0 then there exists some µ ∈ R, µ > 0 such that

ρh(µz) > ρh
(
v

(k)
j

)
and if h1(z) > 0 then there exists some µ > 0 such that

hρ(µz) > max
16i6n

{
hρ
(
v

(k)
i

)}
.

Thus, ∆
(k)
j is bounded.

Clearly,

∆
(k)
i ⊆ ∆

(k)
j

whenever i 6 j. Let

Φ
(k)
j =

{
x ∈ Ω ∩∆

(k)
j

∣∣∣ x is linearly independent of
{

v
(k)
1 ,v

(k)
2 , . . . ,v

(k)
j−1

}}
.

The cardinalities of these sets must be finite since the ∆
(k)
j are bounded.

Suppose that, at some step k, the elements of V(k−1) obey

(3.3) ρh
(
v

(k−1)
i

)
6 ρh

(
v

(k−1)
j

)
whenever i 6 j and

(3.4) Φ
(k−1)
1 = Φ

(k−1)
2 = · · · = Φ

(k−1)
k−1 = ∅.

We observe that, for step 1, (3.3) holds by assumption and (3.4) holds trivially.

Assuming (3.3) and (3.4) hold at step k, we produce V(k) as follows. If Φ
(k−1)
k is

not empty then we choose a lattice point s ∈ Φ
(k−1)
k such that

ρh(s) = min
t∈Φ

(k−1)
k

{ρh(t)}.

If Φ
(k−1)
k is empty then we set s = v

(k−1)
k . Let r denote the minimum index such

that s is linearly independent of
{

v
(k−1)
1 ,v

(k−1)
2 , . . . ,v

(k−1)
r−1

}
. Thus, r > k.

We now create a new set of linearly independent lattice points by replacing v
(k−1)
r

with s and reordering so that (3.3) is satisfied for step k + 1. Thus, we set

V(k) =
(
v

(k−1)
1 , . . . ,v

(k−1)
k−1 , s,v

(k−1)
k , . . . ,v

(k−1)
r−1 ,v

(k−1)
r+1 , . . . ,v(k−1)

n

)
,

which ensures that (3.3) and (3.4) again hold for step k + 1. Furthermore,

ρh
(
v

(k)
i

)
6 ρh

(
v

(k−1)
i

)
(3.5)

for all i = 1, 2, . . . , n and

max
16i6n

{
hρ
(
v

(k)
i

)}
6 max

16i6n

{
hρ
(
v

(k−1)
i

)}
.(3.6)

Thus, at the completion of step n, the sets Φ
(n)
i are all empty and so V(n) must be

(ρ, h)-minimal. By induction on (3.5) and (3.6), we can see that (3.1) and (3.2)

must also be satisfied, so the theorem is proved with V = V(n). �
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Lemma 3.1. Suppose U = (u1,u2, . . . ,un) and V = (v1,v2, . . . ,vn) are (ρ, h)-

minimal sets of a lattice Ω of rank n. If

(3.7) ρh(ui) 6 ρh(vi)

for all i = 1, 2, . . . , n then

(3.8) max
16i6n

{hρ(ui)} > max
16i6n

{hρ(vi)}.

Proof. Suppose there exists a pair of (ρ, h)-minimal sets U and V which sat-

isfies (3.7) but not (3.8). Now, for any 1 6 q 6 n, consider the minimum index r

such that ur is linearly independent of {v1,v2, . . . ,vq−1}. Thus, r 6 q. Further-

more, ρh(ur) 6 ρh(vq) because ρh(ur) 6 ρh(uq) and ρh(uq) 6 ρh(vq). Since we

assume that (3.8) is not satisfied, but V is (ρ, h)-minimal, we must conclude that

ρh(ur) > ρh(vq) which implies that

(3.9) ρh(uq) = ρh(vq).

Since (3.9) is satisfied for all q, we conclude that (3.8) must be satisfied as an

equality, and the lemma is proved. �

Lemma 3.2. Suppose Ω is a lattice of rank n in Rm, E is its real span and ρ and

h are radius and height functions. Consider the parameterised set

Ψ(λ; x,y) = {z ∈ E | ρ(z) < ρ(x); h(z) < λh(y)}

with λ ∈ R and x,y ∈ E. If ρ(x) > 0 and h(y) > 0 but ρ(y) = 0 then there exists

some λc > 0 such that Ψ(λc; x,y) contains a point in Ω other than the origin.

Proof. We write

ρ(·) = (ρ1(·), ρ2(·), . . . , ρn1(·)) and h(·) = (h1(·), h2(·), . . . , hn2(·)).

Let B be an m × n matrix, the columns of which form a basis of Ω. Every vector

z ∈ E can be expressed as z = Bz′ with z′ ∈ Rn. Consider the parameterised set

Ψ′(λ; x,y) = {z′ ∈ Rn | ρ1(Bz′) < ρ1(x); h1(Bz′) < λh1(y)}.

Now, if z′ ∈ Ψ′(λ; x,y) then Bz′ ∈ Ψ(λ; x,y) and Ψ′(λ; x,y) is a centrally sym-

metric convex body with non-zero volume when λ > 0.

If z′ ∈ Ψ′
(

1
2
; x,y

)
then, with z = Bz′, x = Bx′ and y = By′, we have, for all

k ∈ N,

ρ1

(
z +

(
k + 1

2

)
y
)

= ρ1(z) < ρ1(x),

h1

(
z +

(
k + 1

2

)
y
)
6 h1(z) +

(
k + 1

2

)
h1(y)

< (k + 1)h1(y)
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and

h1

(
z +

(
k + 1

2

)
y
)
>
(
k + 1

2

)
h1(y)− h1(z)

> kh1(y).

Thus, z′ +
(
k + 1

2

)
y′ ∈ Ψ′(k + 1; x,y) \Ψ′(k; x,y) which implies that

vol Ψ′(k + 1; x,y) > vol Ψ′(k; x,y) + vol Ψ′
(

1
2
; x,y

)
.

This implies that there is some λc for which

vol Ψ′(λc; x,y) > 2n.

Using Minkowski’s Fundamental Theorem (Theorem 3.2), we find that Ψ′(λc; x,y)

must contain some non-zero point in Zn and therefore Ψ(λc; x,y) must contain

some non-zero point in Ω. �

Definition 3.1. An extended semi-norm ‖·‖ is null-spanned by a set of points

X if there exists a subset {x1,x2, . . . ,xm} of X such that ‖xi‖ = 0 for all i =

1, 2, . . . ,m, and ‖y‖ > 0 for all non-zero y in the orthogonal complement of the

subspace spanned by {x1,x2, . . . ,xm}.

Lemma 3.3. If V = (v1,v2, . . . ,vn) is (ρ, h)-minimal in a lattice Ω of rank n in

Rm and the radius function ρ is not null-spanned by V then there exists a lattice point

s ∈ Ω such that, for some index r, ρh(s) < ρh(vr) and s is linearly independent of

{v1,v2, . . . ,vr−1}.

Proof. Let r be the smallest index such that

ρ(vr) > 0.

Let E ′ represent the vector space spanned by {vr,vr+1, . . . ,vn} and let Ω′ be the

lattice generated by this basis. Now, because ρ is not null-spanned by V , we know

that there is some non-zero z ∈ E ′ such that ρ(z) = 0.

Consider the set

Ψ(λ) = {y ∈ E ′ | ρ(y) < ρ(vr); h(y) < λh(z)}.

From Lemma 3.2 there exists some positive value of λ for which this set contains

a lattice point, say s, in Ω′. Clearly, s is also an element of Ω and is linearly

independent of {v1, . . . ,vr−1}. Thus, the lemma is proved. �

Definition 3.2. If U = (u1,u2, . . . ,un) and V = (v1,v2, . . . ,vn) are (ρ, h)-

minimal in a lattice Ω of rank n in Rm then V is a successor to U if

ρh(v1) 6 ρh(u1)(3.10)

and

max
16i6n

{hρ(vi)} > max
16i6n

{hρ(ui)}.(3.11)
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Likewise, U is a predecessor of V . V is a strict successor to U (and U is

a strict predecessor of V) if (3.10) is satisfied strictly. V is an immediate

successor to U (and U is an immediate predecessor of V) if there exists no

(ρ, h)-minimal set which is both a strict successor to U and a strict predecessor of

V .

For a (ρ, h)-minimal set V = (v1,v2, . . . ,vn) in a lattice Ω, we will make use of

the sets

Ξj(V) = {x ∈ Ω | ρh(x) < ρh(vj);

x is linearly independent of {v1,v2, . . . ,vj−1}}.

and

Ξ(V) =
n⋃
j=1

Ξj(V).

Theorem 3.2. If U = (u1,u2, . . . ,un) is (ρ, h)-minimal in a lattice Ω of rank n

in Rm and Ξ(U) is not empty then there exists s ∈ Ξ(U) such that, for all t ∈ Ξ(U),

(3.12) hρ(s) 6 hρ(t).

Furthermore, if r is the minimum index such that ρh(s) 6 ρh(ur) and q is the

minimum index such that s is linearly dependent on {u1, . . . ,uq} then r 6 q and

(3.13) V = (u1, . . . ,ur−1, s,ur, . . . ,uq−1,uq+1, . . . ,un).

is (ρ, h)-minimal and an immediate successor to U .

Proof. The existence of s is guaranteed by the fact that, for any r ∈ Ξj(U),

the set of points x ∈ Rm which satisfy ρh(x) < ρh(un) and hρ(x) 6 hρ(r) is

bounded and thus contains only a finite number of lattice points from which s can

be chosen. Clearly, hρ(s) > hρ(ui) for all i = 1, 2, . . . , n, otherwise U would not be

(ρ, h)-minimal.

Now r 6 q, for if r > q then s cannot belong to any Ξj(U). We now show that

V is (ρ, h)-minimal. Clearly, (2.2) of Definition 2.10 is satisfied. Suppose (2.3) is

not satisfied for some j. Thus we have some w ∈ Ω which is linearly independent

of {v1,v2, . . . ,vj−1} such that ρh(w) < ρh(vj). If 1 6 j 6 r or q < j 6 n

then, from (3.13), we see that w is linearly independent of {u1,u2, . . . ,uj−1} and

ρh(w) < ρh(uj). If, on the other hand, r < j 6 q then w is linearly independent

of {u1,u2, . . . ,uj−2} and ρh(w) < ρh(uj−1). In either case, the implication is that

hρ(w) > hρ(ui) for all i = 1, 2, . . . , n. Furthermore, hρ(w) > hρ(s) because w ∈
Ξj(U). Thus, hρ(w) > hρ(vi) for all i = 1, 2, . . . , n and therefore (2.4) is satisfied.

Thus, V is a successor to U .

Finally, we show that V is an immediate successor to U . That is, we show that

there is no strict successor to U which is also a strict predecessor of V . Suppose

such a successor exists, say U ′ = (u′1,u
′
2, . . . ,u

′
n). Now, ρh(u′1) < ρh(u1) which
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implies that u′1 ∈ Ξ1(U). Hence, hρ(u′1) > hρ(s) but, because U ′ is a predecessor

of V , hρ(u′1) 6 hρ(s) which implies that hρ(u′1) = hρ(s) which in turn implies that

ρh(u′1) > ρh(v1), contradicting the assumption that U ′ is a strict predecessor of V .

Hence, the theorem is proved. �

Definition 3.3. We call an immediate successor V to U of the type described in

Theorem 3.2 an incremental successor. Furthermore, we call s the innovation

into V and uq the inveteration from U .

Corollary 3.1. If ρ and h are radius and height functions and ρ is not null-

spanned by a lattice Ω of rank n in Rm then there exists a sequence of (ρ, h)-minimal

sets in Ω which can be ordered so that each element of the sequence is a successor

of the previous element and the sequence is non-terminating.

Theorem 3.3. Consider a procedure which, given a (ρ, h)-minimal set of a lattice

Ω, produces an incremental successor and consider an algorithm which consists of

iterating this procedure and outputting the innovations in sequence. Suppose such an

algorithm is initialised with a (ρ, h)-minimal set V = (v1,v2, . . . ,vn). If there exists

a best approximation p ∈ Ω with respect to ρ and h such that ρ(p) 6 ρ(v1) then,

after a finite number of iterations, an equivalent best approximation will appear as

an output of the algorithm.

Proof. If ρh(p) = ρh(v1) then p is equivalent to v1. Suppose ρh(p) < ρh(v1),

in which case

hρ(p) > max
i=1,2,...,n

{hρ(vi)}.

Now, V has an incremental successor because Ξ(V) is not empty since ρ(v1) > ρ(p).

Suppose that, initially, the innovation is chosen from the set of lattice points x ∈ Ω

which satisfy ρh(x) < ρh(vn) and hρ(x) < hρ(p). The number of possibilities is

finite and must strictly decrease from one iteration to the next. Therefore, within a

finite number of iterations, an incremental successor V∗ = (v∗1,v
∗
2, . . . ,v

∗
n) is found

in which hρ
(
v∗j
)
> hρ(p) is satisfied for that index j which corresponds to the

innovation and for that index only. Because p is a best approximation, this implies

that ρh(v∗i ) < ρh(p) for all i 6= j. If hρ
(
v∗j
)
> hρ(p) then we have a contradiction:

either p cannot be a best approximation or V∗ is not (ρ, h)-minimal. Therefore v∗j
is a best approximation that is equivalent to p. �

Definition 3.4. We call an algorithm of the type described in Theorem 3.3 an

incremental successor algorithm.

Theorem 3.4. Consider a system for simultaneous Diophantine approximation

consisting of a lattice Ω of rank n in Rm, a radius function ρ and a height function

h. Let us write ρ(x) as

ρ(x) = (ρ1(x), ρ2(x), . . . , ρn1(x)).
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Suppose an incremental successor algorithm is executed on a (ρ, h)-minimal set

U = (u1,u2, . . . ,un) with ρ(u1) > 0 and let K be the number of incremental succes-

sors which are found by the algorithm before a best approximation p is output with

ρh(p) < ρh(u1). Then

(3.14) K 6

[
1 + 2

ρ1(un)

ρ1(u1)

]n
.

Proof. The proof uses the pigeonhole principle. Let s(1), s(2), . . . , s(K) denote

the sequence of innovations into the incremental successors V(1),V(2), . . . ,V(K) found

by the incremental successor algorithm for the input U . Suppose none of the inno-

vations is a best approximation of the type referred to in the theorem statement.

Let us write

h(x) = (h1(x), h2(x), . . . , hn2(x)).

Consider the norm ‖·‖ that is defined on Rn as

‖y‖ = max

{
η1(By)

η1(u1)
,
µ1(By)

µ1(s(K))

}
where B is a basis matrix of Ω. Now, consider the parameterised set

S(y, λ) = {z ∈ Rn | ‖z− y‖ < λ}.

The set S(0, λ) is a convex body with a non-zero volume when λ > 0 and S(y, λ) is

its translation in Rn by y (a metric ball of radius λ centred on y). Furthermore,

volS(y, λ) = V (λ) = λnV (1).

Let us express each s(j) as s(j) = By(j) where y(j) ∈ Zn. If

S
(
y(i), 1

2

)
∩ S
(
y(j), 1

2

)
6= ∅

for some 1 6 i < j 6 K then there exists some z ∈ Rn such that

‖y(i) − z‖ < 1
2

and ‖y − s(j)‖ < 1
2

which implies that

‖y(i) − y(j)‖ < 1.

In turn, this implies that

ρ(s(i) − s(j)) < ρ(u1) and h(s(i) − s(j)) < h(s(K)).

Accordingly, V(K) cannot be (ρ, h)-minimal. Therefore, the sets S
(
y(j), 1

2

)
must be

disjoint. However, because

ρ1(s(j)) 6 ρ1(un) and h1(s(j)) 6 h1(s(K))

we see that

(3.15) S
(
y(j), 1

2

)
⊂ S

(
0,
ρ1(un)

ρ1(u1)
+ 1

2

)
.
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Therefore, the number K is bounded above by the ratio of the volumes of the sets

in (3.15). That is,

K 6
V
(

1
2

+ ρ1(un)/ρ1(u1)
)

V
(

1
2

) =

[
1 + 2

ρ1(un)

ρ1(u1)

]n
.

�

Lemma 3.4. Suppose V = {v1,v2, . . . ,vn} are linearly independent points in a

lattice Ω of rank n in Rm which satisfy (2.2) and suppose ρ and h are strictly convex

radius and height functions. Let

Θj =

{
1

d

j∑
i=1

aivi

∣∣∣ j∑
i=1

|ai| 6 |d|; 0 < |aj| < |d|

}
∩ Ω.

If, for all j = 1, 2, . . . , n and for all w ∈ Θj, either (2.3) or (2.4) is satisfied then

the hyperoctahedral O(V) is perfect in Ω.

Proof. Note that Θj represents the set of all lattice points which lie within or on

the boundary of the hyperoctahedral of {v1,v2, . . . ,vj}, apart from the origin and

the vertices themselves and apart from those points contained in the hyperoctahedral

of {v1,v2, . . . ,vj−1}. We will show that all the Θj are empty and therefore O(V) is

perfect in Ω.

Suppose that Θj is not empty for some j. Therefore, there exists a non-zero

lattice point w which can be expressed as

(3.16) w =
a1v1 + a2v2 + · · ·+ ajvj

d
.

Let {pk} be the set of indices such that apk 6= 0 in ascending order and let s be the

cardinality of this set. Hence, ps = j. The case s = 1 is trivial, so we will assume

s > 1. Applying the triangle inequality, we find that

ρ(w) 6 max
16i6s

{ρ(vpi)}(3.17)

and

h(w) 6 max
16i6s

{h(vpi)}.(3.18)

Suppose (3.17) is satisfied as an equality. In order for this to occur, we require

that

ρ(vp1) = ρ(vp2) = · · · = ρ(vps).

The strict convexity of ρ implies that we must also have

(3.19) ρ(vpt − vpu) = 0

for all t and u. Similarly, if (3.18) is to hold as an equality then

h(vp1) = h(vp2) = · · · = h(vps)
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and

h(vpt − vpu) = 0(3.20)

for all t and u in {1, 2, . . . , s}. Now, (3.19) and (3.20) cannot both be satisfied simul-

taneously because ρ and h are transverse and so at least one of the inequalities (3.17)

and (3.18) must be satisfied strictly.

If (3.17) is satisfied strictly then (2.3) is not satisfied and so (2.4) must be satis-

fied instead. From (2.2), we conclude that ρ(w) < ρ(vps). In order to satisfy (2.4),

we must therefore have h(w) > h(vps). However, upon applying the triangle in-

equality to (3.16), we find that there must be some r < s such that h(w) < h(vpr).

Hence, (2.4) cannot be satisfied.

If (3.18) is satisfied strictly then (2.4) is not satisfied and so (2.3) must be

satisfied instead. There must be some r 6 s such that h(w) < h(vpr). In order to

satisfy (2.3), we must therefore have ρ(w) > ρ(vpr), but this implies that ρ(w) <

ρ(vps). Hence, (2.3) cannot be satisfied.

The hyperoctahedral of V must therefore be perfect in Ω and the lemma is

proved. �

Theorem 3.5. If V = (v1,v2, . . . ,vn) is (ρ, h)-minimal in a lattice Ω of rank n

in Rm and ρ and h are strictly convex radius and height functions then the hyperoc-

tahedral of V is perfect in Ω.

Proof. The proof follows directly from the application of Lemma 3.4. �

3.2. Properties in Lattices of Rank 2. In this subsection we explore the

nature of (ρ, h)-minimal sets in lattices of rank 2. We show that the theory enables

us to derive the algorithms of Euclid and Gauss for Diophantine approximation

and lattice reduction, respectively, from a more general algorithm for producing

(ρ, h)-minimal sets.

Theorem 3.6. If (v1,v2) is (ρ, h)-minimal in a lattice Ω of rank 2 and ρ and h

are strictly convex radius and height functions then {v1,v2} is a basis of Ω.

Proof. The proof is a direct consequence of Theorem 2.5 and Theorem 3.5. �

Lemma 3.5. Suppose B = {b1,b2, . . . ,bk}, k > 2, are points in a lattice Ω and

ρ and h are radius and height functions. If w = a1b1 + a2b2 with a1, a2 ∈ Z then,

with v = sgn(a1)b1 + sgn(a2)b2, we find that

ρh(w) < max
16i6k

{ρh(bi)} ⇒ ρh(v) < max
16i6k

{ρh(bi)}(3.21)

and

hρ(w) < max
16i6k

{hρ(bi)} ⇒ hρ(v) < max
16i6k

{hρ(bi)}.(3.22)
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Proof. We will only show that (3.21) must be satisfied, since (3.22) follows by

symmetry. If a1 = 0 or a2 = 0 then (3.21) is satisfied trivially since ρh(v) 6 ρh(w).

Otherwise, we can write the identity

v =
sgn(a1)(|a2| − 1)b1 + sgn(a2)(|a1| − 1)b2 + w

|a1|+ |a2| − 1
.

Using the triangle inequality, we find that

ρh(v) 6
(|a2| − 1)ρh(b1) + (|a1| − 1)ρh(b2) + ρh(w)

|a1|+ |a2| − 1
.

Thus ρh(v) 6 max {ρh(b1), ρh(b2), ρh(w)}. If |a1| = |a2| = 1 or ρh(v) 6 ρh(w)

then (3.21) is obviously satisfied. Otherwise, we have ρh(v) > ρh(w) and either

|a1| > 1 or |a2| > 1, which implies that ρh(v) < max {ρh(b1), ρh(b2)}. Again (3.21)

is satisfied and so the lemma is proved. �

We will make use of the set Λ2 defined in terms of an ordered set of lattice points

B = (b1,b2, . . . ,bn) so that

(3.23) Λ2(B) = {±b1 ± b2}.

Once again, the use of ± is used as a shorthand to (recursively) indicate that the

expression following, and its additive inverse, are elements of the set.

Theorem 3.7. Suppose B = (b1,b2) is an ordered basis of a lattice Ω of rank 2

with ρh(b1) 6 ρh(b2). If, for each w ∈ Λ2(B), it is true that either

ρh(w) > max {ρh(b1), ρh(b2)}(3.24)

or

hρ(w) > max {hρ(b1), hρ(b2)}(3.25)

then (b1,b2) is (ρ, h)-minimal.

Proof. Suppose (b1,b2) is not (ρ, h)-minimal. Then either there exists some

non-zero integer multiple w of b1 which satisfies ρh(w) < ρh(b1), which is obviously

impossible, or there exists some s = a1b1 + a2b2 with a1, a2 ∈ Z and a2 6= 0 such

that w = s fails to satisfy both (3.24) and (3.25). Consider the implications of

Lemma 3.5. If a1 = 0 then w = b2 fails to satisfy both (3.24) and (3.25), which is

impossible, and if a1 6= 0 then there exists w ∈ Λ2(B) which fails similarly, contrary

to our assumption. Therefore the theorem is proved. �

Theorem 3.8. Suppose U = (u1,u2) is (ρ, h)-minimal in a lattice Ω of rank 2

and U is also a basis of Ω. If Ξ(U) is not empty then U has an incremental successor

in which the innovation is an element of Λ2(U).
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Proof. If Ξ(U) is not empty then there must be a point w ∈ Ω, which we

can write as w = a1u1 + a2u2 with a1, a2 ∈ Z and neither equal to zero, such

that ρh(w) < ρh(u2). Lemma 3.5 implies that there exists t ∈ Λ2(U) such that

ρh(t) < ρh(u2) and so Λ2(U) ∩ Ξ(U) is not empty. Choose s ∈ Λ2(U) ∩ Ξ(U) such

that hρ(s) is minimised on this set. We will show that s is an innovation in an

incremental successor to U .

Suppose s cannot be an innovation. Then there exists a point x ∈ Ξ(U) with

hρ(x) < hρ(s). This implies that

ρh(x) < max {ρh(u1), ρh(u2), ρh(s)} = ρh(u2)

and

hρ(x) < max {hρ(u1), hρ(u2), hρ(s)} = hρ(s).

Hence, Lemma 3.5 implies that there must exist an element of Λ2(U) which satisfies

these conditions also since ±u1 and ±u2 do not belong to Ξ(U), and this furnishes

a contradiction, completing the proof. �

We are now able to formulate a simple algorithm for producing sequences of

(ρ, h)-minimal sets in a lattice of rank 2. For this algorithm, and also for Algo-

rithm 4.1 and Algorithm 5.1, we define the Boolean function (or parameterised

relation) L(·) as

(3.26) L(x,y; z) = (ρh(x) < ρh(z) ∧ ρh(y) < ρh(z)) ∧ hρ(x) < hρ(y)

∨ ¬[ρh(x) < ρh(z) ∧ ρh(y) < ρh(z)] ∧ ρh(x) < ρh(y)

with x,y, z ∈ Rm. To give a geometric interpretation to L(·), we can think of L(·)
being true if x is “better” than y with respect to z. The set of points w ∈ Rm

with ρh(w) < ρh(z) is an open cylinder (if ρ is an extended semi-norm, otherwise

it is a convex body) in Rm along with a part of its surface (for instance, where

h(w) < h(z)). If both x and y lie inside the cylinder, the function L(·) determines

that x is “better” than y if x has the lesser height, or if the heights are equal, if

x has the lesser radius. If either x or y lie outside the cylinder then x is “better”

than y if x has the lesser radius, or if they are equal, the lesser height.

Algorithm 3.1.

1 begin

2 if L(b2,b1; b2) then swap(b1,b2) fi;

3 while ρ(b1) > ε ∧ [L(b2 + b1,b2; b2) ∨ L(b2 − b1,b2; b2)] do

4 if L(b2 − b1,b2 + b1; b2) then

5 b2 := b2 − b1

6 else

7 b2 := b2 + b1
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8 fi;

9 output(b2);

10 if L(b2,b1; b2) then swap(b1,b2) fi;

11 od

12 end;

We denote by B the ordered set of values of the variables (b1,b2) at a specified

line and iteration in Algorithm 3.1. We will use B′ to denote the new value of B at

line 3 on the subsequent iteration of this algorithm.

If Algorithm 3.1 is executed with B initially set as a basis of a lattice Ω then B
will continue to be a basis of this lattice throughout every iteration of the algorithm.

Theorem 3.9. Suppose that B(0) is a basis of a lattice Ω of rank 2 and ρ and h

are radius and height functions. If Algorithm 3.1 is executed with B(0) as its initial

basis then, after a finite number of steps, B will be a (ρ, h)-minimal set of Ω at line 3

or the algorithm will terminate with ρ(b1) 6 ε.

Proof. If, at line 3, B is not (ρ, h)-minimal then, by definition, there must exist

an element w ∈ Ω, linearly independent of {b1}, such that

ρh(w) < max {ρh(b1), ρh(b2)}

and

hρ(w) < max {hρ(b1), hρ(b2)}.

Theorem 3.7 implies that if there is an element w which satisfies these two inequali-

ties then there exists a point in Λ2(B) which does also. There are only a finite num-

ber of lattice points which can satisfy these criteria and the number must decrease

from one iteration to the next. Therefore, a (ρ, h)-minimal set must be produced

after a finite number of steps unless the algorithm terminates in the meantime with

ρ(b1) 6 ε. �

Theorem 3.10. If, at line 3 of Algorithm 3.1, B is (ρ, h)-minimal in a lattice

Ω of rank 2 and B has a strict successor then, on the subsequent iteration, B′ will

be an incremental successor to B or the algorithm terminates with ρ(b1) 6 ε.

Proof. If B has a strict successor then Ξ(B) must be non-empty. Theorem 3.8

can then be applied to show that the algorithm must indeed produce an incremental

successor to B. �

Remark 3.1. We note that if, at line 3 of Algorithm 3.1, B is (ρ, h)-minimal,

then Algorithm 3.1 will behave like the algorithm described in Theorem 3.3 to the

extent that if p is a best approximation such that

ε 6 ρ(p) 6 ρ(b1)
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then there exists an equivalent best approximation q which will be output by the

algorithm after a finite number of steps.

Remark 3.2. Algorithm 3.1 reverts to an additive version of the Euclid’s algo-

rithm (Algorithm 3.2 of Chapter 2) if we set Ω = Z2 and, with x = (p, q) ∈ Z2,

we set ρ(x) = |pα− q| for some α ∈ R, α > 0, and h(x) = |q| and we execute

the algorithm with an initial basis consisting of (1, 0) and (0, 1). By “additive,” we

mean that, rather than computing partial quotients by division, we use repeated

addition (subtraction), as in our interpretation of an “authentic” version of Euclid’s

algorithm in Algorithm 3.1 of Chapter 2. The outputs of Algorithm 3.1 can be inter-

preted as the intermediate fractions, including convergents, of the simple continued

fraction expansion of α.

Remark 3.3. Algorithm 3.1 behaves like an additive form of Gauss’ algorithm

for lattice reduction (see Algorithm 6.1 of Chapter 3) if we set ρ = h to be a norm

(or extended norm).

3.3. Properties in Lattices of Rank 3. We now examine the properties

of (ρ, h)-minimal sets in lattices of rank 3. This will allow us to formulate an

algorithm in the next section which is able to find best simultaneous Diophantine

approximations for such lattices under appropriate conditions on the radius and

height functions.

One of these conditions is that the radius and height functions are complementary

on the real span of the lattice. Recalling Definition 2.9, the implication in this

instance is that the radius and height functions can be expressed as

ρ(x) =
∥∥PTx

∥∥∗ and h(x) =
∥∥RTx

∥∥†
where ‖·‖∗ and ‖·‖† extended norms and PT and RT are matrices. Furthermore,

the implication is that there are n1 columns of P and n2 columns of R which lie in

E , where we use E to represent the real span of the lattice, and n1 + n2 = 3. This

means that either n1 = 1 and n2 = 2 or n1 = 2 and n2 = 1. The only norm in

one dimension is the absolute value of its argument, up to scaling, and, similarly,

this is the only extended norm in one dimension, up to scaling and multiplicity.

By this, we mean that that extended norms in one dimension all have the form

‖x‖ = (λ1|x|, λ2|x|, . . . , λq|x|) with λ1 > λ2 > . . . > λq > 0. Therefore, we assume

that either ρ(x) or h(x) has the form |α · x| for some vector α ∈ E whenever x ∈ E .

Lemma 3.6. Suppose x1, x2, x3 ∈ R with

|x1| 6 |x2| 6 |x3|

and |x3| > 0. Let

H =
{
x = 1

2
(x1 ± x2 ± x3) | |x| 6 |x3|

}
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and

H′ =
{
x = 1

2
(x1 ± x2 ± x3) | |x| < |x3|

}
Now, |H| > 3 and |H′| > 2. Furthermore, if |H| = 3 then |H′| = 3 and if |H| = 4

and |H′| = 2 then x1 = 0 and |x2| = |x3|.

Proof. Without loss of generality, suppose that x1, x2 and x3 are all non-

negative. We can quickly confirm that

(3.27) 1
2

max {|x1 + x2 − x3|, |x1 − x2 + x3|, |x1 − x2 − x3|} 6 |x3|

and so |H| > 3. Furthermore,

(3.28) 1
2

max {|x1 + x2 − x3|, |x1 − x2 + x3|} < |x3|,

which implies that |H′| > 2.

Now, |H′| 6 |H|. Suppose |H| > 3 and |H′| = 2. In this case, (3.27) and (3.28)

imply that 1
2
|x1 − x2 − x3| = |x3|, which in turn implies that x1 = 0 and |x2| = |x3|.

Hence 1
2
|x1 + x2 + x3| = |x3|, which implies that |H| = 4. �

Lemma 3.7. Suppose ‖·‖ is a strictly convex extended norm on R2 and suppose

x1,x2,x3 ∈ R2 satisfy

‖x1‖ 6 ‖x2‖ 6 ‖x3‖

with ‖x2‖ > 0 and x1, x2 and x3 are not colinear with origin. Let

R =
{
x = 1

2
(x1 ± x2 ± x3) | ‖x‖ < ‖x3‖

}
and

R′ =
{
x = 1

2
(x1 ± x2 ± x3) | ‖x‖ < ‖x2‖

}
Now, |R| > 2. If |R′| = 0 then |R| > 3.

Proof. It is always possible to reorder and relabel x1, x2 and x3 as y1, y2 and

y3 so that

y3 = ξy1 + ηy2

with

max {|ξ|, |η|} 6 1

and

‖y1‖ 6 ‖y2‖ .



(ρ , h ) -MINIMAL SETS 107

Without loss of generality, we assume that 0 6 ξ 6 η 6 1 (the other cases can

be proved by symmetry). Now,

1
2
‖y3 − y1 − y2‖ = 1

2
‖(ξ − 1)y1 + (η − 1)y2‖

6 1
2
(1− ξ) ‖y1‖+ 1

2
(1− η) ‖y2‖

6 ‖y2‖ .(3.29)

At least one of the last two inequalities in (3.29) must be strict. If ‖y1‖ > 0 then it

will be the former inequality which is satisfied strictly because of the strict convexity

of ‖·‖, otherwise the latter. Also,

1
2
‖y3 + y1 − y2‖ = 1

2
‖(ξ + 1)y1 + (η − 1)y2‖

6 1
2
(ξ + 1) ‖y1‖+ 1

2
(1− η) ‖y2‖

6 ‖y2‖ .(3.30)

Again, one of the last two inequalities in (3.30) must be strict. Thus, |R| > 2. If

(1− ξ) ‖y1‖ > (1− η) ‖y2‖

then, from (3.29),
1
2
‖y3 − y1 − y2‖ < ‖y1‖

and so |R′| > 0. Otherwise,

1
2
‖y3 + y1 − y2‖ < 1

2
(ξ + 1) ‖y1‖+ 1

2
(1− η) ‖y2‖

= 1
2
(1− ξ) ‖y1‖+ ξ ‖y1‖+ 1

2
(1− η) ‖y2‖

6 (1− η) ‖y2‖+ ξ ‖y1‖

6 ‖y2‖

and, again, one of the last two inequalities must be strict. So, |R| > 3. �

Lemma 3.8. Suppose v1, v2 and v3 are points in a lattice Ω of rank 3 in Rm

with

ρh(v1) 6 ρh(v2) 6 ρh(v3)

and the octahedral of V = {v1,v2,v3} is perfect in Ω. Suppose ρ and h are strictly

convex, complementary radius and height functions. Let

S =
{

1
2
(v1 ± v2 ± v3)

}
∩ Ω.

If, for each w ∈ S, the inequalities (2.3) and (2.4) are satisfied then V forms a basis

of Ω.

Proof. If S is empty then we can apply Theorem 2.6 of Chapter 3 to show

that {v1,v2,v3} forms a basis of Ω. Therefore, we will suppose that S is non-empty

and demonstrate a contradiction. If S is non-empty then it must contain all four

possible elements.
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Let p, q and r be distinct indices such that

hρ(vp) 6 hρ(vq) 6 hρ(vr).

As we discussed at the beginning of this subsection, for all x which lie in the

real span of Ω, we can express ρ and h so that ρ(x) =
∥∥PTx

∥∥∗ and h(x) =
∥∥RTx

∥∥†
where ‖·‖∗ and ‖·‖† are extended norms and PT is an n1 ×m matrix and RT is an

n2 ×m matrix, both having full column rank, where either

n1 = 2 and n2 = 1

or

n1 = 1 and n2 = 2.

Suppose we have n1 = 2 and n2 = 1. Now, ρ(v2) > 0 and h(vr) > 0, otherwise

v1, v2 and v3 are not linearly independent. Applying Lemma 3.6, we can see that

there exist at least three elements of S such that

(3.31) h(w) 6 h(vr).

Applying Lemma 3.7, we can see that there are at least two elements of S such that

(3.32) ρ(w) < ρ(v3).

Therefore, there must be at least one element of S, say w∗1, for which both (3.31)

and (3.32) are simultaneously satisfied. Thus, ρh(w∗1) < ρh(v3), so failing to sat-

isfy (2.3). If w∗1 satisfies (3.31) strictly then we fail to satisfy (2.4) also. Hence, sup-

pose that w∗1 satisfies (3.31) as an equality while also satisfying (3.32). Lemma 3.6

implies that all elements of S obey (3.31). Therefore, there must exist another el-

ement of S, say w∗2, which obeys (3.31) as an equality while also satisfying (3.32).

Furthermore, Lemma 3.6 implies that h(vp) = 0 and h(vq) = h(vr). Lemma 3.7

implies that either there is a third element of S which satisfies (3.32) or there is an

element w ∈ S such that

(3.33) ρ(w) < ρ(v2).

In the former case, we immediately have a contradiction since there must be at least

one element of S for which (3.31) is satisfied strictly and (3.32) is satisfied also.

In the latter case, that element which satisfies (3.33) must be w∗1 or w∗2, say w∗1.

However, this contradicts (2.4) for w = w∗1, because

max
i=2,3
{h(vi)} = h(vr)

and so either hρ(w∗1) < hρ(v2) or hρ(w∗1) < hρ(v3). Hence, the lemma is satisfied

when n1 = 2 and n2 = 1.

A symmetric argument can be employed to show that the lemma also holds if

n1 = 1 and n2 = 2 instead. The symmetry occurs because the conditions (2.3)
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and (2.4) for (ρ, h)-minimal sets are symmetric in this case, since all elements of S
are linearly independent of {v1,v2}. �

Theorem 3.11. If V = (v1,v2,v3) is (ρ, h)-minimal in a lattice Ω of rank 3 in

Rm and ρ and h are strictly convex, complementary radius and height functions then

V forms a basis of Ω.

Proof. We use Theorem 3.5 to show that the octahedral of V is perfect in Ω.

We then use Lemma 3.8 to show that V must be a basis of Ω. �

In addition to the set Λ2 which we defined in (3.23), we will make use of the set

Λ3, defined in terms of an ordered set of lattice points B = (b1,b2, . . . ,bn) so that

Λ3(B) = {a1b1 + a2b2 ± b3 | a1, a2 ∈ Z}.

Theorem 3.12. Suppose B = {b1,b2,b3} is a basis of a lattice Ω of rank 3 with

ρh(b1) 6 ρh(b2) 6 ρh(b3). If ρ and h are strictly convex, complementary radius

and height functions and, for each w ∈ Λj(B), j = 2, 3, it is true that either

ρh(w) > max
16i6j

{ρh(bi)}(3.34)

or

hρ(w) > max
16i63

{hρ(bi)}(3.35)

then (b1,b2,b3) is (ρ, h)-minimal.

Proof. Clearly, (3.34) and (3.35) are simply (2.3) and (2.4) from Definition 2.10

with bi substituted for vi.

Suppose (b1,b2,b3) is not (ρ, h)-minimal. Then there exists some non-zero w ∈
Ω \ Λ2 \ Λ3 which is linearly independent of {b1,b2, . . . ,bj−1} for some j = 1, 2, 3

which satisfies neither (3.34) nor (3.35). Now, for any such w there exists a maximum

index k such that w is linearly independent of {b1,b2, . . . ,bk−1}.
The case k = 1 is trivial since w must have the form w = a1b1 for some non-zero

a1 ∈ Z. Clearly, (3.34) and (3.35) must both be satisfied for j = 1.

Suppose k = 2. In this case, there must exist some S = a1b1 + a2b2 with

a1, a2 ∈ Z and a2 6= 0 such that neither of the inequalities (3.34) nor (3.35) are

satisfied with w = s and j = 2. As in the proof of Theorem 3.7, we can apply

Lemma 3.5 to show that either w = b2 fails to satisfy these inequalities, which is

impossible, or there exists some w ∈ Λ2(B) which fails to satisfy them, contrary to

our assumption.

Suppose k = 3. Let s = a1b1 +a2b2 +a3b3 be an element of Ω\Λ3 with smallest

absolute value for a3 which does not satisfy either (3.34) or (3.35). By assumption,

|a3| > 1. We will now show that the octahedral of {b1,b2, s} is perfect in Ω. Suppose

it isn’t so that there exists some non-zero lattice point t, distinct from the vertices,

within or on the boundary of the octahedral. We know that t must be linearly
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independent of b1 and b2 because {b1,b2} is a primitive basis of Ω. Furthermore,

if t is expressed as a linear combination of b1, b2 and b3 then the coefficient of

b3 has smaller absolute value than a3. Thus, by assumption, t must satisfy (3.34)

or (3.35). If t satisfies (3.34) but ρh(t) < ρh(s) then s also satisfies (3.34), contrary

to our assumption. Similarly, if t satisfies (3.35) but

hρ(t) < hρ(s)

then s also satisfies (3.35). Thus, either

ρh(t) 6 ρh(b1) and ρh(t) 6 ρh(b2) and ρh(t) 6 ρh(s)

or

hρ(t) 6 hρ(b1) and hρ(t) 6 hρ(b2) and hρ(t) 6 hρ(s).

Relabelling and reordering b1, b2 and s as v1, v2 and v3 to ensure that (2.2) is

satisfied, we can see that Lemma 3.4 can be applied to show that the octahedral of

{b1,b2, s} is perfect. Because ρ and h are strictly convex, complementary radius

and height functions, we can use Lemma 3.8 to show that {b1,b2, s} forms a basis

of Ω. However, this implies that |a3| = 1, contrary to our assumption. �

Theorem 3.13. If U = (u1,u2,u3) is (ρ, h)-minimal in a lattice Ω of rank 3,

ρ and h are strictly convex, complementary radius and height functions and ρ is

not null-spanned by U then there exists an incremental successor to U in which the

innovation is an element of Λ2(U) ∪ Λ3(U).

Proof. If ρ is not null-spanned by U then Ξ(U) is not empty, by Lemma 3.3.

Thus, Theorem 3.2 can be applied to show that an incremental successor, V , to U
exists. It remains to show that the innovation, s, is an element of Λ2(U) ∪ Λ3(U).

Consider the index q which is defined, as in Theorem 3.2, as the minimum index

for which s is linearly dependent on {u1,u2, . . . ,uq}. That is, q is the index of the

inveteration from U .

It is impossible that q = 1 since this implies that s = a1b1, a1 6= 0 and s ∈ Ξ1(U).

Suppose q = 2, in which case V consists of some arrangement of u1, u3 and s.

From the definition of q, we conclude that there exists w ∈ Ξ2(U) which can be

expressed as w = a1b1 + a2b2 with a1, a2 ∈ Z and neither equal to zero. Lemma 3.5

implies that that there exists an element of Λ2(U) in Ξ2(U) because w ∈ Ξ2(U). We

choose s ∈ Λ2(U) ∩ Ξ2(U) so that hρ(s) is minimised in this set. As in the proof

of Theorem 3.8, we find that s satisfies the conditions of Theorem 3.2, since we can

show that hρ(w) > hρ(s) using Lemma 3.5 for any choice of w as defined above and

so s must be an innovation of an incremental successor to U .

If q = 3 then V consists of some arrangement of u1, u2 and s. Theorem 3.11

implies that V must form a basis of Ω. Thus, s must complete a basis with u1 and

u2, and so s ∈ Λ3(U). �
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4. An Additive Algorithm for Lattices of Rank 3

4.1. The Additive Algorithm. Before describing the algorithm of this sec-

tion, we observe some properties of L(·) and ¬L(·), as defined in (3.26), in a system

for simultaneous Diophantine approximation. For all w,x,y, z ∈ Rm, L(·) has prop-

erties which we call

Reflexive: ¬L(x,x; z),

Antisymmetric: L(x,y; z) ⇒ ¬L(y,x; z),

Equivalence: ¬L(x,y; z) ∧ ¬L(y,x; z)

⇔ ρ(x) = ρ(y) ∧ h(x) = h(y),

Transitive: L(w,x; z) ∧ L(x,y; z) ⇒ L(w,y; z),

¬L(x,w; z) ∧ L(x,y; z) ⇒ L(w,y; z),

L(w,x; z) ∧ ¬L(y,x; z) ⇒ L(w,y; z),

¬L(w,x; z) ∧ ¬L(x,y; z) ⇒ ¬L(w,y; z),

Unimodal: L(x− y,x; z) ⇒ L(x,x + y; z),

¬L(x,x + y; z) ⇒ ¬L(x− y,x; z).

Proof. All but the last property can be easily proved in sequence. We will

prove the unimodal property by contradiction. Observing the trivial identity

x = 1
2
(x + y) + 1

2
(x− y)

we conclude that

ρh(x) 6 1
2
ρh(x + y) + 1

2
ρh(x− y)(4.1)

and

hρ(x) 6 1
2
hρ(x + y) + 1

2
hρ(x− y).(4.2)

Suppose that the unimodal property does not hold and

¬L(x,x + y; z) ∧ L(x− y,x; z).

If

ρh(x− y) < ρh(z) ∧ ρh(x) < ρh(z) ∧ hρ(x− y) < hρ(x)

then, from (4.2), we find that hρ(x) < hρ(x + y). If also ρh(x + y) < ρh(z) then

L(x,x + y; z), but this relation also holds if ρh(x + y) > ρh(z). Therefore, suppose

instead that

¬[ρh(x− y) < ρh(z) ∧ ρh(x) < ρh(z)] ∧ hρ(x− y) < hρ(x)

in which case it is clear that ρh(x) > ρh(z) and ρh(x) < ρh(x + y). Again, we see

that the relation L(x,x + y; z) holds. This completes the proof. �

Remark 4.1. The reflexive and transitive properties of ¬L(·) mean that ¬L(·)
defines a total preordering of Rm, parameterised by its third argument.



112 S IMULTANEOUS D IOPHANT INE APPROX IMAT ION

We also define the set Υ(B), where B = {b1,b2,b3}, as

Υ(B) = {ξ, η ∈ R | ρ(ξb1 + ηb2 + b3) < ρ(b3)}.

We can now set out the following algorithm which, as we shall prove in the

next subsection, will produce a sequence of (ρ, h)-minimal sets, each an incremental

successor of the previous one, after a finite number of initialisation steps, subject to

certain conditions.

Algorithm 4.1.

1 begin

2 if L(b2,b1; b2) then swap(b1,b2) fi;

3 if L(b3,b2; b3) then swap(b2,b3) fi;

4 if L(b2,b1; b2) then swap(b1,b2) fi;

5 while ρ(b1) > ε ∧ Υ(B) 6= ∅ do

6 if L(b3 + b1,b3 − b1; b3) then c1 := b1 else c1 := −b1 fi;

7 if L(b3 + b2,b3 − b2; b3) then c2 := b2 else c2 := −b2 fi;

8 do

9 t1 := 0; t2 := 0;

10 if L(b3 + c2 + c1,b3 + c2 − c1; b3)

11 then d1 := c1 else d1 := −c1 fi;

12 if L(b3 − c2 + c1,b3 − c2 − c1; b3)

13 then d2 := c1 else d2 := −c1 fi;

14 while L(b3 + c2 + t1 + d1,b3 + c2 + t1; b3)

15 do t1 := t1 + d1 od;

16 while L(b3 − c2 + t2 + d2,b3 − c2 + t2; b3)

17 do t2 := t2 + d2 od;

18 if L(b3 + c2 + t1,b3 − c2 + t2; b3)

19 then c2 := c2 + t1 else c2 := −c2 + t2 fi;

20 swap(c1, c2);

21 while L(b3 + c1,b3 + c2; b3);

22 if L(b2 + b1,b2 − b1; b2) then e1 := b1 else e1 := −b1 fi;

23 if L(b2 + e1,b3 + c2; b3) ∧ L(b2 + e1,b2; b2) then

24 b2 := b2 + e1; output(b2)

25 else b3 := b3 + c2; output(b3) fi;

26 if L(b3,b2; b3) then swap(b2,b3) fi;

27 if L(b2,b1; b2) then swap(b1,b2) fi;

28 od

29 end;

4.2. Analysis of the Additive Algorithm. We denote by B the ordered set

consisting of the values of the variables (b1,b2,b3) at a specified line and iteration

and by B′ the set of the new values of the variables at line 5 on the subsequent
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iteration, assuming this point is ever reached, which we will show must happen after

a finite number of steps.

We denote by E ′(B) (or just E ′) the vector space spanned by the vectors {b1,b2}
and by Ω′(B) (or simply Ω′) the lattice spanned by these vectors over E ′. We note

that at line 21 the set {c1, c2} forms a basis of Ω′. We can then make the important

observation that if B forms a basis of a lattice Ω of rank 3 then B′ must also. We

also note that, at line 5, it is always true that

ρh(b1) 6 ρh(b2) 6 ρh(b3).

We now state and prove a number of propositions regarding the algorithm, before

arriving at our main results. All the propositions assume that B is a basis of Ω and

that Ω, ρ and h form a system for simultaneous Diophantine approximation.

Proposition 4.1. The loops on lines 14–17 terminate after a finite number of

steps and, at their completion,

¬L(b3 + c2 + t1 + kc1,b3 + c2 + t1; b3)

∧ ¬L(b3 − c2 + t2 + kc1,b3 − c2 + t2; b3)

for all k ∈ Z.

Proof. Without loss of generality, consider the execution of the loop on lines 14–

15. Recalling that ¬L(·) acts as a total preordering of the lattice points, we will

show that there exists a “minimum of ¬L(·)” on the line b3 + c2 + ic1, i ∈ Z, which

is to say that there exists a point b3 + c2 + jc1, such that, for all k ∈ Z,

(4.3) ¬L(b3 + c2 + kc1,b3 + c2 + jc1; b3)

and, moreover, t1 = jc1.

We define λ as

λ =

{2ρ(b3 + c2) + ρ(b3)}/ρ(c1) if ρ(c1) > 0,

2h(b3 + c2)/h(c1) otherwise.

The value of λ is well-defined because h(c1) > 0 if ρ(c1) = 0 as ρ and h are transverse.

Suppose ρ(c1) > 0. If |k| > λ, k ∈ Z, then

ρ(b3 + c2 + kc1) > ρ(kc1)− ρ(b3 + c2) > ρ(b3 + c2) + ρ(b3).

This implies that ρh(b3 + c2 + kc1) > ρh(b3 + c2) and that ρh(b3 + c2 + kc1) >

ρh(b3) and hence ¬L(b3 + c2 + kc1,b3 + c2; b3). Suppose ρ(c1) = 0. If |k| > λ,

k ∈ Z, then

h(b3 + c2 + kc1) > h(kc1)− h(b3 + c2) > h(b3 + c2)

and

ρ(b3 + c2 + kc1) = ρ(b3 + c2).
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This implies that ρh(b3 + c2 + kc1) > ρh(b3 + c2) and that hρ(b3 + c2 + kc1) >

hρ(b3 + c2) and hence ¬L(b3 + c2 + kc1,b3 + c2; b3). Since ¬L(·) is transitive in

its first two arguments, there must be some point with |j| 6 λ such that (4.3) must

hold.

We can then use the unimodal property of ¬L(·) and the antisymmetric property

of L(·) to assure ourselves that the loop will find this minimum (with t1 = jc1) and

terminate after a finite number of steps. �

Proposition 4.2. At line 20,

(4.4) ¬L(b3 − c1,b3 + c1; b3) ∧ ¬L(b3 − c2,b3 + c2; b3).

Proof. Clearly, (4.4) holds upon entering the do . . .while loop at line 8–

21. That this condition is maintained is a straightforward consequence of Proposi-

tion 4.1. �

Proposition 4.3. If, at line 8, there exists a non-zero point s ∈ Ω′ such that

L(b3 + s,b3 + c1; b3) then either the do . . .while loop on lines 8–21 will not

terminate on the current iteration or

(4.5) ρh(b3 + c1) < ρh(b3) ∧ hρ(b3 + c1) < hρ(b3).

Proof. Suppose (4.5) does not hold. Because {c1, c2} forms a basis of Ω′, we

can express s as

s = a1c1 + a2c2

with a1, a2 ∈ Z and not both zero.

Consider the point r ∈ Ω′ where

r =

sgn(a1)c1 if a2 = 0,

qc1 + sgn(a2)c2 otherwise

and

q =

⌈
a1

|a2|

⌉
.

We will show that L(b3 + r,b3 + c1; b3).

If a2 = 0 then r = s/|a| and therefore

b3 + r =
(|a1| − 1)b3 + (b3 + s)

|a1|
.

If a2 6= 0, then with p = q|a2| − a1 (which implies that 0 6 p < |a2|), it is easy to

show that

r =
pc1 + s

|a2|
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and therefore

b3 + r =
(|a2| − p− 1)b3 + p(b3 + c1) + b3 + s

|a2|
.

Regardless of the value of a2, we can apply the triangle inequality to find that

ρh(b3 + r) 6 max {ρh(b3), ρh(b3 + c1), ρh(b3 + s)}

and

hρ(b3 + r) 6 max {hρ(b3), hρ(b3 + c1), hρ(b3 + s)}.

We are assuming that (4.5) does not hold, so either ρh(b3 + c1) > ρh(b3) or

hρ(b3 + c1) > hρ(b3). If ρh(b3 + c1) > ρh(b3) then ρh(b3 + s) < ρh(b3 + c1)

because L(b3 + s,b3 + c1; b3). This implies that ρh(b3 + r) < ρh(b3 + c1) and so

L(b3 + r,b3 + c1; b3). If ρh(b3 + c1) < ρh(b3) and hρ(b3 + c1) > hρ(b3) then

ρh(b3 + s) < ρh(b3) and hρ(b3 + s) < hρ(b3 + c1) because L(b3 + s,b3 + c1; b3).

This implies that ρh(b3 + r) < ρh(b3) and hρ(b3 + r) < hρ(b3 + c1) and so again

L(b3 + r,b3 + c1; b3).

Now, from Proposition 4.1, we know that either ¬L(b3 + c2 + t1,b3 + r; b3)

or ¬L(b3 − c2 + t2,b3 + r; b3) and so L(b3 + c1,b3 + c2; b3) at the end of the

do . . .while loop on lines 8–21. Thus, the loop will not terminate on the current

iteration and the proposition is proved. �

Proposition 4.4. The do . . .while loop on lines 8–21 must terminate after

a finite number of iterations.

Proof. We divide the proof into two cases according to whether or not there

exists a non-zero point v1 ∈ E ′ such that ρ(v1) = 0.

Case I: There does not exist a non-zero point v1 ∈ E ′ such that ρ(v1) = 0.

Consider the state of the algorithm at line 8. Let

Θ = {z ∈ E ′ | ρh(z) < ρh(c1) + 2ρh(b3)}.

Now, Θ is centrally symmetric, convex and bounded and so it must contain a finite

number of elements of Ω′. Furthermore, it must contain at least two such elements,

the origin and c1. Notice that, for all p ∈ Ω′ \Θ,

ρh(p + b3) > ρh(p)− ρh(b3) > ρh(c1) + ρh(b3) > ρh(c1 + b3).

Additionally, ρh(p + b3) > ρh(b3). Therefore, ¬L(b3 + p,b3 + c1; b3). If we de-

note by c′1 the value of c1 on line 8 on the subsequent iteration then we have

L(b3 + c′1,b3 + c1; b3) and so c′1 ∈ Θ also. Since Θ contains only a finite number

of elements of Ω′, the loop must terminate.
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Case II: There exists a non-zero point v1 ∈ E ′ such that ρ(v1) = 0.

Suppose ρ(b3 + c1) 6 ρ(b3) at line 8. Let

Θ = {z ∈ E ′ | ρh(z) < ρh(c1) + 2ρh(b3); hρ(z) < hρ(c1) + 2hρ(b3)}.

Again, Θ is centrally symmetric, convex and bounded and so it must contain a

finite number of elements of Ω′, including the origin and c1. We observe that, for

all p ∈ Ω′ \Θ,

ρh(p + b3) > ρh(p)− ρh(b3) > ρh(b3) + ρh(c1) > max {ρh(b3), ρh(b3 + c1)}

or

hρ(p + b3) > hρ(p)− hρ(b3) > hρ(b3) + hρ(c1) > hρ(b3 + c1).

If ρh(b3 + c1) 6 ρh(b3) then ¬L(b3 + p,b3 + c1; b3). As we observed previously,

L(b3 + c′1,b3 + c1; b3) so c′1 ∈ Θ also and therefore the loop must terminate in a

finite number of iterations. Suppose, on the other hand, that ρh(b3 + c1) > ρh(b3).

This implies that ρ(b3 + c1) = ρ(b3) and h(b3 + c1) > h(b3). If c′1 6∈ Θ then we

find that ρh(b3 + c′1) 6 ρh(b3), since

ρh(b3 + c′1) > ρh(b3 + c1) ⇒ ¬L(b3 + c′1,b3 + c1; b3)

and

ρh(b3) < ρh(b3 + c′1) < ρh(b3 + c1) ⇒ c′1 ∈ Θ.

Thus, we can use our arguments above on the next iteration to show that the number

of remaining iterations is finite.

Suppose instead that ρ(b3 + c1) > ρ(b3) at line 8. Therefore, ρ(c1) > 0. Con-

sider a basis of E ′ consisting of v1 and another vector v2. Now, ρ(v2) > 0 since

ρ(v1) = 0, otherwise Υ(B) = ∅. Thus, we can express C = (c1, c2) as C = VX

where where X ∈ R2×2. We observe that x21 6= 0 since ρ(c1) > 0. Also, we can

quickly confirm that there exists some non-zero α ∈ R such that, for all β ∈ R,

(4.6) β(β − α) 6 0 ⇔ ρ(b3 + βv2) 6 ρ(b3)

and that if |α| 6 |β| < |γ|, for some γ ∈ R, and βγ > 0 then

(4.7) ρ(b3 + γv2) > ρ(b3 + βv2).

With

κ =

⌊
x22

x21

⌉
we have

(4.8) |x22 − κx21| 6 1
2
|x21| and |x22 − κx21| 6 |x22 − jx21|
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for all j ∈ Z. If

(4.9) |x22 − κx21| 6 |α|

then either

ρ(b3 + c2 − κc1) 6 ρ(b3) or ρ(b3 − c2 + κc1) 6 ρ(b3)

and so ρ(b3 + c′1) 6 ρ(b3). On the next iteration, we can then use the arguments

above where ρ(b3 + c1) 6 ρ(b3) to show that the number of iterations is finite.

Otherwise, because of (4.6)–(4.8), we find that

c′1 = ±(c2 − κc1)

and that, after a finite number of iterations, (4.9) must become true. Therefore, the

total number of iterations must be finite. �

We are now able to state and prove the main results of this section.

Proposition 4.5. Suppose that B(0) is a basis of a lattice Ω of rank 3 and ρ and

h are strictly convex, complementary radius and height functions. If Algorithm 4.1

is executed with B(0) as its initial basis then, after a finite number of steps, B will

be (ρ, h)-minimal at line 5 or the algorithm will terminate.

Proof. Proposition 4.1 and Proposition 4.4 imply that the do . . .while loop

on lines 8–21 must terminate after a finite number of steps. Suppose that, when this

loop terminates, (3.34) and (3.35) in Theorem 3.12 are satisfied for w = b3 + c2,

j = 3, and w = b2 + e1, j = 2. That is,

ρh(b3 + c2) > max
i=1,2,3

{ρh(bi)} ∨ hρ(b3 + c2) > max
i=1,2,3

{hρ(bi)}(4.10)

and

ρh(b2 + e1) > max
i=1,2
{ρh(bi)} ∨ hρ(b2 + e1) > max

i=1,2,3
{hρ(bi)}.(4.11)

Now, (4.10) and Proposition 4.3 imply that ¬L(b3 + s,b3 + c2; b3) for all non-zero

s ∈ Ω′. This, in turn, implies that conditions (3.34) and (3.35) are satisfied for

all w ∈ Λ3(B). Similarly, (4.11) and the tests on line 22 imply that these same

conditions are satisfied for all w ∈ Λ2(B). Hence, Theorem 3.12 can be applied to

show that B is (ρ, h)-minimal at this point.

The number of points w ∈ Ω which cannot satisfy either (3.34) or (3.35) is finite

and must decrease strictly for each iteration through the outer loop of the algorithm

until (4.10) and (4.11) are satisfied or the algorithm terminates. We have shown

that each iteration through this loop is completed in a finite number of iterations

through the inner loops, so the proposition is proved. �

Proposition 4.6. If, at line 5 of Algorithm 4.1, B is (ρ, h)-minimal in a lattice

Ω and ρ and h are strictly convex, complementary radius and height functions and

ε > 0 then, on the subsequent iteration, B′ will be an incremental successor to B.
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Proof. Now, ρ is not null-spanned by B since ρ(b1) > ε > 0. From Theo-

rem 3.13 and Theorem 3.2 there either exists an innovation s ∈ Λ3(B) such that b1,

b2 and s can be arranged to form an incremental successor to B or there exists an

innovation s ∈ Λ2(B) such that b1, s and b3 can be arranged to form an incremental

successor.

Suppose the former. Since B is (ρ, h)-minimal, Proposition 4.3 implies that

¬L(r,b3 + c2; b3) for all r ∈ Λ3(B) when the do . . .while loop terminates. Thus

hρ(b3 + c2) 6 hρ(r). But (3.12) of Theorem 3.2 implies that hρ(b3 + c2) = hρ(s)

and therefore ¬L(b2 + e1,b3 + c2; b3) at line 23 and b1, b2 and b3 +c2 can be, and

will be, arranged to form an incremental successor to B.

Suppose there is no choice for s ∈ Λ3(B) such that b1, b2 and s can be arranged

to form an incremental successor. Thus, there exists s ∈ Λ2(B) such that b1, s and

b3 can be arranged to form an incremental successor. It is clear that, at line 23,

e1 has been chosen such that ¬L(r,b2 + e1; b2) for all r ∈ Λ2(B) ∪ Λ3(B), which

implies that hρ(b2 + e1) = hρ(s). Hence, b1, b2 + e1 and b3 can be, and will be,

arranged to form an incremental successor to B. �

Remark 4.2. We note that if, at line 8 of Algorithm 4.1, B is (ρ, h)-minimal

and ρ and h are strictly convex, complementary radius and height functions, then

Algorithm 4.1 is an incremental successor algorithm to the extent that if p is a best

approximation such that

ε 6 ρ(p) 6 ρ(b1)

then there exists an equivalent best approximation which will be output by the algo-

rithm after a finite number of steps, unless the algorithm terminates with Υ(B) = ∅.
If this termination condition occurs, we can then use Algorithm 3.1 to find further

best approximations in Ω′.

4.3. Numerical Examples. We illustrate the operation of Algorithm 4.1 with

some numerical examples. All numerical results which represent real numbers are

given to three significant figures.

Example 4.1. This is the example which was used by Brentjes (1981) to

demonstrate the operation of his multi-dimensional continued fraction algorithm.

In this example, and indeed all examples in this subsection, we shall use the lattice

Z3. We define ρ(x) =
∥∥PTx

∥∥
2

where

(4.12) PT =

(
− 3
√

5 1 0

− 3
√

25 0 1

)
.

We define h(x) = |α · x| where α = (1, 0, 0). We note that ρ and h are strictly

convex, complementary radius and height functions. With the identity matrix used

as the initial basis, Algorithm 4.1 was executed with ε = 0.1. The results are listed

in Table 1. This table lists the state of B at line 5 on each iteration of the algorithm.
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Table 1. Outputs and important variables of Algorithm 4.1 in

Brentjes’ example.

It. b1 b2 b3 PTv ρ(v) h(v)

1 (0, 1, 0) (0, 0, 1) (1, 0, 0)

2 (0, 1, 0) (0, 0, 1) (1,3,2) (1.29,−0.924) 1.59 1

3 (1,2,3) (0, 1, 0) (0, 0, 1) (0.290, 0.0760) 0.300 1

4 (1, 2, 3) (1,1,3) (0, 0, 1) (−0.710, 0.0760) 0.714 1

5 (1, 2, 3) (1, 1, 3) (1,2,2) (0.290,−0.924) 0.968 1

6 (1, 2, 3) (2,3,6) (1, 2, 2) (−0.420, 0.152) 0.447 2

7 (1, 2, 3) (2, 3, 6) (2,3,5) (−0.420,−0.848) 0.946 2

8 (3,5,9) (1, 2, 3) (2, 3, 5) (−0.130, 0.228) 0.262 3

9 (3, 5, 9) (1, 2, 3) (3,5,8) (−0.130,−0.772) 0.783 3

10 (3, 5, 9) (1, 2, 3) (4,7,11) (0.160,−0.696) 0.714 4

11 (3, 5, 9) (1, 2, 3) (6,10,17) (−0.260,−0.544) 0.603 6

12 (3, 5, 9) (1, 2, 3) (7,12,20) (0.0302,−0.468) 0.469 7

13 (10,17,29) (3, 5, 9) (1, 2, 3) (−0.100,−0.240) 0.260 10

14 (11,19,32) (10, 17, 29) (3, 5, 9) (−0.190, 0.164) 0.251 11

15 (13,22,38) (11, 19, 32) (10, 17, 29) (−0.230,−0.0122) 0.230 13

16 (14,24,41) (13, 22, 38) (11, 19, 32) (0.0603, 0.0638) 0.0878 14

The number of the iteration is listed in the first column. The vector in bold face is

the innovation into B on that iteration, which we denote by v. We also list PTv and

the radius and height of v. In many cases the symmetric lattice point is listed to that

actually found by the algorithm, to ensure that all lattice coordinates are positive.

Observe that the algorithm has produced a (ρ, h)-minimal set by the third iteration.

We know this because the innovation v produced on the third iteration (and listed

in the table in bold face for iteration 4) satisfies hρ(v) > maxi=1,2,3 {hρ(bi)}.
Figure 1 illustrates the “itineraries” of innovations produced by Algorithm 4.1.

Three itineraries are plotted. An itinerary is a record of the successive innova-

tions which replace a given initial element in the basis, regardless of subsequent

reordering. The iteration on which a given basis element becomes an inveteration is

displayed near the line joining the projection of that element with the projection of

the innovation which replaces it. Best approximations are circled.

Example 4.2. We now consider the use of Algorithm 4.1 for finding best ap-

proximate integer relations to (e2, e, 1). Implicitly, the lattice to be used is Z3. We

define “best” in terms of the radius function ρ(x) = |α · x| where α = (e2, e, 1) and

a height function h(X) =
∥∥PTx

∥∥
2

where we set P to be an orthonormal basis of

the complementary subspace of α in R3. Since ρ and h are strictly convex, com-

plementary radius and height functions, we can use Algorithm 4.1 to find a list of

successive best approximations. Using the identity matrix as the initial basis, we
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Figure 1. Itineraries of innovations in Brentjes’ example.

find, first of all, that the identity matrix is (ρ, h)-minimal since at the beginning of

the second iteration the new element in the basis, v, has

hρ(v) > max
i=1,2,3

{hρ(ei)}

where the ei are the columns of the identity matrix. With ε = 10−4, we can then

be assured that the algorithm will not “miss” any best approximations, in the sense

of Theorem 3.3, with a radius between ε and 1. Table 2 lists the best approximate

integer relations found by the algorithm.

Example 4.3. We now present a slightly novel application of Diophantine ap-

proximation, which is to calculate the simultaneous overlap of periodic pulse trains.

We will return to this subject in the next chapter. A pulse train can be thought of
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Table 2. Best approximate integer relations for (e2, e, 1).

p ρ(p) h(p)

(0, 0, 1) 1.00 0.992

(0, 1,−2) 0.718 2.23

(−1, 2, 2) 4.75× 10−2 3.00

(2,−8, 7) 3.19× 10−2 10.8

(−3, 10,−5) 1.56× 10−2 11.6

(3,−3,−14) 1.23× 10−2 14.6

(−6, 13, 9) 3.33× 10−3 16.9

(8,−28, 17) 5.58× 10−4 33.7

(−35, 83, 33) 4.28× 10−4 95.9

(43,−111,−16) 1.29× 10−4 120

(−11, 70,−109) 1.11× 10−4 130

(54,−181, 93) 1.84× 10−5 211

as a binary function f(t; T, τ) defined so that

f(t; T, τ) =

1 if |t− bt/T eT | 6 1
2
τ ,

0 otherwise.

The variable t represents time. The parameter T > 0 is the pulse repetition

interval (PRI) of the pulse train and τ is the pulse width which satisfies 0 <

τ < T . The ith pulse of the pulse train occurs on the interval
[
iT − 1

2
τ, iT + 1

2
τ
]
.

Two pulse trains, with PRIs of T1 and T2 and pulse widths of τ1 and τ2, overlap

whenever f(t; T1, τ1) = f(t; T2, τ2) = 1. Thus, they overlap whenever there exists

i, j ∈ Z such that

|iT1 − jT2| 6 1
2
(τ1 + τ2).

Clearly, overlap always occurs at t = i = j = 0.

Now, consider the simultaneous overlap of three pulse trains with PRIs T1, T2

and T3 and pulse widths τ1, τ2 and τ3. Simultaneous overlap occurs whenever

f(t; T1, τ1) = f(t; T2, τ2) = f(t; T3, τ3) = 1

or, equivalently, whenever there exists i, j, k ∈ Z such that

|iT1 − jT2| 6 1
2
(τ1 + τ2),

|jT2 − kT3| 6 1
2
(τ2 + τ3)

and

|iT1 − kT3| 6 1
2
(τ1 + τ3).

We will now pose a specific problem which we can use Algorithm 4.1 to solve.

Suppose we are interested in three pulse trains. We know that the PRIs are T1 = e2,
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T2 = e and T3 = 1 and that the pulse widths are proportional to their PRIs with some

constant of proportionality γ, which we call the duty cycle, so that τ1 = γT1,

τ2 = γT2 and τ3 = γT3. Furthermore, suppose we want to find the first overlap

in terms of the pulse index of the first pulse train i > 0 other than the obvious

overlap at t = i = j = k = 0 for a range of γ. This is a simultaneous Diophantine

approximation problem. With the lattice Z3, we could define ρ so that

ρ(x) = 2 max

{
|x1e− x2|
e+ 1

,
|x2e− x3|
e+ 1

,
|x1e

2 − x3|
e2 + 1

}
and

h(x) = |x1|.

Substituting v = (i, j, k) ∈ Z3 for v we see that ρ(p) 6 γ if and only if the three

pulse trains simultaneously overlap for that duty cycle and pulse indices i, j and k.

We observe that ρ and h are transverse and complementary, but ρ is not strictly

convex. We can overcome this by redefining ρ as an extended semi-norm so that

ρ(x) = 2 sort

{
|x1e− x2|
e+ 1

,
|x2e− x3|
e+ 1

,
|x1e

2 − x3|
e2 + 1

}
where sort {·} returns its arguments in descending order. It can be readily checked

that this extended semi-norm is now strictly convex. Algorithm 4.1 can now be exe-

cuted with the initial basis set to the identity to find the list of all first simultaneous

overlaps (which are best approximations with respect to ρ and h). After the third

iteration the algorithm produces the (ρ, h)-minimal set

B =

1 0 0

3 1 0

8 2 1


where the lattice points are the columns of this matrix. Hence, every subsequent

iteration produces a new (ρ, h)-minimal set, the first element of which represents a

first simultaneous overlap. The results obtained from the algorithm with ε = 0.01

are presented in Table 3. For any listed vector in the table, the corresponding value

Table 3. Pulse indices for first simultaneous overlap of pulse trains.

(i, j, k) γ

(1, 3, 8) 0.152

(3, 8, 22) 0.136

(4, 11, 30) 0.106

(18, 49, 133) 0.105

(21, 57, 155) 0.0451

(64, 174, 473) 0.0239

(252, 685, 1862) 0.0124

(1537, 4178, 11357) 9.96× 10−3
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of γ is the minimum duty cycle for which the vector represents a first simultaneous

overlap and the previous value of γ is the maximum duty cycle, but the duty cycle

must be strictly less than this maximum.

In the example above, it was necessary to extend our radius function in order to

satisfy the condition of strict convexity. If we had not done this, it would not have

made any difference in this case. However, this cannot be guaranteed in general. We

must also exercise a degree of care in interpreting best approximations for a radius

function which has been extended from a radius function that is not strictly convex

but is our true interest. It is necessary to check the preceding best approximation to

ensure that the radii differ in their “true” radius, otherwise the best approximation

in the extended radius function is not best with respect to the true radius function.

5. An Accelerated Algorithm for Lattices of Rank 3

5.1. Furtwängler’s Algorithm. In the next subsection we will discuss an ac-

celerated version of the additive algorithm (Algorithm 4.1) we presented in Sec-

tion 4.1. The accelerated algorithm can be regarded as a generalisation of an algo-

rithm described by Furtwängler (1927). We briefly review his algorithm in this

subsection.

Furtwängler proposed an algorithm for finding all best approximations to a

line in three dimensions when the radius function is the sup-norm. He considers only

lattices Ω of rank 3 in R3. According to our definitions of a system for simultaneous

Diophantine approximation, he specifies the algorithm only for systems in which the

radius function and height functions have the form

ρ(x) = max {|x1|, |x2|} and h(x) = |x3|

He also requires that, for all x ∈ Ω with h(x) 6= 0, neither x1 = 0 nor x2 = 0 and

nor is there any other lattice point y with h(y) 6= 0 for which ρ(x) = ρ(y).

At each iteration of Furtwängler’s algorithm, a new basis, B′, is generated from

the given or old one, B. The matrix B = (b1,b2,b3) of basis vectors is assumed to

have certain properties. Firstly, it is assumed that b3,i > 0 for i = 1, 2, 3. Secondly,

b1 is a best approximation (which Furtwängler calls an approximation point).

Lastly, b2 is an auxiliary approximation point. By this, it is meant that

ρ(b2) > ρ(b1) and, for all w ∈ Ω such that w is not a multiple of b1, either

ρ(w) > ρ(b2)(5.1)

or

h(w) > max {h(b1), hρ(b2)}.(5.2)

The two points b1 and b2 can be thought of as defining an approximation prism

consisting only of the origin, ±b2 and integer multiples of b1. Observe that (5.1)
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and (5.2) bear a strong resemblance to the conditions (2.3) and (2.4) for (ρ, h)-

minimal sets in Definition 2.10. Also observe that the auxiliary approximation

point may itself be a best approximation, but only if h(b2) 6 h(b1).

Consider extending the “roof” and “floor,” that is, the height, of the approx-

imation prism until a lattice point is encountered which is not a multiple of b1.

Call such a point s, the next approximation point. Either s will be a new best

approximation point or an auxiliary approximation.

Furtwängler shows that the next approximation point (in order of increasing

height), s, has either the form

s = b1 + b2(5.3)

or

s = c1kb1 + c2kb2 + b3(5.4)

where a maximum of four candidate pairs (c1k, c2k), k = 1, 2, 3, 4, need to be consid-

ered and they are easily calculated and decided between. Furthermore, the c2k are

consecutive integers. Note that −s may be used instead if s3 < 0.

If s takes the form (5.3) then it replaces b2 in the new basis, otherwise it replaces

b3. Clearly, s and b1 will form a new approximation prism and s may be a new best

approximation. If this is so, then the basis is arranged so that b′1 = s and b′2 = b1,

otherwise the opposite assignments are made.

For the lattices considered by Furtwängler, it can be shown that all best

approximations will be found by this algorithm, provided it can be initialised.

Furtwängler claims that it is always possible to find a suitable initial lattice

base but does not show how this can be done in general.
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Figure 2. An iteration of Furtwängler’s algorithm.

Figure 2 illustrates a single iteration of Furtwängler’s algorithm. At left, an

approximation prism is depicted at the beginning of an iteration. It can be seen

that the prism contains ±b2 and kb1, k = −2,−1, 0, 1, 2. The height of the prism is
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then extended until a lattice point, s, is encountered which is linearly independent

of b1. This is depicted in the central diagram. At right, the iteration concludes by

making the assignments b′1 = b1 and b′2 = s. The new approximation prism has a

greater height but smaller radius.

5.2. The Principles of the Accelerated Algorithm. We now investigate

accelerating our additive algorithm (Algorithm 4.1). We will find that this leads to

a generalisation of Furtwängler’s algorithm.

From Theorems 3.11 to 3.13, we know that, for a simultaneous Diophantine

approximation system consisting of a lattice Ω of rank 3 in Rm and strictly convex,

complementary radius and height functions, ρ and h, the (ρ, h)-minimal sets are

always bases of the lattice. If B = (b1,b2,b3) is a (ρ, h)-minimal basis and ρ is

not null-spanned by the basis, an incremental successor, can be found in which the

innovation, s, has the form

(5.5) s = b1 ± b2 or s = a1b1 + a2b2 + b3

with a1, a2 ∈ Z. That is, s ∈ Λ2(B) or s ∈ Λ3(B).

As we discussed at the beginning of Section 3.3, because ρ and h are comple-

mentary, we can express ρ and h for any x in the real span of Ω as

ρ(x) =
∥∥PTx

∥∥ and h(x) = |α · x|(5.6)

or

ρ(x) = |α · x| and h(x) =
∥∥PTx

∥∥(5.7)

where ‖·‖ is a strictly convex extended norm, PT is a 2×m matrix and {p1,p2,α}
forms a basis of the real span of Ω. To avoid making specific reference to either (5.6)

or (5.7), let us make use of an underline and an overline to represent the appropriate

mappings so that

ρ(x) = ‖x‖∗ and h(x) = ‖x‖†

where ‖·‖∗ and ‖·‖† are strictly convex extended norms acting on Rn1 and Rn2 ,

respectively. Either n1 = 1 and n2 = 1 or else n1 = 2 and n2 = 1. Therefore, either

x or x is a scalar for all x ∈ Rm.

To expound the principles on which our accelerated algorithm is built, we require

the notion of a primitively (ρ, h)-minimal set.

Definition 5.1. A set (v1,v2, . . . ,vk) is primitively (ρ, h)-minimal in a lat-

tice Ω of rank n > k if there exist n − k lattice points vk+1,vk+2, . . . ,vn such that

(v1,v2, . . . ,vn) is (ρ, h)-minimal.

Corollary 5.1. If {v1,v2} is primitively (ρ, h)-minimal in a lattice Ω of rank

r in Rm and ρ and h are strictly convex, complementary radius and height functions

then {v1,v2} forms a primitive basis of Ω.
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Proof. This is a direct consequence of Theorem 3.11. �

Consider a primitively (ρ, h)-minimal set (b1,b2) with ρ(b1) > 0 in our simul-

taneous Diophantine approximation system. We know that any (ρ, h)-minimal set

containing (b1,b2) must be a basis of the lattice. Consider the (ρ, h)-minimal set

W = (b1,b2,w) for which the innovation s∗ into the incremental successor of W
satisfies ρh(s∗) < ρh(b2). That is, s∗ ∈ Ξ2(B). We know that such a (ρ, h)-minimal

set can be found for the primitively (ρ, h)-minimal set (b1,b2) as a consequence of

Theorem 3.4. Furthermore, from Theorem 3.13, we know that the s∗ ∈ Λ2(W) or

s∗ ∈ Λ3(W).

The key idea of the accelerated algorithm is to find an innovation s∗ of the type

described, given an ordered basis B = (b1,b2,b3) in which the first two vectors form

a primitively (ρ, h)-minimal set. To do this, we find an element q ∈ Λ2(B) such that

¬L(w,q; b2). If there is an element v ∈ Λ3(B) such that ¬L(q,v; b2) then we find

an element r ∈ Λ3(B) such that ¬L(w, r; b2). Having found q and r, we know that

s∗ = q if L(q, r; b2), otherwise s∗ = r.

We will see that we can do this in a fixed number of arithmetic operations

for certain choices of the extended norms ‖·‖∗ and ‖·‖†. The advantage over the

additive algorithm (Algorithm 4.1) is that, by so doing, we can “skip” a number of

intermediate innovations and find best approximations more quickly.

Selecting q is simple. We test b1 − b2 and b1 + b2. If L(b1 − b2,b1 + b2; b2)

the q = b1−b2, otherwise q = b1 +b2. Let us then turn our attention to a method

for selecting r. Since r ∈ Λ3(B) we can write

r = a∗1b1 + a∗2b2 + b3

where a∗1, a
∗
2 ∈ Z. Our method for selecting r is therefore a method for selecting the

pair of integers a∗1 and a∗2.

Suppose b1 and b2 are linearly independent. This can only be so if n1 = 2,

which is to say that the mapping denoted by the underline is onto R2. Consider the

lattice Γ in R2 generated by the vectors b1 and b2. Suppose that the basis {b1,b2}
is Minkowski-reduced in the (generalised) sense that b1 is the shortest vector in Γ

with respect to the extended norm ‖·‖∗ and b2 is the shortest vector in Γ which is

linearly independent of b1.

First of all, {b1,b2} is a reduced basis of Γ if and only if ‖b1 ± b2‖
∗ 6 ‖b2‖

∗.

The necessity is obvious. The sufficiency can be proved in a similar manner to

Lemma 3.5. Secondly, we have the following theorem of Furtwängler.

Theorem 5.1. Suppose {v1,v2} is a (generalised) Minkowski-reduced basis of a

lattice Γ of rank 2 in R2 with respect to a strictly convex extended norm ‖·‖. Let

G be the matrix with columns v1 and v2. If ‖y‖ 6 ‖v2‖ for y ∈ R2 then |x2| < 2

where x = G−1y.
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Proof. With y = Gx, suppose |x2| > 2 but ‖y‖ < ‖v2‖. If |x1| 6 1 then, using

the simple identity

e2 =
x− x1e1

x2

,

where ei is the ith column of the identity matrix, we have, after premultiplication of

both sides by G,

v2 =
y − x1v1

x2

and so

‖v2‖ <
‖y‖+ |x1| ‖v1‖

|x2|
< ‖v2‖ .

If, on the other hand, |x1| > 1 then we can use the identity

sgn(x1)e1 + sgn(x2)e2 =
sgn(x1)(|x2| − 1)e1 + sgn(x2)(|x1| − 1)e2 + x

|x1|+ |x2| − 1

to show that

‖sgn(x1)v1 + sgn(x2)v2‖ <
(|x2| − 1) ‖v1‖+ (|x1| − 1) ‖v2‖+ ‖y‖

|x1|+ |x2| − 1
< ‖v2‖ ,

contrary to the assumption that {v1,v2} is a reduced basis. �

To select r when the basis {b1,b2} is reduced, we examine the value of f2 where

f = G−1b3 and G = (b1,b2). We require that ‖r‖∗ < ‖b2‖
∗. Theorem 5.1 implies

that |x2| < 2 where x = G−1r. Now x2 = f2 + a∗2. There are clearly at most four

values of a∗2 which can cause |x2| < 2 to be satisfied and these are

(5.8) c2k = bk − f2c, k = −2,−1, 0, 1.

For each value of c2k it then remains to find a value for c1k such that, for all j ∈ Z,

(5.9) ¬L(jb1 + c2kb2 + b3, c1kb1 + c2kb2 + b3; b2).

From among the four candidate pairs of values of c1k and c2k we choose a∗1 and a∗2
so that

¬L(c1kb1 + c2kb2 + b3, a
∗
1b1 + a∗2b2 + b3; b2).

A procedure for ensuring (5.9) involves operations from calculus which are often

easily solved. It involves finding the points of intersection (if any) of the mapping

l(λ) of the line

l(λ) = λb1 + c2kb2 + b3,

λ ∈ R, with the set

(5.10) S = {y ∈ Rn1 | ‖y‖∗ 6 ‖b2‖
∗}.

If there is no intersection for a particular value of c2k or the interval over λ contains

no integer value then the choice for c1k is that integer which minimises ρh(l(λ)). For

those values of c2k which yield intersections and for which the interval over λ of the

intersection contains an integer, we minimise hρ(l(λ)). This procedure, for a given

value of c2k, we shall refer to as minimiseL. For many choices of ‖·‖∗ and ‖·‖† (for
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example, the Euclidean norm or the extended norm of Example 4.3), this involves

only a constant number of arithmetic operations.

Now, on the other hand, suppose that either {b1,b2} forms a basis of the lattice

Γ, but not a reduced basis, or that b2 is linearly dependent on b1. Thus, either

‖b1 + b2‖ < ‖b2‖ or ‖b1 − b2‖ < ‖b2‖ .

Consider again the set S defined in (5.10). Suppose n1 = 2. For every point

on the boundary of S, there is a line which passes through the point such that S
lies on one side of the line. This is an equivalent definition of convexity for sets in

R2 (see Hardy & Wright, 1979, pp. 31–32). Consider such (parallel) lines which

pass through the points b2 and −b2. For every point y ∈ R2 which lies outside

the strip bounded by the two lines we have ‖y‖∗ > ‖b2‖
∗. We can express this by

introducing a vector γ ∈ R2 with γ · b2 > 0 such that, for all y ∈ Rn1 ,

(5.11) |γ · y| > γ · b2 ⇒ ‖y‖
∗ > ‖b2‖

∗

If n1 = 1 then (5.11) is trivial when γ (which is a scalar) is set to b2. The procedure

for calculating γ we call rhoTangent. For some common choices of ‖·‖ (such as a p-

norm) or when n1 = 1, this procedure requires only a constant number of arithmetic

operations.

Just as we found a vector γ so that (5.11) is true using the procedure rhoTangent,

consider an analogous procedure hTangent which can find a vector δ such that, for

all y ∈ Rn2 ,

|δ · y| > δ ·
(
b1 + b2

)
⇒ ‖y‖† >

∥∥b1 + b2

∥∥† .
Let us suppose that γ · b1 6 0. If this is not the case, replace b1 by −b1.

Furthermore, suppose for a moment that γ · b1 < 0. It can be easily verified

using (5.11) that this implies that ‖b1 + b2‖
∗ < ‖b2‖

∗. Hence, L(b1 + b2,b2; b2).

Suppose that L(r,b1 + b2; b2). This implies

(5.12) ρh(r) < ρh(b2) and hρ(r) < hρ(b1 + b2).

Let ξ = γTB and η = δTB where B is the matrix of the basis vectors of B
arranged as columns. To find r = a∗1b1 + a∗2b2 + b3 which satisfies (5.12), we need

|a∗1ξ1 + a∗2ξ2 + ξ3| 6 ξ2

and

|a∗1η1 + a∗2η2 + η3| 6 η1 + η2.

We know that ξ2 > 0 and η2 > 0 by definition of rhoTangent and hTangent. Also,

−ξ2 6 ξ1 < 0 since 0 < ‖b1‖
∗ 6 ‖b2‖

∗. Finally, η1 > 0. If this were not so then we
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would have

(5.13) ρ(b1 + b2) < ρ(b2) and h(b1 + b2) < max {h(b1), h(b2)}.

which would mean that (b1,b2) was not primitively (ρ, h)-minimal. With these

bounds on ξ1, ξ2, η1 and η2, we can determine that

(5.14)
ξ1η3 − ξ3η1 + ξ1η1

ξ2η1 − ξ1η2

− 1 6 a∗2 6
ξ1η3 − ξ3η1 − ξ1η1

ξ2η1 − ξ1η2

+ 1.

We also find that the difference between the bounds is

2− 2ξ1η1

ξ2η1 − ξ1η2

6 2 +
2

η2/η1 − ξ2/ξ1

6 4.

Thus, as for the case where {b1,b2} is a reduced basis, we would normally only have

to check the four integer values, the c2k, within the interval prescribed by (5.14),

determining a value for c1k in each case through the procedure minimiseL. From

these integer pairs, the values for a∗1 and a∗2 are selected. However, the combination

of several conditions simultaneously could conspire to force a fifth value of c2k to be

checked. This could only happen if ξ1 = −ξ2, η2 = 0 (that is, h(b2) = 0) and the

lower and upper bounds in (5.14) are integers.2

We assumed above that γ · b1 < 0. If, instead, γ · b1 = 0 then either of the

procedures (that for the reduced case or that for the non-reduced case) can be used

to select r.

The method we have described has assumed that (b1,b2) is primitively (ρ, h)-

minimal. However, regardless of this assumption, we have set out a method for the

selection of q ∈ Λ2(B) such that ¬L(w,q; b2) for all w ∈ Λ2(B). The method also

selects some r ∈ Λ3(B) such that ¬L(w, r; b2) for all w ∈ Λ3(B), subject to the

condition that there exists some v ∈ Λ3(B) such that ¬L(q,v; b2) and subject to

the condition that

ρh(q) > ρh(b2) and hρ(q) > max {hρ(b1), hρ(b2)}.

This last condition does not arise when we assume (b1,b2) is primitively (ρ, h)-

minimal, but must now be considered because the arguments leading to (5.13) do

not furnish a contradiction in this case.

5.3. The Accelerated Algorithm. We are now able to set out our accelerated

algorithm for finding best approximations. The algorithm assumes that the simulta-

neous Diophantine approximation system consists of a lattice Ω of rank 3, for which

we have an initial basis matrix B = (b1,b2,b3), and strictly convex, complemen-

tary radius and height functions ρ and h. We require the procedures minimiseL,

rhoTangent and hTangent, which we have already introduced above. The algorithm

also uses orderBasis, which orders the basis B so that ρh(b1) 6 ρh(b2) 6 ρh(b3).

2The author believes that, even in this case, it is probably of no consequence.
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Algorithm 5.1.

1 begin

2 orderBasis(B);

3 while ρ(b1) > ε do

4 γ := rhoTangent(b2);

5 if γ · b1 > 0 then b1 := −b1 fi;

6 if L(b1 − b2,b1 + b2; b2) then q := b1 − b2

7 else q := b1 + b2 fi;

8 if ρ(b1 + b2) < ρ(b2) then

9 δ := hTangent
(
b1 + b2

)
;

10 ξ := γTB; η := δTB;

11 µ := (ξ1η3 − ξ3η1)/(ξ2η1 − ξ1η2);

12 else

13 G := (b1,b2);

14 f := G−1b3;

15 µ := −f2;

16 fi;

17 r := b3;

18 for k := −2 to 2 do

19 c2k := bµ+ kc;
20 c1k := minimiseL(c2k,B);

21 if L(c1kb1 + c2kb2 + b3, r; b2) then

22 r := c1kb1 + c2kb2 + b3 fi;

23 od;

24 if L(q, r; b2) then b2 := q; output(b2)

25 else b3 := r; output(b3) fi;

26 orderBasis(B);

27 od;

28 end.

5.4. Analysis of the Accelerated Algorithm.

Proposition 5.1. Consider a simultaneous Diophantine approximation system

consisting of a lattice Ω of rank 3 in Rm and strictly convex, complementary radius

and height functions ρ and h. Suppose, at line 3 of Algorithm 5.1, B is a basis

matrix of Ω and (b1,b2) is primitively (ρ, h)-minimal. Then there exists a sequence

of (ρ, h)-minimal sets, each an incremental successor of the previous one, such that

when the primitively (ρ, h)-minimal sets of the first two elements of each (ρ, h)-

minimal set are put in sequence and duplicates are removed, (b1,b2) takes the value

of each primitively (ρ, h)-minimal set in turn at line 3 on every subsequent iteration

until the algorithm terminates.
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Proof. The proof is by inspection of the algorithm and its reconciliation with

the principles discussed in Section 5.2. �

It remains to show that the algorithm can produce a basis containing a primi-

tively (ρ, h)-minimal set given an arbitrary basis.

Proposition 5.2. Consider a simultaneous Diophantine approximation system

as in Proposition 5.1. If, at line 3 of Algorithm 5.1, B is a basis matrix of Ω for

which (b1,b2) is not primitively (ρ, h)-minimal then, on the subsequent iteration,

the new values of b1 and b2 at line 3, denoted b′1 and b′2, satisfy

ρh(b′2) 6 ρh(b2)

and

max {hρ(b′1), hρ(b′2)} 6 max {hρ(b1), hρ(b2)}

and one of these inequalities is satisfied strictly.

Moreover, after a finite number of iterations, Algorithm 5.1 either produces a

basis at line 3 in which the first two elements constitute a primitively (ρ, h)-minimal

set or the algorithm terminates.

Proof. A straightforward consequence of Theorem 3.12 is that (b1,b2) is prim-

itively (ρ, h)-minimal if and only if

ρh(w) > ρh(b2)(5.15)

or

hρ(w) > max {hρ(b1), hρ(b2)}(5.16)

for all w ∈ Λ2(B) and w ∈ Λ3(B). If there is an element of Λ2(B) which fails to

satisfy both (5.15) and (5.16) then q is assigned such an element at line 6 or 7.

Lines 8 to 23 represent a formal description of the principles discussed in Section 5.2

for selecting r ∈ Λ3(B). Therefore, if there exists an element of Λ3(B) which fails

to satisfy both (5.15) and (5.16), where there is no such element in Λ2(B), then r is

assigned such an element.

Because there are only finitely many lattice points which satisfy neither (5.15)

nor (5.16), and this number strictly decreases from iteration to iteration, we conclude

that the algorithm must produce an ordered basis in which (b1,b2) is primitively

(ρ, h)-minimal. �

Therefore, we can be assured that, for any best approximation p such that

ε < ρ(p) 6 min {ρ(b1), ρ(b2), ρ(b3)} then, after a finite number of iterations, the

algorithm will output p or an equivalent lattice point.

Algorithm 5.1 can be thought of as a generalisation of Furtwängler’s algorithm.

The notion of a primitively (ρ, h)-minimal set is a generalisation of Furtwängler’s
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approximation prism to a broader class of radius and height functions. As a result,

it is not restricted to simultaneous Diophantine approximation using the sup-norm,

nor is it restricted to simultaneous Diophantine approximation in the “traditional”

sense, by which we mean approximation of a line by lattice points. It can also find

best approximate integer relations and shortest integer relations, if they exist.

An unfortunate aspect of both Algorithm 4.1 and Algorithm 5.1 is that we cannot

predict a priori how many intermediate calculations must be performed before a

new best approximation is found. The best we can say is that, at any point in

these algorithms, the number of iterations through the main loop that remain to be

performed before a new best approximation is found can be bounded by a function

of the radii of the basis elements, using the pigeonhole principle. In particular, we

have the bound (3.14) in Theorem 3.4. For Algorithm 5.1, we can improve this

bound by replacing b3 with b2.

Finally, we observe that the procedure minimiseL could be used (twice) in Al-

gorithm 4.1 to replace the (two) loops on lines 14–17. This should result in some

improvement in the speed of the algorithm.

5.5. Numerical Examples. We now present some numerical examples, drawn

from Furtwängler (1927) and Brentjes (1981), in order to demonstrate the

correctness of Algorithm 5.1, and present some data which indicates that the time

required by the algorithm to find best approximations of a given radius may be

logarithmic in the inverse of the radius.

We begin with the two examples used by Furtwängler (1927). For clarity of

exposition, the lattice used in each example is Z3. The examples are differentiated

by the radius and height functions used. This is in contrast to the way the examples

were originally presented. There, the examples used the same radius and height

functions but different lattices.

Both of Furtwängler’s examples use the sup-norm in the radius function

(since his algorithm is formulated on that premise). However, the sup-norm is not

strictly convex. Therefore, we replace the sup-norm with an extended norm which

is extended from it. Consider the sort norm which we define for vectors v ∈ Rn

as

‖v‖s = sort {|v1|, |v2|, . . . , |vn|}

where, as in Example 4.3, the function sort {·} sorts its arguments in descending or-

der. This extended norm is strictly convex. This difference aside, Furtwängler’s

algorithm and Algorithm 5.1 can be expected to produce identical outputs for the

examples cited here because of the conjunction of the notions of a primitively (ρ, h)-

minimal set and an approximation prism.
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Example 5.1. In this example, we execute Algorithm 5.1 with the identity

matrix as its initial basis. The radius and height functions in this example are

ρ(x) =
∥∥PTx

∥∥
s

and h(x) = |α · x|

where

PT =

(
1 0 − 3

√
2

0 1 − 3
√

4

)
and α =

(
0 0 1

)
.

Table 4. Outputs and important variables of Algorithm 5.1 in

Furtwängler’s first example.

It. b1 b2 b3 PTv

1 (0, 1, 0) (0, 0, 1) (1, 0, 0)

2 (1,2,1) (0, 1, 0) (0, 0, 1) (−0.260, 0.413)

3 (1, 2, 1) (1,1,1) (0, 0, 1) (−0.260,−0.587)

4 (1, 2, 1) (3,3,2) (1, 1, 1) (0.480,−0.175)

5 (4,5,3) (1, 2, 1) (1, 1, 1) (0.220, 0.238)

6 (4, 5, 3) (5,6,4) (1, 2, 1) (−0.0397,−0.350)

7 (4, 5, 3) (6,8,5) (5, 6, 4) (−0.300, 0.0630)

8 (9,11,7) (4, 5, 3) (6, 8, 5) (0.181,−0.112)

9 (15,19,12) (9, 11, 7) (4, 5, 3) (−0.119,−0.0488)

10 (15, 19, 12) (24,30,19) (4, 5, 3) (0.0615,−0.161)

11 (15, 19, 12) (34,43,27) (24, 30, 19) (−0.177, 0.141)

12 (15, 19, 12) (49,62,39) (24, 30, 19) (−0.137, 0.0914)

13 (58,73,46) (15, 19, 12) (49, 62, 39) (0.0436,−0.204)

Table 4 shows the output of Algorithm 5.1 for these inputs with ε = (0.1, 0). The

format of Table 4 is similar to that which we used in Table 1 of Example 4.1. The

table lists the state of B at line 3 at the beginning of each iteration of the algorithm

for the first 13 iterations. The first column lists the iteration number. The next

three columns list the values of the basis vectors. The vector in bold face is the

innovation into the basis, which we denote v. The rightmost column lists PTv. The

radius and height are not listed, but they are easily calculated. The height of v is

simply v3 and its radius is obtained by sorting the absolute values of PTv.

Notice that, in contrast to Algorithm 4.1, the innovations into the basis always

occur in the first or second position. This is because Algorithm 5.1 “skips” the

intermediate innovations that would occur in the third position.

Example 5.2. In this example, we again set

ρ(x) =
∥∥PTx

∥∥
s

and h(x) = |α · x|
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but with

PT =

(
1 0 −ζ
0 1 −ζ2

)
and α =

(
0 0 1

)
where ζ = 1.3248 . . . is the unique real solution of the equation x3−x− 1 = 0. The

output of the algorithm for these inputs is shown in Table 5.

Table 5. Output and important variables of Algorithm 5.1 for

Furtwängler’s second example.

It. b1 b2 b3 PTv

1 (0, 1, 0) (0, 0, 1) (1, 0, 0)

2 (1,2,1) (0, 1, 0) (0, 0, 1) (−0.325, 0.245)

3 (1, 2, 1) (2,2,1) (0, 1, 0) (0.675, 0.245)

4 (1, 2, 1) (3,4,2) (0, 1, 0) (0.351, 0.490)

5 (4,5,3) (1, 2, 1) (3, 4, 2) (0.0258,−0.265)

6 (4, 5, 3) (5,7,4) (3, 4, 2) (−0.299,−0.0195)

7 (4, 5, 3) (9,12,7) (3, 4, 2) (−0.273,−0.284)

8 (12,16,9) (4, 5, 3) (9, 12, 7) (0.0775, 0.206)

9 (16,21,12) (12, 16, 9) (9, 12, 7) (0.103,−0.0585)

10 (16, 21, 12) (21,28,16) (12, 16, 9) (−0.195,−0.0780)

11 (16, 21, 12) (28,37,21) (21, 28, 16) (0.181, 0.148)

12 (16, 21, 12) (33,44,25) (28, 37, 21) (−0.118, 0.128)

13 (49,65,37) (16, 21, 12) (28, 37, 21) (−0.0146, 0.0695)

The outputs in Example 5.1 and Example 5.2 correspond almost exactly with

those found by Furtwängler himself. However, there are a few minor differences.

In the first example, Furtwängler erroneously lists (2, 2, 1) as an output and fails

to list (6, 8, 5). In the second example, Furtwängler erroneously lists (1, 1, 1).

These errors are easily verified as such by calculation of their radii and heights.

To demonstrate the algorithm with another radius function, we return to the

example of Brentjes. We used this example to demonstrate Algorithm 4.1 in

Example 4.1.

Example 5.3. In this case, we have

ρ(x) =
∥∥PTx

∥∥
2

and h(x) = |α · x|

where PT is given by (4.12) and α = (1, 0, 0). The initial basis used is the identity.

The output of the algorithm for ε = 0.1 is presented in Table 6.

Notice that, in this example, the final best approximation is found in seven fewer

iterations than was required for Algorithm 4.1.
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Table 6. Output and important variables of Algorithm 5.1 in Bren-

tjes’ example.

It. b1 b2 b3 PTv ρ(v) h(v)

1 (0, 1, 0) (0, 0, 1) (1, 0, 0)

2 (1,2,3) (0, 1, 0) (0, 0, 1) (0.290, 0.0760) 0.300 1

3 (1, 2, 3) (1,1,3) (0, 0, 1) (−0.710, 0.0760) 0.714 1

4 (1, 2, 3) (2,3,6) (0, 0, 1) (−0.420, 0.152) 0.447 2

5 (3,5,9) (1, 2, 3) (0, 0, 1) (−0.130, 0.228) 0.262 3

6 (10,17,29) (3, 5, 9) (1, 2, 3) (−0.100,−0.240) 0.260 10

7 (11,19,32) (10, 17, 29) (3, 5, 9) (−0.190, 0.164) 0.251 11

8 (13,22,38) (11, 19, 32) (10, 17, 29) (−0.230,−0.0122) 0.230 13

9 (14,24,41) (13, 22, 38) (11, 19, 32) (0.0603, 0.0638) 0.0878 14

Example 5.4. To demonstrate the ability of the algorithm to generate a primi-

tively (ρ, h)-minimal set from an arbitrary basis, we again use Brentjes’ example,

but now we use a pseudo-randomly generated unimodular matrix instead of the

identity matrix. We use the initial basis

B =

13 16 2

24 29 4

54 65 9

 .

The outputs of the algorithm are presented in Table 7.

Table 7. Outputs and important variables of Algorithm 5.1 in

Brentjes’ example with a pseudo-random initial basis.

It. b1 b2 b3 PTv ρ(v) h(v)

1 (2, 4, 9) (13, 24, 54) (16, 29, 65)

2 (0,1,2) (2, 4, 9) (13, 24, 54) (1, 2) 2.24 0

3 (1,1,3) (0, 1, 2) (2, 4, 9) (−0.710, 0.0760) 0.714 1

4 (1, 1, 3) (0,1,1) (0, 1, 2) (1, 1) 1.414 0

5 (1, 1, 3) (0,0,1) (0, 1, 1) (0, 1) 1 0

6 (1, 1, 3) (0,1,0) (0, 0, 1) (1, 0) 1 0

7 (1,2,3) (1, 1, 3) (0, 1, 0) (0.290, 0.0760) 0.300 1

8 (1, 2, 3) (2,3,6) (0, 1, 0) (−0.420, 0.152) 0.447 2

In this example, the algorithm has found the primitively (ρ, h)-minimal set

(b1,b2) = ((1, 2, 3), (1, 1, 3))

by the 7th iteration. We know that this set is primitively (ρ, h)-minimal because the

innovation v = (2, 3, 6) has hρ(v) > max {hρ(b1), hρ(b2)}.
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Example 5.5. Finally, we present two plots in Figure 3 which show the speed

with which the algorithm decreases the radii and increases the height of its ap-

proximations. The input to the algorithm used to generate the plots was again

� ��� ��� ��� ��� �	��
����


�
�����

�
� ���

�
� ���

�
� ���

�����

���������	�� "!�#$#&%('*)��+�

, -
. / 0
1

(a) Radii of b1 and b2.

� ��� ��� ��� ��� ����	��


�	���

�	��


�	���

�	���

�	���

�	���

�	���

�	���

�������������! �"#"%$'&)(*���

+ ,
- .
/ 0

(b) Heights of b1 and b2.

Figure 3. Plots of decrease in radius and increase in height of the

basis elements b1 ( ) and b2 (+) against the iteration number for

Brentjes’ example.

Brentjes’ example with ε = 10−4. It appears that, for this input and for many

others tested, the algorithm is able to find a best approximation with radius less
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than ε in O(log ε−1) iterations. However, its true complexity is unknown to the

author at present.

6. Algorithms for Lattices of Higher Rank

6.1. Introductory Remarks. The algorithms we have developed in this chap-

ter are limited to lattices of rank 2 and 3. It is not easy to see how these algorithms

can be generalised to lattices of higher rank since the properties on which the algo-

rithms rely do not carry over. In any case, it is almost certain that the computa-

tional complexity of finding best simultaneous Diophantine approximations will be

very high. As we mentioned in the introduction to the chapter, Lagarias (1982)

has shown that certain problems of this type are NP-hard.

Therefore, we seek algorithms which are able to give “good” simultaneous Dio-

phantine approximations in a reasonable amount of time, say, in a time bounded by

a polynomial of the input size. Before we describe in detail the recent discoveries

which make this possible, it is instructive to review progress towards this goal.

The search for a higher-dimensional analogue of Euclid’s algorithm has quite a

long history. The algorithms which have been proposed usually go by the names

“multi-dimensional Euclidean algorithm” or “multi-dimensional continued fraction

algorithm.” Historically, most algorithms have been developed solely for the ap-

proximation of a line by lattice points, rather than for the more general class of

simultaneous Diophantine approximation systems we have proposed in Section 2.2.

More recently, there has also been an emphasis on the problem of finding integer

relations, which is a dual problem of the approximation of a line, as we shall see.

What constitutes a “multi-dimensional continued fraction algorithm” is not uni-

versally agreed. One possible, and rather loose, definition is that it is an algorithm

which approximates a linear form (or simply line) by performing simple basis trans-

formations, such as the replacement of one basis vector at a time with another. The

aim of such algorithms has not solely been to produce best approximations. Authors

of multi-dimensional continued fraction algorithms have frequently placed equal or

greater weight on other characteristics of simple continued fractions which they hope

to carry over into higher dimensions, such as the ability to uniquely describe the

input according to a string of characters from a given alphabet (as the input of the

s.c.f is uniquely described by the string of partial quotients) or the exhibition of

periodicity for certain inputs (such as the s.c.f does for quadratic irrationalities; a

property we have not examined in this thesis).

Jacobi (1868) was the first to propose a generalisation of Euclid’s algorithm,

although only to lattices of rank 3. However, Perron (1907) proposed a further

generalisation of this algorithm to lattices of arbitrary rank. Brun (1919, 1920)3

proposed another generalisation of Euclid’s algorithm to arbitrary rank. We will

3Brun’s work is known to the author only through the description of Brentjes (1981) and

other secondary sources.
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briefly describe his algorithm in the next subsection. A great many variations of

these algorithms have since been proposed, but all have been of a rather ad hoc

nature until quite recently, with the announcement by Ferguson & Forcade

(1979) of their algorithm.

A problem with these algorithms has been to show that they are strongly con-

vergent. We define a strongly convergent algorithm as one that either finds a

basis for the lattice in a finite number of iterations which contains a strict subset of

vectors such that all points x in the lattice with ρ(x) = 0 are linearly dependent on

the vectors of the subset or

(6.1) lim
j→∞

max
i=1,2,...,n

{ρ(b
(j)
i )} = 0

where b
(j)
i is the ith basis vector of the basis produced by the algorithm on the jth

iteration and n is the rank of the lattice.

Let us consider this definition for a moment. Suppose, for some lattice Ω of rank

n, there exists a basis B = {b1,b2, . . . ,bn} such that if ρ(x) = 0 and x lies in the

real span of Ω then x is a linearly dependent on {b1,b2, . . . ,bs} where s < n. In

this case, it can be shown that there exists come constant c > 0 such that ρ(v) > c

whenever v is a lattice point which is independent of b1,b2, . . . ,bs. Therefore, (6.1)

could not possibly be achieved.

Consider the special case where Ω = Zn and the only points x ∈ Rn such that

ρ(x) = 0 belong to the line Rα, α ∈ Rn. This is a problem of approximation

of a line by lattice points: “traditional” simultaneous Diophantine approximation.

Suppose also that we can find a basis of the type described above. That is, sup-

pose there exists a basis B = {b1,b2, . . . ,bn} such that α is linearly dependent

on {b1,b2, . . . ,bs}, s < n. In this special case, the dual lattice of Ω = Zn,

the lattice generated by the rows of the inverse matrix of any basis matrix of Ω, is

again Ω. Writing CT = B−1, where as usual B is the basis matrix corresponding to

B, then C is also a basis matrix of Ω. Moreover, the vectors cs+1, cs+2, . . . , cn are

all orthogonal to the vectors b1,b2, . . . ,bs and hence to α also. Thus, the vectors

cs+1, cs+2, . . . , cn are integer relations for α. The converse is also true: if there is an

integer relation for α then there exists a basis of the type described. Therefore, a

strongly convergent algorithm applied to a simultaneous Diophantine system of this

type will either find integer relations to α or find increasingly good approximations

to the line Rα. This explains the duality of the problem of approximation of a line

by lattice points and the problem of finding approximate integer relations.

Ferguson & Forcade (1979, 1982) were the first to discover a strongly con-

vergent algorithm. The algorithm was set up to find simultaneous Diophantine ap-

proximations of a line with respect to the sup-norm radius function. It is unknown

whether the algorithm can find an approximation with radius less than some pre-

scribed constant within a time bounded by a polynomial of the input size. Bergman

(1980) proposed a variant of the algorithm of Ferguson & Forcade which found
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approximations with respect to the Euclidean norm. This algorithm bears a striking

resemblance to the later LLL algorithm of Lenstra et al. (1982). The relationship

between these two algorithms was clarified and the algorithms of Bergman and

Ferguson & Forcade further developed by Hastad et al. (1989). Their algo-

rithms were aimed, in the first instance, at finding integer relations. They were able

to show, using the ideas of Lenstra et al., that the algorithm could find short inte-

ger relations or prove that none exist in polynomial time. We will describe in detail

their “Short Integer Relation Algorithm,” which we call the HJLS algorithm, and

the very similar PSLQ algorithm of Ferguson & Bailey (1991) and Ferguson

et al. (1996), in Section 6.3.

Finally in this section, we present some numerical examples comparing the out-

puts of these algorithms in lattices of rank 3 with the accelerated algorithm (Algo-

rithm 5.1) we developed earlier in the chapter.

6.2. Brun’s Algorithm. Brun’s algorithm is a quite natural generalisation of

Euclid’s algorithm to lattices of higher rank. That it is a natural generalisation

of Euclid’s algorithm is attested by the fact that, as Brentjes (1981) notes, the

algorithm has been independently rediscovered by various authors many times since

its original publication in 1919, and by the present author too! Brun’s algorithm

is specific to approximation of a line by lattice points. It doesn’t appear that it

was conceived with any particular radius function in mind, although Brun proved

certain (weak) convergence properties using the Euclidean norm.

We seek here to give Brun’s algorithm a geometric interpretation. Consider a

lattice Ω of rank n in Rn and a line l(λ) = λα, λ ∈ R, α ∈ Rn, that is to be

approximated by points of Ω. We are given a basis B = {b1,b2, . . . ,bn} of Ω. Now,

α is linearly dependent on the basis vectors so we can write

α = µ1b1 + µ2b2 + · · ·+ µnbn

where µ1, µ2, . . . , µn ∈ R. Let us assume that each of the µi are non-negative. If

this is not the case then, where µi < 0, replace bi with −bi. Furthermore, let us

assume that at least two of the µi are non-zero. If all are zero then l(λ) does not

represent a line. If only one of the µi is non-zero then one of the basis vectors lies

on the line, so there can be no further best approximations.

Construct the parallelepiped with vertices at 0 and b1,b2, . . . ,bn. The line l(λ)

intersects this parallelepiped at two points. The first point, as we increase λ, is the

origin. Increasing λ further, the line passes through the parallelepiped and at last

exits through one of its faces. The face through which the line exits is that face with

vertices at bs,bs+b1,bs+b2, . . . ,bs+bs−1,bs+bs+1, . . . ,bn where s is that index

which maximises µi, i = 1, 2, . . . , n. Now, consider placing another parallelepiped,

displaced by bs from the origin, so that it adjoins the original parallelepiped at the

face through which the line exits. Consider the face through which the line exits in
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the new parallelepiped. We can quickly confirm that it is the face opposite the face

the line entered if µs > 2µt, where t is the index which maximises µi, i = 1, 2, . . . , n,

i 6= s. If this is the case, we adjoin other parallelepipeds successively in the same

way until eventually µs 6 rµt where r is the number of parallelepiped that have been

so adjoined. The face through which the line now exits is that face with vertices at

rbs+bt, rbs+bt+b1, rbs+bt+b2, . . . , rbs+bt+bt−1, rbs+bt+bt+1, . . . , rbs+bt+bn.

Therefore, if we replace bt by bt + rbs in the basis then, when we construct

the parallelepiped as we have described from the new basis vectors, the line again

intersects its body. Brun’s algorithm is then to repeat this process until a sufficiently

good approximation is found.

We illustrate this geometric interpretation in Figure 4. Here, we illustrate an

���

���

���

�

�
	���


���

���

� � �

�

�
	���


���

���

���
��� ��� �����������

�

��	���


Figure 4. An iteration of Brun’s algorithm on a lattice of rank 3.

iteration of Brun’s algorithm on a lattice of rank 3. The line l(λ) to be approximated

has the form l(λ) = λα and

α = 0.4b1 + 0.3b2 + b3.

That is, µ1 = 0.4, µ2 = 0.3 and µ3 = 1. The line exits the parallelepiped 0,b1,b2,b3

through the face b3,b3 + b1,b3 + b2. This is illustrated by the “hole” in the top

face of the parallelepiped in the diagram at left in Figure 4. If we “stack” a similar

parallelepiped on top of the first one then the line still exits through the top face.

When we stack a third parallelepiped on to the first two then, as illustrated in the

middle diagram, the line exits through the “side” face 2b3+b1, 2b3+b1+b2, 3b3+b1.

The diagram at right shows the new parallelepiped formed after b1 is replaced with

b1 + 2b3 in the basis. Clearly, the same procedure can now be applied again to the

new basis.

The following is a formal expression of the algorithm we have described.

Algorithm 6.1.

1 begin

2 µ := B−1α;

3 for i := 1 to n do

4 if µi < 0 then
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5 µi := −µi; bi := −bi fi;

6 od;

7 while mini=1,2,...,n {ρ(bi)} > ε do

8 s := arg max {µ1, µ2, . . . , µn};
9 t := arg max {µ1, µ2, . . . , µs−1, µs+1, . . . , µn};

10 r :=

⌊
µs
µt

⌋
;

11 bt := bt + rbs;

12 µs := µs − rµt;
13 od

14 end.

We conclude this subsection by summarising some results concerning the algo-

rithm which were reported by Brentjes (1981). Brun showed that the algorithm

is weakly convergent for lattices of rank 3 in that

max {ρ(b′1), ρ(b′2), ρ(b′3)} 6 max {ρ(b1), ρ(b2), ρ(b3)}

on each iteration of the algorithm. Furthermore, he showed that the expansion

enjoys a uniqueness property for lattices of rank 3, in that a string of characters from

a certain alphabet can be used to represent the sequence of basis transformations

performed by the algorithm and this string of characters is unique for any line (up

to permutation of indices). Moreover, he showed that any string of characters from

the alphabet uniquely describes a line with respect to the initial basis. Brentjes

reports that Greiter (1977) has been able to extend these results (albeit with a

slightly weaker notion of convergence) to lattices of any rank.

However, it is certainly not true that the algorithm is strongly convergent.

Brentjes provides counterexamples to prove this. The first algorithm which was

proved to be strongly convergent was discovered by Ferguson & Forcade (1979,

1982). We now discuss the closely-related HJLS algorithm.

6.3. The HJLS Algorithm and Its Variants. The paper of Hastad et al.

(1989) contains a number of algorithms for finding integer relations and more general

simultaneous Diophantine approximation problems. Algorithms are developed both

for the arithmetic and bit complexity models. In this subsection, we will discuss one

of these algorithms, which they call the “Short Integer Relation Algorithm.” We

refer to this algorithm as the HJLS algorithm. The HJLS algorithm is very similar

to an algorithm proposed by Bergman (1980), which draws heavily on ideas used

by Ferguson & Forcade (1979, 1982) for their algorithm. As such, it shares with

them the property that it is strongly convergent. However, they extend the analysis,

using ideas of Lenstra et al. (1982), to show that an integer relation for the input

with length less than ε−1 can be proved not to exist, or a relation found with length
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less that 2n/2−1ε−1, in an amount of time which is bounded by a polynomial in the

rank of the lattice and log ε−1.

Let us now formulate the algorithm for the simultaneous Diophantine approxi-

mation system consisting of the lattice Zn in Rn and a radius function ρ and height

function h which can be expressed

ρ(x) =
∥∥PTx

∥∥
2

and h(x) = |α · x|

where PT is an n− 1× n matrix and {α,p1,p2, . . . ,pn−1} is an orthonormal basis

of Rn. Therefore, a good approximation in this system is an integer vector which

lies close to the line Rα and an integer relation for α exists if there is any non-zero

lattice point v such that h(v) = 0.

Let us denote by an underline a mapping of a vector by PT and by an overline

its mapping by αT so that x = PTx and x = α · x.

Consider the QR decomposition of B, where B is a basis matrix for Zn. Since B

does not have full column rank, consider the QR decomposition described for such

matrices in Section 4. Recall that this means we can write B = QR where Q is an

(n− 1) × n column orthogonal matrix and R is an n × n upper triangular matrix

with non-negative diagonal elements. One of the diagonal elements of R must be

zero.

If rj,j = 0 for some 1 6 j < n then α is a linear combination b1,b2, . . . ,bj. As

we discussed in Section 6.1, this implies that cj+1, cj+2, . . . , cn are integer relations

for α where CT = B−1. Furthermore, there can only be one index j for which it is

true that rj,j = 0, for otherwise the basis vectors would not be linearly independent.

Therefore, if rn,n 6= 0 then C contains at least one integer relation.

For any x,y ∈ Rn, we have the identity

x · y = x · y + x · y.

Now, for any integer relation, v, for α we have v ·x = v ·x. Furthermore, v ·x ∈ Z
if x ∈ Zn. For some index j, v · bj 6= 0. Let s be the smallest index for which this

is true. This implies that v · qi = 0 for all 1 6 i < s. We then have

1 6 |v · bs| = |v · bs|

= |r1,sv · q1 + r2,sv · q2 + · · ·+ rs,sv · qs|

= rs,s|v · qs| 6 rs,s ‖v‖2 = rs,s ‖v‖2 .

Thus, we conclude that

(6.2) ‖v‖2 > min
{
r−1
i,i | ri,i 6= 0; i = 1, 2, . . . , n

}
.

We have thus set out two important principles for finding integer relations. By

examining the diagonal elements of R, we can either discover an integer relation, if

the last element is non-zero, or place a lower bound on the size of any such relation,

as measured by the Euclidean norm, using (6.2).
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Let us now set out a version of the HJLS algorithm.

Algorithm 6.2.

1 begin

2 B := I;

3 QRdecompose(B,Q,R);

4 while rn,n = 0 ∧ max {r1,1, r2,2, . . . , rn,n} > ε do

5 j := arg max
{

21r2
1,1, 2

2r2
2,2, . . . , 2

n−1r2
n−1,n−1

}
;

6 k :=

⌊
rj,j+1

rj,j

⌉
;

7 bj+1 := bj+1 − kbj;
8 swap(bj,bj+1);

9 QRdecompose(B,Q,R);

10 od;

11 end.

The similarity of this algorithm to the version of the LLL algorithm we pre-

sented in Algorithm 7.1 of Chapter 3 is apparent at once. The clear identification

of the similarities between these two algorithms was one of the stated aims of Has-

tad et al.. Furthermore, it differs from the PSLQ algorithm and from Bergman’s

algorithm only in the details.

An important difference from the LLL algorithm is the choice of index at which

to perform an exchange of basis vectors. The rule (on line 5) is due to Bergman

(1980). We will refer to it as Bergman’s exchange rule.

Just as for Algorithm 7.1 of Chapter 3, we observe that it is unnecessary and

inefficient to perform a full QR decomposition at line 9. A Givens rotation can be

substituted.

We now state two propositions concerning the properties of the algorithm which

are adapted directly from the original paper. The first proposition concerns the

properties which hold at termination.

Proposition 6.1. If Algorithm 6.2 terminates and 0 < ε < 1 then either (6.2)

holds for any integer relation v for α or cn is an integer relation for v, where

CT = B−1 at termination. If the latter then

(6.3) ‖cn‖2
2 6 2n−2 min

{
‖v‖2

2 , ε
−2
}
.

Proof. The first part of the proposition has been established in the discussion

prior to the statement of the algorithm. It remains to show (6.3). Consider the

basis B, and the associated matrices Q and R, just prior to the final exchange step

on line 8, if there was one, and let B′, Q′ and R′ be their values after the exchange,

that is, their terminal values. With this notation, let CT = B′−1 and cn is an

integer relation for α. If there was no final exchange step then the algorithm must

have terminated before the first iteration which implies that C = I and so (6.3)
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holds trivially. So let us now assume there was a final exchange step. This must

have involved an exchange of bn−1 with bn. That the index n− 1 was chosen using

Bergman’s exchange rule implies that

r2
i,i 6 2n−i−1r2

n−1,n−1

for all 1 6 i 6 n−1. Now, after the swap, r′n−1,n−1 = 0 and therefore r′n,n = rn−1,n−1.

Hence,

r′n,n
−2

= r−2
n−1,n−1 6 2n−2 min

{
r−2
i,i | ri,i 6= 0; i = 1, 2, . . . , n

}
(6.4)

6 2n−2 min
{
‖v‖2

2 , ε
−2
}

(6.5)

where v is an integer relation for α. Now, cn is also an integer relation and cn ·b′i = 0

for 1 6 i < n so cn · q′i = 0. However, cn · b′n = 1 which implies that

1 = cn · b′n = r′n,ncn · q′n 6 r′n,n ‖cn‖2

and so

(6.6) ‖cn‖2 6 r′n,n
−1

= r−1
n−1,n−1.

Together, (6.5) and (6.6) imply (6.3). �

Proposition 6.2. If Algorithm 6.2 is executed with ε > 0 then it terminates

after O(n2(n+ log ε−1)) iterations.

Proof. We prove this proposition in a similar fashion to the proof we used for

the running time bounds for the LLL algorithm in Proposition 7.2 of Chapter 3. In

that proof we showed that the square of the value of D = d1d2 · · · dn was diminished

by at least a quarter after each exchange step, where dj = r1,1r2,2 · · · rj,j. We found

that D was bounded above and below and so we were able to obtain the desired

running time bound.

For this proof, consider again the value of D = d1d2 · · · dn, but let us instead

define the dj as

dj = m1m2 · · ·mj

where

mi = max
{
ri,i, 2

−n/2ε
}
.

At each exchange step, the application of Bergman’s exchange rule implies that

the index j is selected so that

2jr2
j,j > 2ir2

i,i

for i = 1, 2, . . . , n. Since the algorithm did not terminate on a previous iteration,

there exists some index, s, such that rs,s > ε. Hence, we find that

2nr2
j,j > 2jr2

j,j > 2sr2
s,s > 2ε2
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and so

(6.7) r2
j,j > 2−n+1ε2.

Furthermore, Bergman’s exchange rule implies that r2
j,j > 2r2

j+1,j+1 which means

that we can use Proposition 7.1 of Chapter 3 to establish that

(6.8) r′
2
j,j 6

3

4
r2
j,j, r′

2
j+1,j+1 6 r2

j,j and r′j,jr
′
j+1,j+1 6 rj,jrj+1,j+1.

We will show that the same inequalities are satisfied for mj, mj+1, m′j and m′j+1. Of

course, r′i,i = ri,i and hence m′i = mi for i = 1, 2, . . . , n when i 6= j, i 6= j + 1. As an

immediate consequence,

(6.9) d′i = di

for all i = 1, 2, . . . , j − 1.

Now, (6.7) implies that m2
j > 2−n+1ε2 and the leftmost inequality of (6.8) implies

that m′2j 6
3
4
m2
j . Thus,

(6.10) d′j
2 6

3

4
d2
j .

The middle inequality of (6.8) clearly implies that m′j+1
2 6 m2

j .

We will now show that m′jm
′
j+1 6 mjmj+1. If r′j,j > 2−n/2ε then

m′jm
′
j+1 = r′j,jm

′
j+1 6 rj,jmj+1 = mjmj+1.

Otherwise,

m′jm
′
j+1 6 mj+1m

′
j+1 6 mj+1mj.

It follows that

(6.11) d′i 6 d′i

for all i = j + 1, j + 2, . . . , n.

Together, (6.9), (6.10) and (6.11) imply that

D′ 6

√
3

2
D,

just as we were able to show for the LLL algorithm. The algorithm begins with

the initial basis matrix set to the identity. This implies that, initially, ri,i 6 1 for

i = 1, 2, . . . , n and so D 6 1. If, at any iteration, mi = 2−n/2ε for all i = 1, 2, . . . , n

then the algorithm will terminate and so

D >
(
2−n/2ε

)n(n+1)/2
.

Thus, the total number of iterations, E, is bounded by

E 6 n(n+ 1)
[

1
2
n log2/

√
3 2 + log2/

√
3 ε
−1
]

and so the number of iterations performed by the algorithm before termination is

O(n2(n+ log ε−1)). �
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Each iteration of the HJLS algorithm requires vector addition (subtraction) and

a Givens rotation. Thus, O(n) arithmetic operations are required in each itera-

tion, so the total number of arithmetic operations required by the algorithm is

O(n3(n+ log ε−1)).

We now briefly describe two of the variants proposed by Hastad et al.. They

proposed variants for finding multiple linearly independent integer relations and for

finding simultaneous integer relations. To find multiple, say k, linearly independent

integer relations, it is necessary to continue the iterations until rn−k,n−k = 0 or

until it can be shown that there is no set of linearly independent integer relations

all of which have Euclidean norm less than ε−1. To do this, we check whether

max {r1,1, r2,2, . . . , rn−k+1,n−k+1} > ε.

Consider the problem of finding simultaneous integer relations, by which we

mean that the matrix PT in the radius function has row rank t < n− 1 and αT in

the height function is no longer a vector but an (n− t)× n matrix. A simultaneous

integer relation v for α is found when h(v) = 0. There will always be n − t zeros

on the main diagonal of R. To make the algorithm suitable for this new purpose,

we continue the iterations until rt,t = 0. If this occurs then cn is a simultaneous

integer relation for α. If instead max {r1,1, r2,2, . . . , rn,n} > ε then we can conclude

that there are no simultaneous integer relations with Euclidean norm less that ε−1.

It is interesting to compare the HJLS algorithm with the similar PSLQ algorithm

and Bergman’s algorithm. The PSLQ algorithm differs from the HJLS algorithm in

two key respects: the Bergman’s exchange rule is parameterised so that the index j

so that

j = arg max
{
γr1,1, γ

2r2,2, . . . , γ
nrn,n

}
where γ > 2/

√
3 and full (but slightly modified) Hermite reduction is performed

after each exchange step. The modification to Hermite reduction referred to is that

the matrix R which dictates the operations on the basis is obtained in this case from

the QR decomposition of B rather than of B. It is also worth mentioning that, in

Ferguson et al. (1996), the authors extended the PSLQ algorithm to approxima-

tion problems in complex and quaternion vector spaces. Bergman’s algorithm differs

from the HJLS algorithm in that it too performs modified Hermite reduction, and

its termination criterion appears to be slightly different. In Bergman’s algorithm,

the emphasis is upon finding a basis consisting of sufficiently good approximations

to the line Rα or finding a single integer relation for α. Therefore, we could say that

Bergman’s algorithm terminates if rn,n > 0 or max {ρ(b1), ρ(b2), . . . , ρ(bn)} 6 ε.

As we remarked for the LLL algorithm, a numerically stable version of the

HJLS algorithm requires full (modified) Hermite reduction at each exchange step in

order to keep the size of the elements of R small. The penalty incurred is that the

arithmetic complexity is further increased by a factor of n. This may explain the
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superior numerical properties of the PSLQ algorithm which have been demonstrated

by Ferguson et al..

Now, let us consider the properties of the HJLS algorithm with respect to ap-

proximation of the line Rα. If we allow the algorithm to run with some arbi-

trarily small ε then the algorithm either finds an integer relation or halts with

max {r1,1, r2,2, . . . , rn,n} 6 ε. Suppose the latter. If we Hermite-reduce the terminal

basis then, for each basis vector bi, i = 1, 2, . . . , n, we have

ρ(bi) = ‖bi‖2

=
(
r2

1,j + r2
2,j + · · ·+ r2

j,j

)1/2

6
(

1
4
r2

1,1 + 1
4
r2

2,2 + · · ·+ 1
4
r2
j−1,j−1 + r2

j,j

)1/2

6 1
2
ε
√
n+ 3.

Therefore, if we Hermite-reduce the terminal basis of the HJLS algorithm then this

new algorithm either detects an integer relation or produces a basis of arbitrarily

good approximations of the line Rα. Therefore, the algorithm is strongly convergent.

How good are these approximations compared to the best approximations? The

answer to this question is unknown but more recent algorithms of Just (1992) and

Rössner & Schnorr (1996) attempt to ensure that the approximations produced

are not only small in radius but also in height. In order to show that the approxima-

tions are good with respect to this criterion, they appeal to the following theorem

of Dirichlet, which is the generalisation of Theorem 2.1 of Chapter 2 to arbitrary

dimensions, and its consequences.

Theorem 6.1. Given any N real numbers α1, α2, . . . , αN and an integer Q > 1,

there exist N + 1 integers p1, p2, . . . , pN , q such that

(6.12) 0 < q < QN and |qαi − pi| 6
1

Q

for all i = 1, 2, . . . , N .

Proof. The proof makes use of the pigeon-hole principle and is a straightfor-

ward extension of the proof of Theorem 2.1 of Chapter 2. Consider the set of

QN + 1 integer (N + 1)-tuples which consists of (0, 0, . . . , 0), (−1, 0, . . . , 0) as well

as (bqα1c, bqα2c, . . . , bqαNc, q) for q = 1, 2, . . . , QN − 1. For any element of the set

(p1, p2, . . . , pN , q), it is clear that (qα1 − p1, qα2 − p2, . . . , qαN − pN) lies within the

unit hypercube [0, 1]N . We then divide this hypercube into QN smaller hypercubes

in the obvious way, the sides of each have length 1/Q. Since we have QN + 1 ele-

ments in our set of integers (N + 1)-tuples, there must be a pair of (N + 1)-tuples

(p1, p2, . . . , pN , q) and (p′1, p
′
2, . . . , p

′
N , q

′) such that

(qα1 − p1, qα2 − p2, . . . , qαN − pN) and (q′α1 − p′1, q′α2 − p′2, . . . , q′αN − p′N)
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with q and q′ not both zero that belong to the same small hypercube. Therefore,

|(q′ − q)α− (p′i − pi)| 6
1

Q

for all i = 1, 2, . . . , N and 0 < |q′ − q| < QN . �

Corollary 6.1. Given N real numbers α1, α2, . . . , αN there is at least one so-

lution in integers p1, p2, . . . , pN , q, q 6= 0, to

(6.13) |qαi − pi| < q−1/N

for all i = 1, 2, . . . , N . If any of the αi are irrational then there is an infinity of

integer solutions.

Proof. Theorem 6.1 implies that there must exist one solution, since for any

Q > 0 we find a solution with

|qαi − pi| 6 Q−1 < q−1/N .

If, for some 1 6 j 6 N , αj 6∈ Q then for any solution to (6.13) we have |qαj − p| =
ε > 0 for all integers p, q, q 6= 0. By setting Q > 1/ε we can deduce the existence

of a different solution. Thus, there must be an infinite sequence of solutions in this

case. �

The following theorem is more complex to prove, so its proof is omitted (see

Cassels, 1957, Theorem III, p. 79).

Theorem 6.2. Corollary 6.1 is not true if the exponent −1/N in (6.13) is re-

placed by any smaller constant.

Finding solutions to (6.12) is a simultaneous Diophantine approximation problem

of finding points in ZN+1 which lie close to the line Rα, as measured by the sup-norm,

where α = (α1, α2, . . . , αN , 1). Corollary 6.1 implies that there exist approximations

which lie sufficiently “close” to the line in the sense implied by (6.13). Theorem 6.2

implies that no better exponent can be substituted. For this reason, we refer to (6.13)

as the Dirichlet bound.

Rössner & Schnorr (1996), improving the analysis of Just (1992), have

announced that their algorithm produces simultaneous Diophantine approximations

of this type which satisfy

|qαi − pi| 6
2(N+3)/4

√
1 + α2

i

q1/N

for all i = 1, 2, . . . , N . That is, they are, within a constant factor, as good as can be

expected (although not necessarily best approximations). Their algorithm, which is

essentially due to Just, is again similar to the HJLS algorithm. The chief departures

from the HJLS algorithm are the use of full Hermite reduction after each exchange

step and the abandonment of Bergman’s exchange rule. Instead, the exchange rule
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of the LLL algorithm is applied with the restriction that exchanges of the last two

vectors in the basis may only be performed when there is no other choice.

Finally in this subsection, we note that simultaneous Diophantine approximation

and finding integer relations were two of the original applications of the LLL algo-

rithm envisaged by Lenstra et al. (1982). They propose a method by which a

lattice is constructed for a particular α and ε and then Lovász-reduced. The si-

multaneous Diophantine approximation obtained in this way fulfills the Dirichlet

bound, up to a constant factor. It is therefore unclear which method is to be pre-

ferred. However, the algorithms we have presented here appear to be a little more

elegant in that, if a smaller value of ε is subsequently required, these algorithms

need only undergo a few more iterations. The approach of Lenstra et al. requires

a new lattice and hence a new QR decomposition. Furthermore, these algorithms

(particularly the PSLQ algorithm) have, or can be easily modified to have, good

numerical stability.

6.4. Numerical Examples. In this subsection, we revisit Example 4.2 to com-

pare the performance of our accelerated algorithm (Algorithm 5.1) with Brun’s al-

gorithm (Algorithm 6.1) and the HJLS algorithm (Algorithm 6.2).

Example 6.1. We consider the problem of finding good or best approximate

integer relations to (e2, e, 1). Here we compare the bases produced by our accelerated

algorithm with those produced by Brun’s algorithm and the HJLS algorithm. In

Example 4.2, we used the additive algorithm to find all the best approximate integer

relations to (e2, e, 1) through the simultaneous Diophantine approximation system

consisting of the lattice Z3 and radius and height functions defined by

ρ(x) = |α · x| and h(x) =
∥∥PTx

∥∥
2

where α = (e2, e, 1) and the columns p1 and p2 of P are an orthonormal basis of

the orthogonal complement of α in R3. Since the radius and height are strictly

convex and complementary, we are assured that, for every best approximate integer

relation, Algorithm 5.1 will find an equivalent lattice point.

Table 8 lists the state of the basis on each iteration in a format which is now

familiar. As witnessed in the table, by the 14th iteration, the accelerated algorithm

has found the six best approximate integer relations for α with radius greater than

ε = 0.01 as well as (−6, 13, 9).

To compare Brun’s algorithm, we have modified Algorithm 6.1 to output the

updates to the inverse basis matrix, CT = B−1. We initially set C := I and we

augment the line bt := bt + rbs (line 11) with cs := cs− rct. It can be checked that

the condition CTB = I is thus always maintained. Table 9 lists the state of the basis

at the beginning of each iteration of this modification to Brun’s algorithm. We have

chosen to terminate the algorithm at the point at which the best approximate integer

relation (−6, 13, 9) is discovered by the algorithm. To this point, the algorithm has
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Table 8. Outputs and important variables of Algorithm 5.1 applied

to α = (e2, e, 1).

It. b1 b2 b3 ρ(v) h(v)

1 (0, 0, 1) (0, 1, 0) (1, 0, 0)

2 (0, 0, 1) (0,1,−1) (1, 0, 0) 1.72 1.40

3 (0,1,−2) (0, 0, 1) (1, 0, 0) 0.718 2.23

4 (0, 1,−2) (1,−2,−1) (0, 0, 1) 0.952 2.45

5 (−1,2,2) (0, 1,−2) (1,−2,−1) 4.72× 10−2 3.00

6 (−1, 2, 2) (0,−1,3) (0, 1,−2) 0.282 3.16

7 (−1, 2, 2) (1,−3,1) (0, 1,−2) 0.234 3.32

8 (−1, 2, 2) (2,−5,−1) (0, 1,−2) 0.187 5.48

9 (−1, 2, 2) (3,−7,−3) (0, 1,−2) 0.139 8.19

10 (−1, 2, 2) (1,1,−10) (3,−7,−3) 0.107 10.1

11 (2,−8,7) (−1, 2, 2) (1, 1,−10) 3.19× 10−2 10.8

12 (−3,10,−5) (2,−8, 7) (1, 1,−10) 1.56× 10−2 11.6

13 (3,−3,−14) (−3, 10,−5) (2,−8, 7) 1.23× 10−2 14.6

14 (−6,13,9) (3,−3, 14) (2,−8, 7) 3.33× 10−3 16.9

Table 9. Outputs and important variables of Brun’s algorithm ap-

plied to α = (e2, e, 1).

It. c1 c2 c3 ρ(v) h(v)

1 (1, 0, 0) (0, 1, 0) (0, 0, 1)

2 (1,−2,0) (0, 1, 0) (0, 0, 1) 1.95 2.22

3 (1,−2, 0) (−1,3,0) (0, 0, 1) 0.766 3.16

4 (1,−2,−1) (−1, 3, 0) (0, 0, 1) 0.952 2.45

5 (1,−2,−1) (−1, 3, 0) (−1,2,2) 4.75× 10−2 3.00

6 (2,−5,−1) (−1, 3, 0) (−1, 2, 2) 0.187 5.48

7 (2,−5, 1) (−9,23,4) (−1, 2, 2) 1.90× 10−2 25.0

8 (5,−11,−7) (−9, 23, 4) (−1, 2, 2) 4.42× 10−2 14.0

9 (5,−11, 7) (−9, 23, 4) (−6,13,9) 3.33× 10−3 16.9

discovered only three of the seven best approximations with radius greater than or

equal to that of (−6, 13, 9).

Finally, we demonstrate the operation of the HJLS algorithm. Table 10 lists

the state of the (inverse) basis C at the beginning of each iteration. The algorithm

was executed with ε = 0.01 and terminates after the 11th iteration, concluding that

there is no integer relation x for α with h(x) 6 100. To this point, it has discovered

four of the seven best approximations with radius greater than or equal to that

of (−6, 13, 9) as well as one, (8,−28, 17), with smaller radius. Notice that two of
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Table 10. Outputs and important variables of the HJLS algorithm

applied to α = (e2, e, 1).

It. c1 c2 c3 ρ(v) h(v)

1 (1, 0, 0) (0, 1, 0) (0, 0, 1)

2 (1, 0, 0) (0, 0, 1) (0,−1,3) 0.282 3.16

3 (0, 0, 1) (−1,0,8) (0,−1, 3) 0.611 8.06

4 (0, 0, 1) (0,−1, 3) (−1,2,2) 4.75× 10−2 3.00

5 (0,−1, 3) (0,−4,11) (−1, 2, 2) 0.127 11.7

6 (0,−1, 3) (−1, 2, 2) (−3,10,−5) 1.56× 10−2 11.6

7 (−1, 2, 2) (−6,13,9) (−3, 10,−5) 3.33× 10−3 16.9

8 (−1, 2, 2) (−3, 10,−5) (−6, 13, 9)

9 (−3, 10,−5) (8,−28,17) (−6, 13, 9) 5.58× 10−4 33.7

10 (−3, 10,−5) (−6, 13, 9) (8,−28, 17)

11 (−6, 13, 9) (−27,55,50) (8,−28, 17) 9.86× 10−4 79.1

the iterations only involve an exchange: the partial Hermite reduction involves no

operations on the basis (that is, k := 0 at line 6).





C H A P T E R 5

PROBABILITY OF INTERCEPT

1. Introduction

Intercept time problems are those in which one wishes to obtain information

about the simultaneous coincidence of two or more periodic events. They are in-

teresting mathematical problems and common to many physical systems, but they

are particularly relevant to the design of equipment for electronic support measures

(ESM), such as radar warning receivers. In designing a radar warning receiver, it

often happens that we can only observe a given part of the environment periodically

for a short time. For example, this will be the case if we use a rotating, directional

antenna or we use a swept-frequency superheterodyne receiver. In addition, the

radar we wish to observe might only be transmitting periodically for a short time.

A good radar warning receiver should observe a radar very soon after it first begins

transmitting, so in designing our radar warning receiver we would like to ensure that

the intercept time is low or the probability of intercept after a specified time is high.

We can formulate these problems as problems of determining the time at which

several periodic pulse trains coincide. For instance, in the case of rotating, direc-

tional antennas, we can associate a function to each antenna that is equal to 1 or

true whenever that antenna is pointing at the other antenna (to within some toler-

ance as specified, perhaps, by the main beam width) and 0 or false at other times.

Both functions are periodic pulse trains. Both have a fixed period, which we

call the pulse repetition interval or PRI corresponding to the time required

for one revolution of the antenna and a pulse width corresponding to the tolerance

in angle. The antennas are “looking at each other” only when both functions are 1

(or true) simultaneously.

In certain situations, we may have to consider more than two periodic processes of

this type. For example, the transmitting antenna may be emitting a periodic train of

radar pulses at a particular carrier frequency as it rotates and the receiving antenna

may be searching (scanning) periodically through a range of carrier frequencies.

Thus, the receiver will receive energy from the transmitter only when the four pulse

trains associated with the problem coincide.

The analysis of interception of pulse trains has been investigated sporadically

over the last fifty years. Richards (1948) was the first to publish a detailed analysis

of the probability of intercept of two strictly periodic pulse trains. His construction

of the problem is essentially similar to ours. He discovered a good approximation

153
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for the probability and attempted to account for possible uncertainties in the pa-

rameters of the pulse trains. He demonstrated the relationship between the ratio of

PRIs and the Farey series, as we also will. Miller & Schwarz (1953) and sub-

sequently Friedman (1954) and Hawkes (1983) showed how intercept time could

be predicted for rational PRI ratios using linear congruence. Using a statistical de-

scription of pulse trains due to Stein & Johansen (1958), Self & Smith (1985)

derived an expression for the probability of intercept when the pulse widths and time

differences between pulses are random variables. They claimed that the expression

can be used as an approximation in the case where these parameters are fixed and

known. Their results seem to have gained acceptance amongst practitioners in the

ESM community because of their simplicity, their applicability to cases involving

more than two pulse trains, their accuracy in some situations and because of the

orientation of their paper towards ESM problems. However, their assumption that

the probabilities of intercept in small, disjoint intervals are independent is invalid

in the cases considered in this chapter. Most recently, Kelly et al. (1996) de-

rived an exact expression for the probability of intercept where one phase is known.

One of the objectives of this chapter is to present their results in the language of

Diophantine approximation.

Suppose we have n pulse trains. Throughout this chapter, we assume that the

time-of-arrival (TOA) of the ith pulse from the kth pulse train occurs at the

time iTk + φk where Tk is the PRI and φk is the phase. We will sometimes refer to

the integer i as the pulse index. The pulses from each pulse train have associated

with them a pulse width τk. We define the ith pulse from the kth pulse train to

be “on” at time t when

iTk + φk − 1
2
τk 6 t 6 iTk + φk + 1

2
τk.

A coincidence or intercept occurs when all n pulse trains are simultaneously

on. This is illustrated for the case of three pulse trains in Figure 1.

Let us now briefly summarise the contents of this chapter. We will consider a

number of intercept time problems. Firstly, we will do this for two pulse trains only.

We will consider the following variations: where the phases are known and equal,

where they are known and unequal and where one or both are random variables.

We will show that the problem can be simply stated and solved using the theory

and algorithms for Diophantine approximation that we developed in Chapter 2. We

will then consider intercept time problems involving more than two pulse trains. We

will see that this is a simultaneous Diophantine approximation problem. Therefore,

we can apply the theory and algorithms of Chapter 4. We find that many of the

calculations which can be done easily for two pulse trains are difficult problems for

arbitrary numbers of pulse trains. To conclude, we will contrast our approach to

others which have appeared in the literature.
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Figure 1. Coincidence (intercept) of three pulse trains.

Let us now consider these topics in a little more detail. In Sections 2–5, we

consider problems involving two pulse trains only. For the problem of calculating

intercept time of two pulse trains, we assume that the phases of the pulse trains are

known a priori. We then want to find an algorithm for computing when the first

intercept will occur and when subsequent intercepts will occur. For the probability

of intercept, we assume that one or both phases are random and we want to find the

probability that at least one intercept has occurred after a certain number of pulses

or after a certain time.

We will firstly revisit the intercept time problem in Section 2. Unlike Miller &

Schwarz (1953) and similar work which exploits the properties of linear congruence,

we will not restrict the ratio of PRIs to being rational numbers. We formulate the

problem as a Diophantine approximation problem. We find that, by considering the

simple continued fraction expansion of the PRI ratio and examining the convergents

of that expansion, we can compute the intercept time. We present a means for

finding the times of further intercepts with a recurrence equation. We believe that

these techniques offer insights into the problem which have not previously come to

light and they provide efficient methods for computation.

In Section 3, we will examine the probability of intercept between two periodic

pulse trains. We show how the intercept probability expression of Kelly et al.

where one phase is known can be reinterpreted and simplified by considering the

number theoretic results obtained for the intercept time. We then consider the prob-

lem of Richards, where neither phase is known and derive an exact expression for

the probability of intercept in this case. As the exact expression is rather complex,

we show that the expression for the earlier case, where one phase is known, can be

adapted and used as a good approximation. In Section 4, we derive expressions for

the mean time to intercept.



156 PROBAB I L I TY OF INTERCEPT

In Section 5, we examine the dependence of the probability of intercept of two

pulse trains on the PRI parameters. We explore the relationship between the prob-

ability of intercept and the Farey series and outline how a recursive algorithm can

be constructed to exactly calculate average probabilities of intercept.

We will then discuss the problem of interception of three or more pulse trains in

Section 6. Although we can obtain satisfactory answers for some problems involving

three pulse trains (using the theory and algorithms developed in Chapter 4), we will

see that the properties which we relied upon for cases involving two pulse trains

quickly evaporate as we increase the number of pulse trains.

Finally, in Section 7, we present a short critique of the approaches arising from

linear congruence and the from the stochastic representation of pulse trains.

2. Intercept Time of Two Pulse Trains

In this section, we will discuss the problem of the intercept time of two pulse

trains. Initially, we will consider the pulse trains divorced from their pulse widths, as

if they were a sequence of points or impulses. We will solve the equivalent problem

of approximate coincidence. As we discussed earlier, the TOAs of the pulse

trains are defined as iT1 + φ1 for the first pulse train and jT2 + φ2 for the second,

where i and j are integers. Approximate coincidence occurs to within a tolerance δ

when

(2.1) |iT1 + φ1 − jT2 − φ2| 6 δ.

Hence, we have formulated the problem as a problem in Diophantine approximation.

In our original problem, that of finding the first intercept time, the pulse trains

have pulse widths, τ1 and τ2, associated with them. We assume here that the

TOA of a pulse is defined as occurring in the middle of the pulse. The problem of

finding intercepts reduces to the problem of approximate coincidence stated above

where δ = 1
2
(τ1 + τ2). A closely related approximate coincidence problem is that

where, in order to register an intercept, the intercept must last at least a length

of time d. If an intercept occurs between the two pulse trains for pulse indices i

and j then the length of the intercept is min
{

1
2
(τ1 + τ2)− |ζ|, τ1, τ2

}
where ζ =

iT1 + φ1 − jT2 − φ2. Therefore an intercept of length d or greater occurs if and

only there is an approximate coincidence of the pulse trains within a tolerance

δ = 1
2
(τ1 + τ2)− d.

We will begin by discussing the case where φ1 = φ2. The inequality of (2.1)

reduces to

(2.2) |iT1 − jT2| 6 ε.

We will refer to this condition as the in phase problem. This is a homogeneous

Diophantine approximation problem. We have already studied the theory of Dio-

phantine approximation in Chapter 2. We will show how the simple continued
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fraction expansion of the ratio of the PRIs and Euclid’s algorithm can be directly

used to find the first approximate coincidence.

We will then consider the case where φ1 − φ2 6= 0. We will refer to this as the

arbitrary phase problem. This is an inhomogeneous Diophantine approximation

problem. We will show that the first approximate coincidence can be found using

Cassels’ algorithm.

To conclude this section, we will consider the problem of finding further approx-

imate coincidences, having found one. We will show that a recurrence equation can

be used to find all further coincidences.

2.1. In Phase Initial Conditions. If we write α = T2/T1 then a solution

to (2.2) is equivalent to finding a solution in integers p, q to

|qα− p| 6 ε

where ε = δ/T1. Now, (p, q) = (0, 0) is a trivial solution. If

(2.3) ε > min {1, α}

then either (p, q) = (1, 0) or (p, q) = (0, 1) is a solution. Suppose that (2.3) does not

hold. We seek the first approximate coincidence, by which we mean the non-trivial

solution in positive integers to (2.2) with least pulse index with respect to one of

the pulse trains. It does not matter to which pulse train the criterion of least pulse

index is applied: the first approximate coincidence will be the same, as we shall see.

However, for the moment, suppose we seek the approximate coincidence with least

positive pulse index for the second pulse train. Then we seek a best homogeneous

Diophantine approximation of α in the absolute sense. From Theorem 3.6 of Chap-

ter 2 we know that the correspondence of best approximations in this sense and the

convergents of the simple continued fraction expansion of α is nearly one-to-one.

We can state the following theorem.

Theorem 2.1. The minimum i > 0 or j > 0 such that |iT1 − jT2| 6 δ, T1, T2 > 0

when 0 < δ < min {T1, T2} is given by i = pn(ε), j = qn(ε) where

(2.4) n(ε) = min
n>0
{n | |ηn| 6 ε}

and (pn, qn) is the nth convergent of the s.c.f. expansion of α = T2/T1, ηn is the

corresponding approximation error and ε = δ/T1.

Proof. The proof is a consequence of Theorem 3.6 and subsequent Remarks. So

long as α is not a half-integer, its s.c.f. expansion contains all the best approximations

of α in the absolute sense. If α is a half-integer then the best approximation (bαc, 1)

will appear as a convergent but (dαe, 1) will be missed. This is of no consequence

since the two approximations have identical absolute approximation error and the

former has the lesser pulse index for the first pulse train.
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The approximation errors of the convergents are a strictly decreasing sequence,

so it is appropriate to choose the minimum n such that |ηn| 6 ε. In this way, we find

the best approximation we require and we are assured that the pulse index for the

second pulse train is minimal. We will now see that it is minimal in the first pulse

index also. Suppose there exists some 0 < i < pn(ε) for which there can be found some

j > 0 to produce an approximate coincidence. Then j > qn(ε) because
(
pn(ε), qn(ε)

)
is

the best approximation with smallest denominator with an absolute approximation

error less than or equal to ε. But then jα − i > ηn + α + 1 > min {α, 1} > ε and

this is a contradiction. �

We recall that formulation of the problem as a homogeneous Diophantine ap-

proximation problem allows the use of Euclid’s algorithm to find the first approxi-

mate coincidence. Hence, we can find first approximate coincidences in O(log ε−1)

arithmetic operations.

2.2. Arbitrary Phase Initial Conditions. The problem can be generalised

to include the situation where the difference in phases or relative phase φ1−φ2 =

φ is arbitrary. Again, we wish to find the first time of approximate coincidence.

Hence, we want to find the first i, j > 0 such that |iT1 − jT2 + φ| 6 δ. Note that it

is now possible, but no longer necessary, that the pulse trains could approximately

coincide at i = j = 0. If there is an approximate coincidence with i = 0 or j = 0

then it can be easily detected by determining if∣∣∣∣−⌊ φT2

⌉
T2 + φ

∣∣∣∣ 6 δ or

∣∣∣∣⌊−φT1

⌉
T1 + φ

∣∣∣∣ 6 δ,

respectively. In what follows, we assume there are no approximate coincidences

when i = 0 or j = 0.

If, as with the in phase initial conditions, we set α = T2/T1 and ε = δ/T1 and

now also set β = φ/T1 then finding an approximate coincidence involves finding two

positive integers p and q which satisfy

|qα− p− β| 6 ε.

The problem is thus one of inhomogeneous Diophantine approximations. The first

approximate coincidence is thus a best inhomogeneous Diophantine approximation.

From Theorem 5.1 of Chapter 2, we know that all the best approximations can

be obtained from the outputs of Cassels’ algorithm. We state the following theorem.

Theorem 2.2. Consider solutions to

|iT1 − jT2 + φ| 6 δ

with T1, T2, δ > 0 in integer i, j with j > 0. If a solution exists then the solution

with the minimum positive value for j and associated value for i are given by

(2.5) (i, j) =
(
Pm(ε) − kpm(ε)−1, Qm(ε) − kqm(ε)−1

)
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where

m(ε) = min
m>0
{m | |ζm| 6 ε},

k = min

{
bm(ε),

⌊
ε−

∣∣ζm(ε)

∣∣∣∣ηm(ε)−1

∣∣
⌋}

,(2.6)

ε = δ/T1 and the pn, qn are the convergents of the s.c.f. expansion of α = T2/T1,

the ηn are the associated homogeneous approximation errors and the Pn and Qn are

the auxiliary convergents with respect to β = φ/T1, the ζn are their inhomogeneous

approximation errors and the bn are the auxiliary partial quotients as output by

Cassels’ algorithm (Algorithm 5.1 of Chapter 2).

Before proving this theorem, we recall, from Corollary 5.1 of Chapter 2, the

behaviour of Cassels’ algorithm for inputs α and β. It either terminates with ζn = 0

or ηn = 0 or it produces a non-terminating sequence of outputs with limn→∞ ζn =

0. If it does not terminate or it terminates with |ζn| 6 ε then m(ε) is defined

and an approximate coincidence occurs. If it terminates with |ζn| > ε then no

approximate coincidence occurs. If the algorithm terminates in this condition then

ηn = 0 which means that the PRIs satisfy some rational relation. Hence, we interpret

this condition as that in which the pulse trains are synchronised, but “out of step”

with one another.

Proof. The proof follows from Theorem 5.1 of Chapter 2. First of all, the

appearance of bm(ε) in (2.6) is allowable because we can be sure that the algorithm

must be in state (An) on the (m(ε)− 1)th iteration. Otherwise, from statement (vi)

of Remark 5.1 of Chapter 2, ζm(ε) = ζm(ε)−2. Now, since 0 6 k 6 bm(ε), the expression

for (i, j) in (2.5) is an intermediate auxiliary convergent of α with respect to β

(or an auxiliary convergent if k = bm(ε)). It is easily checked that the absolute

inhomogeneous approximation error of the integer pair so determined is less than

or equal to ε. Consider the arrangement of auxiliary convergents and intermediate

auxiliary convergents defined in the proof of Theorem 5.1 of Chapter 2. According

to this arrangement, the intermediate auxiliary convergent (or auxiliary convergent)

selected by (2.5) is the first in the sequence that has an absolute inhomogeneous

approximation error less than or equal to ε. Therefore, we conclude that it is the

inhomogeneous best approximation of α with respect to β with least “denominator”

such that the absolute inhomogeneous approximation error is less than or equal to

ε. �

We recall that Cassels’ algorithm (a modification of Euclid’s algorithm) allows

us to find the first approximate coincidence in the sense implied by Theorem 2.2, or

to disprove its existence, in O(log ε−1) arithmetic operations.

2.3. Finding Further Intercepts. It may be of interest not only to find the

first approximate coincidence, but to find subsequent ones also. We will present
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a recurrence equation for finding all approximate coincidences after the first. The

recurrence equation is valid regardless of whether the in phase or arbitrary phase

initial conditions hold.

Henceforth, we will abuse notation slightly and use the shorthand p(ε), q(ε)

and η(ε) respectively to denote the numerator, denominator and homogeneous ap-

proximation error of the convergent
(
pn(ε), qn(ε)

)
where n(ε) is defined as in (2.4) of

Theorem 2.1.

Suppose η(ε) 6= 0. We define an intermediate fraction (p′(ε), q′(ε)) where

(p′(ε), q′(ε)) =
(
pn(ε)+1 − kpn(ε), qn(ε)+1 − kqn(ε)

)
=
(
pn(ε)−1 +

(
an(ε)+1 − k

)
pn(ε), qn(ε)−1 +

(
an(ε)+1 − k

)
qn(ε)

)
(2.7)

and

(2.8) k =

⌊
ε−

∣∣ηn(ε)+1

∣∣∣∣ηn(ε)

∣∣
⌋
.

Let η′(ε) denote the approximation error |q′(ε)α− p′(ε)|. We can quickly confirm

that |η′(ε)| 6 ε and |η′(ε)− η(ε)| > ε. Now, k > 0 since
∣∣ηn(ε)+1

∣∣ < ∣∣ηn(ε)

∣∣ 6 ε

and k < an(ε)+1 since if k > an(ε)+1 then |η′(ε)| >
∣∣ηn(ε)−1

∣∣ > ε. Thus, (p′(ε), q′(ε))

is an intermediate fraction between the n(ε)th and (n(ε) + 1)th convergents unless

k = 0, in which case it is the (n(ε) + 1)th convergent. Furthermore, we see that

η′(ε) 6= 0 since this would imply that ηn(ε)+1 = 0 and k = 0, which is impossible

since
∣∣ηn(ε)

∣∣ 6 ε.

We can now state the following theorem regarding further intercepts.

Theorem 2.3. Suppose there exists a pair of pulse indices (P,Q) which define

an approximate coincidence |PT1 −QT2 + φ| 6 δ for some T1, T2, δ > 0 with δ <

min {T1, T2}. Let α = T2/T1, β = φ/T1, ε = δ/T1, ζ = Qα− P − β and

(2.9) (R, S) =


(p(2ε), q(2ε)) if |ζ + η(2ε)| 6 ε,

(p′(2ε), q′(2ε)) if |ζ + η′(2ε)| 6 ε,

(p(2ε) + p′(2ε), q(2ε) + q′(2ε)) otherwise.

Then (P +R,Q+ S) defines the pulse indices of the next approximate coincidence,

by which it is meant that there are no approximate coincidences for which the second

pulse index is greater than Q but less than Q+ S.

We remark that if η(2ε) = 0 then p′(2ε) and q′(2ε) are not defined. In this

case, (2.9) reduces to (R, S) = (p(2ε), q(2ε)).

Proof. Consider the pair of pulse indices (P + p,Q+ q) where p and q are non-

negative integers. If the pair define an approximate coincidence then q > 0 since

δ < min {T1, T2}. In order for them to define an approximate coincidence we must
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have

|(Q+ q)α− (P + p)− β| 6 ε

which implies that, with η = qα− p,

|η| 6 |ζ|+ ε 6 2ε.

Hence, if |ζ + η(2ε)| 6 ε then (R, S) = (p(2ε), q(2ε)) since this is the best approx-

imation with least denominator such that its absolute approximation error is less

than or equal to 2ε. Suppose this is not the case.

We know, from the definition of p′(ε), q′(ε) and η′(ε) at the beginning of this

subsection, that |η(2ε)− η′(2ε)| > 2ε. Furthermore, from statement (ii) of Proposi-

tion 3.1 of Chapter 2, we deduce that η(2ε) and η′(2ε) have opposite sign. Thus, in

order for the pair (P + p,Q+ q) to form an approximate coincidence, we must have

(η − η(2ε))(η − η′(2ε) + η(2ε)) < 0.

We can then apply Proposition 3.3 and Proposition 3.4 of Chapter 2 to show that

the smallest positive value of q for which this is satisfied, and the corresponding

value of p, is given by (p, q) = (p′(2ε), q′(2ε)). Hence, if |ζ + η′(2ε)| 6 ε then this is

the integer pair which should be chosen for (R, S).

Suppose that both |ζ + η(2ε)| > ε and |ζ + η′(2ε)| > ε. We know that η(2ε) and

η′(2ε) have opposite sign so we now require that

(η − η(2ε))(η − η′(2ε)) < 0.

Again applying Proposition 3.3 and Proposition 3.4 from Chapter 2, we find that

(p, q) = (p(2ε) + p′(2ε), q(2ε) + q′(2ε)) is the integer pair with least denominator

which satisfies this inequality. Without loss of generality, suppose η(2ε) > 0 and

η′(2ε) < 0. Then ζ + η(2ε) > ε which implies that ζ + η(2ε) + η′(2ε) > −ε since

η′(2ε) > −2ε. Similarly, we have ζ + η′(2ε) < −ε which implies that ζ + η′(2ε) +

η(2ε) < ε. Thus, |ζ + η(2ε) + η′(2ε)| < ε. We conclude that if (R, S) 6= (p(2ε), q(2ε))

and (R, S) 6= (p′(2ε), q′(2ε)) then (R, S) = (p(2ε) + p′(2ε), q(2ε) + q′(2ε)). �

The expression (2.9) of Theorem 2.3 defines a recurrence equation by which all

further approximate coincidences after the first can be found. For the case of in

phase initial conditions, we may set P = Q = 0.

3. Probability of Intercept of Two Pulse Trains

We now discuss how the number theoretic solution used in the previous section

can be applied to the solution of probability of intercept problems involving two

pulse trains. In the probability of intercept problem, one or both of the phases are

assumed to be uniform random variables with ranges equal to their respective PRIs.

Two subproblems are now analysed. The first subproblem is the case in which

only the phase of the second pulse train, φ, is a random variable, and we want to
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know the probability of intercept after N pulses from the first pulse train. That is,

we want to know the probability of at least one coincidence occurring with one of

the first N pulses from second pulse train. We shall sometimes refer to this as the

discrete time problem. The second subproblem is the case in which both phases

are random, and we want to know the probability of intercept over the time interval

[0, t]. We shall sometimes refer to this as the continuous time problem and to

the interval [0, t] as the observation interval. The method of solution of the

first subproblem leads to the solution of the second.

3.1. Uniformly Random Phase for One Pulse Train. We wish to find the

probability that at least one approximate coincidence to within δ has occurred with

pulse train 1 after N pulses from pulse train 2. We assume that we know the phase of

pulse train 2. We can set the time origin so that pulses from pulse train 2 occur at the

times jT2, where j is a non-negative integer, without loss of generality. The relative

phase, Φ, is unknown and is assumed to be a random variable, uniformly distributed

over the interval (−T1, 0]. At this point, we should justify this assumption. In an

ESM scenario involving a simple transmitter and receiver, what we want to calculate

is some measure of confidence of intercepting a pulse train within a certain number

of “pulses” or “looks” from our receiver, and these looks constitute the second pulse

train. The time at which our receiving equipment is turned on (the first look; pulse

index j = 0) is known to us and is not random. We define the point t = 0 to be at

the centre of this first look, in accordance with our usual construction. We assume

that the pulse train from the transmitter which we wish to intercept — the first

pulse train — is present at this time, which is to say that at least one pulse from

the second pulse train occurred at some time t 6 0. We assume that we have no

control over when the transmitter begins operating. If the distribution of the “turn-

on” time for the transmitter relative to that of the receiver exists and is sufficiently

smooth and broad then the distribution of the time-of-arrival of the pulse from the

transmitter immediately preceding the first from the receiver will be approximately

uniform. Thus, we assign the pulse index i = 0 to this pulse and assume that the

relative phase is uniform, in order to arrive at an indicative probability of intercept.

Otherwise, we can view the results we will describe not as a probability in the strict

sense but simply as a proportion of relative phases in (−T1, 0] that would have led

to an intercept after the prescribed number of pulses from the second pulse train.

Let us now consider how to determine the probability of intercept. We again

normalise all the parameters with respect to T1 and define α = T2/T1 and ε = δ/T1.

Let β be an instance of the random variable B, where B = Φ/T2. Therefore,

B ∼ U(−1, 0). An approximate coincidence with tolerance ε occurs with one of the

first N pulses from pulse train 2 if there exists some 0 6 q < N such that

|qα− p− β| 6 ε
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for some integer p. Let Ip,q be the interval on R of length 2ε defined by

Ip,q = {x ∈ R | |qα− p− x| 6 ε}.

Thus, an intercept occurs if

β ∈
⋃

p,q∈Z;

06q<N

Ip,q.

Let CN(β) be the characteristic function of this union. That is, CN(β) = 1 if there

exists some p, q ∈ Z, 0 6 q < N such that β ∈ Ip,q and CN(β) = 0 otherwise. Let

PN be the probability of intercept after N pulses from the second pulse train. Then

(3.1) PN =

∫ 0

−1

CN(β) dβ.

That is, the probability of intercept is that proportion of the range of possible relative

phases (from −1 to 0) which is covered by the intervals Ip,q with 0 6 q < N . Now,

CN(β) is periodic with period 1 so we could replace the interval of integration in (3.1)

with any interval of length 1. Notice that PN = 1 for all N > 0 if ε > 1
2
. Therefore,

we will assume that ε < 1
2
.

Let us now consider the increase in the probability of intercept as we increment

N . That is, we consider PN+1 − PN for N > 0. We define P0 = 0. We write

(3.2) PN+1 − PN =

∫ Nα+
1
2

Nα−1
2

CN+1(β)− CN(β) dβ.

Now, CN+1(β)−CN(β) = 1 if and only if there exists an integer p such that x ∈ Ip,N
but x 6∈ Ip,q for any other choice of p or 0 6 q < N . Otherwise, CN+1(β)−CN(β) = 0.

Furthermore, the interval I0,N is the only interval of the form Ip,N , p ∈ Z, which is

contained within the limits of integration in (3.2). All others lie completely outside.

Therefore, the value of PN+1 −PN is the length of that portion of the interval I0,N

which does not overlap other intervals of the form Ip,q with p, q ∈ Z, 0 6 q < N .

An overlap of I0,N with Ii,j, i ∈ Z, 0 6 j < N occurs if |(N − j)α− i| 6 2ε.

Therefore, we know that no such overlap can occur if 0 6 N < q(2ε). In this case,

(3.3) PN+1 − PN = 2ε.

If η(2ε) = 0 then

I0,N = I−p(2ε),N−q(2ε).
Thus, if η(2ε) = 0 and N > q(2ε) then

(3.4) PN+1 − PN = 0.

Suppose η(2ε) 6= 0 and N > q(2ε). In this case, we know that I0,N overlaps with

I−p(2ε),N−q(2ε) but the overlap is not complete. If it overlaps with this interval only

then the length of the subinterval of I0,N that is not overlapped — the “exposed”

subinterval — is |η(2ε)|. Suppose I0,N overlaps other intervals as well. Suppose it
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overlaps Ii,j. Let (p, q) = (−i, N − j) and let η = qα− p. If η has the same sign as

η(2ε) and greater absolute value then there is no effect on the length of the exposed

subinterval. Recalling that η′(2ε)− η(2ε) has opposite sign to η(2ε) and its absolute

value is greater than 2ε, we deduce that an overlap with Ii,j will only affect the

length of the exposed subinterval if

(η − η(2ε))(η − η′(2ε) + η(2ε)) < 0.

From Proposition 3.3 of Chapter 2, we know that this can only be satisfied if q 6 0

or q > q′(2ε). Therefore, we conclude that if η(2ε) 6= 0 and q(2ε) 6 N < q′(2ε)

then no other overlaps occur which affect the length of the exposed subinterval and

therefore

(3.5) PN+1 − PN = |η(2ε)|.

Suppose η(2ε) 6= 0 and N > q′(2ε). We know that I0,N overlaps on one side

with I−p(2ε),N−q(2ε) and on the other side with I−p′(2ε),N−q(2ε). These are the closest

overlaps on either side so long as

(η − η(2ε))(η − η′(2ε)) > 0

for all admissible intervals Ii,j where, as before, (p, q) = (−i, N − j) and η = qα−p.
Applying Proposition 3.3 of Chapter 2 once more, we conclude that this is the case

when q′(2ε) 6 N < q(2ε) + q′(2ε). Consider the length of the exposed subinterval

of I0,N in this case. Suppose that η(2ε) > 0 and η′(2ε) < 0. The subinterval of I0,N

which is not already covered by the other intervals is then

(Nα + η′(2ε) + ε,Nα + η′(2ε)− ε).

If the signs are reversed then the interval is

(Nα + η(2ε) + ε,Nα + η(2ε)− ε).

In either case, the length is |η(2ε)− η′(2ε)|−2ε. We know that I0,N is not completely

covered since |η(2ε)− η′(2ε)| > 2ε. Therefore, if η(2ε) 6= 0 and q′(2ε) 6 N <

q(2ε) + q′(2ε) then

(3.6) PN+1 − PN = |η(2ε)|+ |η′(2ε)| − 2ε.

Finally, suppose η(2ε) 6= 0 and N > q(2ε)+q′(2ε). In this case I0,N is overlapped

by

I−p(2ε),N−q(2ε), I−p(2ε)−p′(2ε),N−q(2ε)−q′(2ε) and I−p′(2ε),N−q′(2ε).

The distances between the centres of these intervals are |η′(2ε)| for the former two

and |η(2ε)| for the latter two. Since both of these distances are less than or equal

to 2ε, we conclude that I0,N is completely covered by the other intervals and so

(3.7) PN+1 − PN = 0

in this case.
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We can now express the probability of intercept for N > 0 as

(3.8)

PN =



2εN if 0 6 N 6 q(2ε),

2εq(2ε) if N > q(2ε) and η(2ε) = 0,

|η(2ε)|N
+[2ε− |η(2ε)|]q(2ε) if q(2ε) < N 6 q′(2ε) and η(2ε) 6= 0,

[|η(2ε)|+ |η′(2ε)| − 2ε]N

+[2ε− |η(2ε)|]q(2ε)
+[2ε− |η′(2ε)|]q′(2ε) if q′(2ε) < N 6 q(2ε) + q′(2ε) and η(2ε) 6= 0,

1 otherwise.

The expression (3.8) arises from the summation of the terms (3.3), (3.4), (3.5),

(3.6) and (3.7). We need only show that the last subexpression for PN is correct,

namely that PN = 1 when η(2ε) 6= 0 and N > q(2ε) + q′(2ε). Consider the value of

PN when N = q(2ε) + q′(2ε). We have

Pq(2ε)+q′(2ε) = |η′(2ε)|q(2ε) + |η(2ε)|q′(2ε)

= |η′(2ε)q(2ε)− η(2ε)q′(2ε)|

=
∣∣(ηn(2ε)+1 − kηn(2ε)

)
qn(2ε) − ηn(2ε)

(
qn(2ε)+1 − kqn(2ε)

)∣∣
=
∣∣ηn(2ε)+1qn(2ε) − ηn(2ε)qn(2ε)+1

∣∣
where k is defined in (2.8). We then use statement (viii) of Proposition 3.1 of

Chapter 2 to show that this expression must be equal to 1. Equation (3.7) then

implies that PN = 1 for all N > q(2ε) + q′(2ε) when η(2ε) 6= 0.

Figure 2 illustrates the value of the characteristic function CN(β) over the interval

[−1, 0] for N = 5, N = 9 and N = 14 where α = 0.217 and ε = 0.05. In this illus-

tration, the interval over β is fixed whereas in the preceding discussion we allowed it

to move in order to center I0,N . Nevertheless, from the topmost illustration, we can

see that, for N 6 5, the intervals Ip,N are separate and do not overlap. Therefore,

the rate of growth of the probability of intercept is at its greatest. We call this the

stage of no overlap. In the middle illustration, we see that, for 5 < N 6 9, the

intervals Io,N overlap on one side only. We call this the single overlap stage.

Finally, in the illustration at bottom, we see that, for 9 < N 6 14, the intervals

Ip,N overlap previous intervals on both sides, filling in the last of the “gaps” in the

integration interval. We call this the double overlap stage. For N > 14, the

value of CN(β) = 1 everywhere and all new intervals Ip,N are completely overlapped

by previous intervals. We call this the complete overlap stage.

In Figure 3(a), we present a graph of the probability of intercept, PN , as a

function of N using the same parameters that were used in Figure 2, i.e., α = 0.217
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Figure 2. The value of the characteristic function CN(β) for N = 5,

N = 9 and N = 14.

and ε = 0.05. The four linear segments are clearly visible in the graph and each has

been labelled according to the corresponding stage.

Note that the form of (3.8) enables efficient computation of plots of probability

of intercept for a range of PRI ratios. For example, consider two pulse trains for

which the PRI, T2, and pulse width, τ2, of the second pulse train is known, but

only the duty cycle λ = τ1/T1 of the first pulse train is known. We wish to

find the probability of intercept after a prescribed number of pulses, N , from the

second pulse train. By writing ε = (λT1 + τ2)/(2T1), we can apply (3.8) and plot

the probability as a function of T1. A plot illustrating this appears as Figure 3(b)

with both duty cycles set at 10% (i.e., ε = 0.05 + 0.05α−1) and T2 = 1. From the

plot, it is clear that the probability is highly erratic when T1 < 10 before following

a smooth decay for T1 > 10.

Even faster methods for drawing this kind of graph, and computing averages

from it, are described in Section 5.

3.2. Uniformly Random Phase for Both Pulse Trains. Another problem

of interest is the case where the total observation time is known, but the phases

of the pulse trains are not. We can interpret this problem as one where no control

is exercised over the phases of either pulse train. Richards (1948) discusses this
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(a) Probability of intercept as a function of number of pulses from pulse

train 2 with α = 0.217 and ε = 0.05.
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(b) Probability of intercept as a function of the PRI of pulse train 2 with

N = 10, T2 = 1 and both duty cycles at 10%.

Figure 3. Plots of probability of intercept with a random time offset

for one pulse train

problem and finds an approximate expression for the form of the probability of

intercept.

Richards shows that the solution to the problem can be found by considering

the “phase space” of the pulse trains. Let us now consider this approach. Suppose
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both pulse trains have a negative phase, which is to say that at least one pulse from

each pulse train occurred prior to time t = 0. At any given time t > 0, both pulse

trains are on (an intercept occurs) if there exists some i, j ∈ Z such that

(3.9) |iT1 + φ1 − t| 6 1
2
τ1 and |jT2 + φ2 − t| 6 1

2
τ2.

Let us assume that the pulse which arrived just prior to t = 0 is labelled the 0th for

both pulse trains and that this labelling causes the distribution of the phases to be

uniform. That is, if we let Φk, k = 1, 2, be the random variable representing the

phase of the kth pulse train then Φk ∼ U(−Tk, 0). Let Ii,j(t) be the interval in R2

defined by

Ii,j(t) =
{

(x, y) ∈ R2 | |iT1 + x− t| 6 1
2
τ1; |jT2 + y − t| 6 1

2
τ2

}
.

Clearly, Ii,j(t) has area τ1τ2. An intercept occurs at the time instant t if (φ1, φ2) ∈
Ii,j(t) for any i, j ∈ Z. Therefore, the probability of intercept at that instant is

(τ1τ2)/(T1T2). Consider the probability of at least one intercept occurring over the

time interval [0, t]. Let C(x, y; t) be the characteristic function of the set⋃
i,j∈Z;
06u6t

Ii,j(u).

An intercept occurs during the interval [0, t] for a particular pair of phase φ1 and φ2

if and only if C(φ1, φ2; t) = 1. Thus, the probability of intercept P(t) over the time

interval [0, t] is

(3.10) P(t) =
1

T1T2

∫ 0

−T2

∫ 0

−T1
C(φ1, φ2; t) dφ1 dφ2.

We observe that, since the characteristic function is periodic in its first two argu-

ments with periods T1 and T2, respectively, the intervals of integration in (3.10)

could be replaced by any intervals of lengths T1 and T2 for the appropriate inte-

grands. We call the Cartesian product of any such choice of integration intervals

the phase space or phase plane, since it contains all possible choices of phase,

up to periodicities.

We now discuss a geometric interpretation of (3.10). Consider again the sets

Ii,j(t). Let i and j be fixed as we vary t. The rectangle described by Ii,j(t) moves

an equal distance up and across as we increase t. Therefore, for fixed i and j, the

union ⋃
06u6t

Ii,j(t)

is a hexagonal region formed by “dragging” the rectangle Ii,j(0) diagonally up and

across by t. Now, since the characteristic function we are integrating in (3.10) is

periodic in its first two arguments and the length of the integration interval is the

period for each integrand, we can think of the characteristic function being integrated

over a torus, rather than a rectangle. The support of the characteristic function is



PROBAB IL ITY OF INTERCEPT OF TWO PULSE TRA INS 169

the hexagonal region wrapped around the torus. We illustrate this in Figure 4. It

���
� �
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Figure 4. Region of the phase space within which pulse coincidence

can occur

shows an example of how the rectangle Ii,j(0) is dragged over the torus. The most

darkly shaded area shows where the rectangle started at time 0, which we call the

initial rectangle, the medium shading is the area covered, ending at the lightly

shaded rectangle at time t, which we call the leading rectangle. The probability

of intercept P(t) is the ratio of the shaded areas to the area of the larger rectangle

(torus).

In contrast to the discrete time problem, we note that P(0) = (τ1τ2)/(T1T2)

and is in general non-zero. On the other hand, we will now see that otherwise the

problem bears a close resemblance to the earlier problem. Observe how the “swathe”

cut by the leading rectangle crosses the boundary of the integration rectangle as t

is increased. Assume for definiteness that the boundary under consideration is a

boundary along which φ2 is constant. In Figure 4, this is an edge of the integration

rectangle with length T1. The width of the swathe across the boundary is τ1 + τ2.

Each time the rectangle returns to the boundary, it will be a distance T2 further

along. This is very similar to the construction we employed in solving the discrete

time probability of intercept problem. That is, if we consider only the boundary

crossings then they behave like accumulation of the intervals Ip,q on R in the discrete

time problem. Therefore, we should be able to use the discrete time solution to

determine the number of crossings before single overlaps occur, the number before

double overlaps occur and the number before the entire length of the boundary has

been covered. We know that the time between crossings is T2.

We therefore expect the probability of intercept over time to consist of four

linear segments corresponding to the four segments in the expression for PN in

(3.8). Instead of the integer index N , the probability of intercept is now a function
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of the continuous time argument, t, and we expect the transitions between segments

to occur at integer multiples of T2. However, there is a slight advance or delay

according to when the leading rectangle overlaps with the initial rectangle. The

exact amount can be worked out by simple geometrical considerations. In addition

to the slight advance or delay, there will also be a short period of time when the

rectangles are “meshing” during which the rate of growth of the probability is non-

linear (in fact it is quadratic).

Let us again normalise all the parameters with respect to T1. Thus, we have

α = T2/T1, ε1 = τ1/(2T1) and ε2 = τ2/(2T1). Let ε = ε1 + ε2. The symbols p(2ε),

q(2ε), η(2ε), and so on, have their usual meanings with regard to the s.c.f. expansion

of α. We can now write an expression for the probability of intercept thus:

(3.11)

P(t) =
h(t)

T1T2

+
1

T2



4T1ε1ε2 + 2εt if 0 6 t 6 t1,

4T1ε1ε2 + 2εt1 if η(2ε) = 0 and t > t1,

4T1ε1ε2 + |η(2ε)|t
+[2ε− |η(2ε)|]t1 if η(2ε) 6= 0 and t1 < t 6 t2,

4T1ε1ε2

+[|η(2ε)|+ |η′(2ε)| − 2ε]t

+[2ε− |η(2ε)|]t1
+[2ε− |η′(2ε)|]t2 if η(2ε) 6= 0 and t2 < t 6 t3,

T2 − ν2/T1 if η(2ε) 6= 0 and t > t3,

where

t1 = T2q(2ε)− T1 min {2ε1 + η(2ε), 2ε2},

t2 = T2q
′(2ε)− T1 min {2ε1 + η′(2ε), 2ε2},

t3 = T2[q(2ε) + q′(2ε)]− T1 min {2ε1 + η(2ε) + η′(2ε), 2ε2}

and

h(t) =


0 if t 6 t?,

(t− t?)(2ν − t+ t∗) if t? < t 6 t∗ + ν,

ν2 if t > t? + ν,

where

ν = T1 min {|2ε1 + ω1|, |2ε2 − ω1|, |2ε1 + ω2|, |2ε2 − ω2|}
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and

(ω1, ω2, t
∗) =


(η(2ε), 0, t1) if −2ε1 6 η(2ε) 6 2ε2,

(0, η′(2ε), t2) if −2ε1 6 η′(2ε) 6 2ε2,

(η(2ε), η′(2ε), t3) otherwise.

The function h(t) represents the quadratic segment which occurs when the lead-

ing rectangle meshes with the initial rectangle. Notice that if τ1τ2 � T1T2 then h(t)

will be negligible. Furthermore, t1, t2 and t3 will approximate q(2ε)T2, q′(2ε)T2 and

[q(2ε) + q′(2ε)]T2, respectively.

Figure 5(a) is a plot of a similar style to Figure 3(a), using similar parameters.

The PRIs and pulse widths have been selected to ensure that α = 0.217 and ε = 0.05.

It shows that the forms of the probabilities are very similar, with the exception that

we are now dealing with a continuous quantity (time) as our independent axis rather

than a discrete quantity (number of pulses). It is quite difficult to discern the extra,

quadratic segment in the plot because it is very small in this case. For this reason,

the quadratic segment is show in the inset.

Figure 5(b) is nearly identical to Figure 3(b). Indeed, inspection of the values

reveals that the difference between the functions is less than 0.009 at any point.

Hence, it would appear that, with some small modifications, the expression for the

probability of intercept which was derived for the discrete case could be used to

approximate the probability of intercept in the continuous case to a high degree of

accuracy. This is especially true when the pulse widths are small compared to the

PRIs. We now discuss the construction of such an approximation.

3.3. Approximation for the Probability of Intercept. We have seen from

Figure 5(b) that it should be possible to approximate the expression of the proba-

bility of intercept when both phases are random in (3.11) with a simpler expression

resembling that of the probability of intercept when only one phase is random. Such

an expression is now given:

(3.12)

P̂(t) =
1

T2



2εt if 0 6 t 6 q(2ε)T2,

2εq(2ε) if η(2ε) = 0 and t > q(2ε)T2,

|η(2ε)|t
+[2ε− |η(2ε)|]q(2ε)T2 if η(2ε) 6= 0 and q(2ε)T2 < t 6 q′(2ε)T2,

[|η(2ε)|+ |η′(2ε)| − 2ε]t

+[2ε− |η(2ε)|]q(2ε)T2

+[2ε− |η′(2ε)|]q′(2ε)T2 if η(2ε) 6= 0

and q′(2ε)T2 < t 6 [q(2ε) + q′(2ε)]T2,

T2 if η(2ε) 6= 0 and t > [q(2ε) + q′(2ε)]T2.
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(a) Probability of intercept as a function of time with T1 = 1, T2 = 0.217,

τ1 = 0.07 and τ2 = 0.03.
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(b) Probability of intercept as a function of the PRI of pulse train 2 with

t = 10, T2 = 1 and both duty cycles at 10%.

Figure 5. Plots of probability of intercept with random time offsets

for both pulse trains

Note the close similarity between the expression for P̂(t) in (3.12) and that for

PN in (3.8). The expression for the former is now simply a linear interpolation

between the discrete points of the latter, and with a scaling in the time axis by T2.
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Consider the error of our approximate expression for the continuous time proba-

bility of intercept. There are five sources of difference between the approximate ex-

pression (3.12) and the true expression (3.11): the absence of the quadratic segment

h(t), the absence of the initial probability P(0) = (τ1τ2)/(T1T2) and the differences

in the (three) time boundaries between the linear segments. In each case it can be

shown that the total contribution to the error is less that (τ1 + τ2)2/(T1T2) and so

we conclude that ∣∣∣P̂(t)− P(t)
∣∣∣ 6 5

(τ1 + τ2)2

T1T2

.

Hence, so long as τ1 � T1 and τ2 � T2, i.e. both duty cycles are small, then we can

use the approximation with only a very small error.

4. Mean Time to Intercept of Two Pulse Trains

Calculating the mean time1 to intercept is a straightforward extension of the

solution to the probability of intercept problem discussed previously. From the

expression for the probability of intercept in the discrete time case of (3.8), we can

express the mean time to intercept as

(4.1)

E[N ] = 1
2

+ 1
2
|η′(2ε)|q(2ε)2 + 1

2
|η(2ε)|q′(2ε)2 + [|η(2ε)|+ |η′(2ε)| − 2ε]q(2ε)q′(2ε).

A similar expression can be derived for the continuous time case, although the

resulting expression is not as neat. From consideration of (3.11), we get

E[t] = [T1ε
(
t21 + t22 − t23

)
+ T1|η(2ε)|

(
t23 − t21

)
+ T1|η′(2ε)|

(
t23 − t22

)
+ 2t∗ν2 + 2

3
ν3]/(2T1T2).

Figure 6 shows the mean time to intercept plotted using (4.1) for a range of PRI

ratios and ε = 0.05 in the discrete time case. The plot indicates that the minimum

mean time is 5.5. This occurs because the rate of growth of the probability of

intercept cannot exceed 2ε. That is, PN 6 2εN and so we can deduce that the mean

time to intercept satisfies

(4.2) E[N ] >

⌊
1
2
ε−1

⌋∑
n=1

2εn = ε
⌊

1
2
ε−1
⌋(⌊

1
2
ε−1
⌋

+ 1
)
.

Substituting for ε, we find that (4.2) is in agreement with the observed minimum

in Figure 6. Notice the symmetry of the plot about α = 0.5. We can also see that the

mean time becomes very large at several points on the graph. In fact, it approaches

infinity. The points at which this occurs are from a Farey series, and their relevance

is now discussed in greater detail.

1To be precise, we should write “mean number of pulses from pulse train 2 to intercept” in

the discrete time case, but we write “mean time” for convenience.
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Figure 6. Mean time to intercept, E[N ], plotted against the PRI

ratio α with ε = 0.05.

5. Relationship with Farey Series

We now discuss the situation in which the PRIs of the pulse trains are not known

exactly a priori, but are known to lie within some range. We assume that, although

a PRI may be unknown, it is a constant. We firstly discuss how the probability of

intercept changes as we vary a PRI, holding all other parameters constant.

Consider how q(2ε) changes as we vary the PRI ratio α. If we write q(2ε)

as a function of α also, i.e. as q(2ε, α) then we can show that q(2ε, α) is piecewise

constant. We will show that the intervals on which the function is constant surround

points in a Farey series of the appropriate order. To see this, recall Theorem 7.2 from

Chapter 2. Let F(ε) denote the Farey series of order dε−1e − 1. From Theorem 7.2,

we see that if h/k < h′/k′ are adjacent elements in the Farey series F(2ε) and

h/k 6 α 6 h′/k′ then

p(2ε)

q(2ε)
∈
{
h

k
,
h′

h′

}
.

Deciding between the two elements is simple and follows directly from the definition

of a best approximation. Suppose k < k′. If |kα− h| 6 2ε then p(2ε)/q(2ε) = h/k,

otherwise h′/k′. On the other hand, suppose k′ < k. If |k′α− h′| 6 2ε then

p(2ε)/q(2ε) = h′/k′, otherwise h/k. Note that k 6= k′ since the order of the Farey

series in question is greater than 1 because ε < 1
2
.

Therefore, we see that p(2ε, α) and q(2ε, α) is piecewise constant over α. The

points of transition between constant values are dictated by the elements of F(2ε).

It is clear that η(2ε) will therefore be piecewise linear.

In order to calculate the probability of intercept over a range of α, it is also

necessary to find q′(2ε, α) and η′(2ε, α) when η(2ε) 6= 0. We make the following

definition.
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Definition 5.1. The left and right parent of the Farey point h/k, k > 1, are

those two Farey points which are adjacent in a lower order such that h/k is their

mediant. The left parent is the lesser of the two parents.

To find q′(2ε) and η′(2ε) for a given α from information in the Farey series, it

is sufficient to find pn(2ε)−1/qn(2ε)−1. From Theorem 7.4 of Chapter 2, we know that

pn(2ε)−1/qn(2ε)−1 is one of the parents of p(2ε)/q(2ε). Specifically, it is the left parent

if α < p(2ε)/q(2ε) or the right parent otherwise. Given these two convergents, we

can calculate p′(2ε), q′(2ε) and η′(2ε) directly from (2.7).

Given adjacent elements h/k < h′/k′ in F(2ε) and the right parent of h/k and the

left parent of h′/k′, we have enough information to directly calculate the probability

of intercept for α over the entire interval [h/k, h′/k′], with all other parameters being

held constant. Let H/K be the right parent of h/k and H ′/K ′ be the left parent of

h′/k′. An expression for the probability of intercept, PN(α), over the interval is

(5.1) PN(α) =



2εN if N 6 k and x0 6 α 6 x1,

|η(2ε, α)|N
+[2ε− |η(2ε, α)|]q(2ε, α) if N > k and x0 6 α 6 d1,

[|η(2ε, α)|+ |η′(2ε, α)| − 2ε]

+[2ε− |η(2ε, α)|]q(2ε, α)

+[2ε− |η′(2ε, α)|]q′(2ε, α) if N > k and d1 < α 6 f1,

1 if N > k and f1 < α 6 x1,

1 if N > k′ and x1 6 α < f2,

[|η(2ε, α)|+ |η′(2ε, α)| − 2ε]

+[2ε− |η(2ε, α)|]q(2ε, α)

+[2ε− |η′(2ε, α)|]q′(2ε, α) if N > k′ and f2 6 α < d2,

|η(2ε, α)|N
+[2ε− |η(2ε, α)|]q(2ε, α) if N > k′ and d2 6 α 6 x2,

2εN if N 6 k′ and x1 6 α 6 x2.

where

x0 =
h

k
,

x1 =


h+ 2ε

k
if k < k′,

h′ − 2ε

k′
otherwise,

x2 =
h′

k′
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and

(p(2ε, α), q(2ε, α)) =

(h, k) if x0 6 α < x1,

(h′, k′) if x1 < α 6 x2,

(p′(2ε, α), q′(2ε, α)) =

(H + κ(2ε, α)h,K + κ(2ε, α)k) if x0 6 α < x1,

(H ′ + κ(2ε, α)h′, K ′ + κ(2ε, α)k′) if x1 < α 6 x2.

The values for the approximation errors η(2ε, α) and η′(2ε, α) are calculated in the

usual way. The intermediate points d1, f1, f2 and d2 define the boundaries between

single overlap, double overlap, complete overlap, double overlap and single overlap,

in ascending order of α. Expressions for these points are as follows:

d1 = min

{
x0 +

1− 2εk

kq′(2ε, α)
, x1

}
,(5.2)

f1 = min

{
x0 +

1− 2εk

kq′(2ε, α)− k2
, x1

}
,

f2 = max

{
x2 −

1− 2εk′

k′q′(2ε, α)− k′2
, x1

}
and

d2 = max

{
x2 −

1− 2εk′

k′q′(2ε, α)
, x1

}
.(5.3)

The value of κ(2ε, α) is constant on the intervals (d1, f1] and [f2, d2) and on these

intervals can be expressed as

κ(2ε, α) =


⌈
N −K
k

⌉
if α ∈ (d1, f1],⌈

N −K ′

k′

⌉
if α ∈ [f2, d2).

It should be noted that the choice of strict or weak inequalities is rather ar-

bitrary in the above expressions. This is because the probability of intercept is a

continuous function of α and is insensitive to which case is used on the boundary

points. However, we have used strict inequalities in (5.1) to prevent the expres-

sion of pN(α) from becoming any more awkward than it is already. We have used

the strict inequalities in (5.1) in conjunction with the min {·} and max {·} notation

of (5.2)–(5.3) as a shorthand way of testing whether the boundaries between regions

occur on the “correct” side of x1, and thereby to determine if these regions exist at

all.

Also observe that we can adapt the probability of intercept expression of (5.1)

to serve as an approximation to the probability of intercept in the continuous time

case by everywhere replacing occurrences of N with t/T2.

Figure 7 plots the probability of intercept as a function of the number of pulses

from the first pulse train, N , and the PRI ratio α with ε = 0.05. The plot consists
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Figure 7. Plot of the discrete time probability of intercept as a func-

tion of the PRI ratio, α, and number of pulses, N , with ε = 0.05.

of a sloping face for small N , levelling out when the probability reaches unity. The

face has several valleys gouged out around certain PRIs. These valleys are centered

about the Farey points, as we discussed above.
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Figure 8. Probability of intercept shown by regions

Figure 8 shows how the discrete time probability of intercept as plotted in Fig-

ure 7 can be interpreted in terms of “regions.” For any given N and α, it shows

whether the probability of intercept lies in the region of no overlap, single or double

overlap or complete overlap. The boundaries of these regions were computed using

the expression (5.1). The probabilities are linear within these regions, so integration

or averaging becomes a simple task once the boundaries are known. The recursive

Algorithm 7.1 from Chapter 2 can be modified for this purpose.
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6. Simultaneous Coincidence of More Than Two Pulse Trains

The computational problem of the approximate coincidence of many pulse trains

is made difficult by the computational complexity of simultaneous Diophantine ap-

proximation, to which each of these problems can be reduced. In this section, we

will examine the intercept time problem and the probability of intercept problem.

For arbitrary numbers of pulse trains, we cannot say very much about the form of

the solutions. For three pulse trains, we can use the algorithms of Chapter 4 to

obtain solutions in some instances.

6.1. Intercept Time. Simultaneous approximate coincidence of n pulse trains

occurs when there is a group of pulses, one from each pulse train, that have TOAs

which are sufficiently close to one another. That is, simultaneous approximate co-

incidence occurs when

k1T1 + φ1 ≈ k2T2 + φ2 ≈ · · · ≈ knTn + φn

where, as usual, Tj and φj are the PRI and phase of the jth pulse train and kj is the

(integer) pulse index. More particularly, an approximate coincidence occurs if

kjTj + φj − t ≈ 0

at some time t. To pose this problem a little more precisely, we could construct an

inhomogeneous lattice Ω in Rn defined so that

Λ = {(k1T1 + φ1, k2T2 + φ2, . . . , knTn + φn) | k1, k2, . . . , kn ∈ Z}.

Approximate coincidence occurs if there exists some v ∈ Ω such that v − t1 ≈
0. Thus, according to this formulation, the problem is one of finding points of Λ

which lie sufficiently close to the line R1. We can reformulate this in terms of a

homogeneous lattice

Ω = {(k1T1, k2T2, . . . , knTn) | k1, k2, . . . , kn ∈ Z}

and the inhomogeneous line R1−(φ1, φ2, . . . , φn). With the choice of an appropriate

“distance function” from the lattice points to the line, the problem becomes well-

posed.

When we associate the pulse width τj to each of the pulses of the jth pulse train,

a simultaneous coincidence occurs at time t when

|k1T1 + φ1 − t| 6 1
2
τ1,

|k2T2 + φ2 − t| 6 1
2
τ2,

...

|knTn + φn − t| 6 1
2
τn.
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In the lattice formulation, the choice of distance function is a scaling of the sup-norm

defined so that

‖x‖ = max

{∣∣∣∣x1

τ1

∣∣∣∣, ∣∣∣∣x2

τ2

∣∣∣∣, . . . , ∣∣∣∣xnτn
∣∣∣∣}.

A simultaneous coincidence occurs if ‖v − t1‖ 6 2 for some lattice point v ∈ Ω

and some t ∈ R. Geometrically, we can picture a rectangular prism centred about

each of lattice points, with sides of length τ1, τ2, . . . , τn. The problem is to find the

intersection of these prisms with the line R1.

By taking the projection along R1 onto an orthogonal hyperplane, we discover

that a simultaneous coincidence occurs if and only if

|kiTi + φi − kjTj − φj| 6 1
2
(τi + τj)

for all 1 6 i, j 6 n. Of course, we can deduce this directly by noticing that a

simultaneous coincidence occurs if and only if there is a coincidence between every

pair of pulse trains i and j.

For two pulse trains, we were able to calculate intercept time for both in phase

and arbitrary phase initial conditions: in the former case using Euclid’s algorithm

and in the latter case using Cassels’ algorithm. We were also able to find further

intercepts from a given one using a recurrence relation. The author knows of no

simple analogue of these results for multiple pulse trains, save only for the case of

in phase initial conditions with three pulse trains.

For the case of three pulse trains where φ1 = φ2 = φ3 — the in phase initial

conditions — we are able to construct a simultaneous Diophantine approximation

system, as defined in Definition 2.6 of Chapter 4, and apply either Algorithm 4.1

or Algorithm 5.1 of the same chapter to find the first intercept with respect to one

of the pulse indices. The details of this construction were given in Example 4.3 of

Chapter 4.

6.2. Probability of Intercept. For the problem involving two pulse trains, we

distinguished two subproblems of probability of intercept: the discrete time problem

where the phase of one of the pulse trains was known and the other uniformly random

over the range of its PRI, and the continuous time problem where both phases were

uniformly random. For more than two pulse trains, we have a greater choice. We can

specify that m out of n phases are known and the rest are uniformly random. For

the problem of two pulse trains, we were able to determine that the probability of

intercept as a function of pulse index or time consisted of at most four linear segments

(plus a fifth quadratic segment in the continuous time subproblem). We were also

able to identify the relationship with the Farey series, allowing us to examine the

behaviour of the probability of intercept as the ratio of PRIs was varied. Can any of

these properties be carried over into problems involving more than two pulse trains?

Again, the author knows of no simple analogue to these results. However, we are
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able to prove a negative result. We will see that the number of linear segments in

the expression for the probability of intercept is unbounded.

We consider two problems which we will call the discrete time and continuous

time problems for the probability of intercept of more than two pulse trains. In the

discrete time problem, one phase is known and the rest are uniformly random over

the ranges of their respective PRIs. In the continuous time problem, all are assumed

to be uniformly random.

Consider the discrete time problem. Let φn be the phase that is known and

suppose it is 0. Let the other phases be instances of the uniform random variable

Φj ∼ U(−Tj, 0). Consider the sets

Ik1,k2,...,kn = {x ∈ Rn−1 | |kiTi + xi − kjTj − xj| 6 1
2
(τi + τj);

|kiTi + xi − knTn| 6 1
2
(τi + τn); 1 6 i, j < n}

which are solid polyhedra in Rn−1. For n = 3, they are hexagons. If, for a

given instance of the random variables, (φ1, φ2, . . . , φn−1) ∈ Ik1,k2,...,kn for some

k1, k2, . . . , kn ∈ Z and 0 6 kn < N then an intercept occurs within the first N

pulses from pulse train n. If we set CN(x) to be the characteristic function of the

union ⋃
k1,k2,...,kn∈Z;

06kn<N

Ik1,k2,...,kn

then the probability of intercept after N pulses from pulse train n is

PN =
1

T1T2 · · ·Tn−1

∫ 0

−Tn−1

· · ·
∫ 0

−T2

∫ 0

−T1
CN(φ1, φ2, . . . , φn−1) dφ1 dφ2 · · · dφn−1.

Because PN(x) is periodic in each of its arguments with periods T1, T2, . . . , Tn−1,

respectively, and these are also the lengths of the integration intervals for each of

the integrands, we can replace these intervals with any intervals of the appropriate

length. That is, we can regard the Cartesian product of these intervals as an (n− 1)-

dimensional hypertorus.

Figure 9 illustrates the situation for a problem involving three pulse trains after

N = 30 pulses from pulse train 3. The parameters used were T1 = 1, T2 = 5−1/3,

T3 = 5−2/3 and τ1 = τ2 = τ3 = 0.05. The shaded hexagons are the sets Ik1,k2,k3 for

0 6 k3 < 30. The more darkly shaded hexagon has index k3 = 29 and overlaps the

hexagon with index k3 = 0. That is, for N < 30, the probability of intercept has

been in the no overlap stage but is about to enter the single overlap stage.

However, it is certain that the probability of intercept does not enjoy the property

of a fixed number of linear segments. To see that this is not so, consider the case

for three pulse trains where T1 = T2 but the ratio T3/T1 is irrational. Moreover,
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Figure 9. Phase space for calculation of probability of intercept for

three pulse trains with T1 = 1, T2 = 5−1/3, T3 = 5−2/3 and τ1 = τ2 =

τ3 = 0.05.

suppose τ3 = 0 but 0 < τ1, τ2 <
1
2
T1. The sets Ik1,k2,k3 are now rectangles:

Ik1,k2,k3 =
{
x ∈ R2 | |k1T1 + x1 − k3T3| 6 τ1; |k2T1 + x2 − k3T3| 6 τ2

}
.

Now consider

PN+1 − PN =
1

T1T2

∫ NT3+
1
2
T1

NT3−
1
2
T1

∫ NT3+
1
2
T1

NT3−
1
2
T1

CN+1(φ)− CN(φ) dφ1 dφ2.

The set I0,0,N is the only set with index k3 = N which lies either wholly or partly

within the limits of integration. The integral of the difference in the characteristic

function measures that part of the set I0,0,N which is not a part of any of the sets

Ik1,k2,k3 with 0 6 k3 < N . Suppose an overlap occurs with Ik1,k2,k3 for some k1, k2, k3.

Then

|k1T1 + (N − k3)T3| 6 2τ1 and |k2T1 + (N − k3)T3| 6 2τ2.

This implies that k1 = k2. Therefore, an overlap occurs whenever |qα− p| 6 ε,

where q = N − k3, p = −k1 = −k2, α = T3/T1 and ε = min {τ1, τ2}/T1. We

know that α is irrational and 0 < q 6 N . Therefore, it is impossible for I0,0,N

to overlap completely with an earlier set. Even if it overlaps partially with earlier

sets, the overlaps cannot completely cover I0,0,N . This is because all overlapping

sets must be offset diagonally from it by some non-zero amount which means that

two (opposite) corners of I0,0,N will remain exposed, regardless of N . Therefore,

PN+1 − PN > 0 for all N > 0. Since PN 6 1, we conclude that there cannot be a

finite number of linear segments in the expression for PN in this case.

Now consider the continuous time problem. At any time instant t, a simultaneous

coincidence occurs if the instances φ1, φ2, . . . , φn of the random variables representing
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the phases happen to satisfy the inequalities

|k1T1 + φ1 − t| 6 1
2
τ1, |k2T2 + φ2 − t| 6 1

2
τ2, . . . , |knTn + φn − t| 6 1

2
τn.

Since the Φj are uniformly distributed over the range of their PRIs, the probability

of intercept at any time instant is (τ1τ2 · · · τn)/(T1T2 · · ·Tn). If we now define the

set

Ik1,k2,...,kn(t) =
{
x ∈ Rn | |kiTi + xi − t| 6 1

2
τi; 1 6 i 6 n

}
then an intercept occurs in the interval [0, t] if φ ∈ Ik1,k2,...,kn(u) for any u ∈ [0, t]

or k1, k2, . . . , kn ∈ Z. With C(φ; t) defined to be the characteristic function of the

union ⋃
k1,k2,...,kn∈Z;

06u6t

Ik1,k2,...,kn(u),

the probability of intercept can be found from

(6.1) P(t) =
1

T1T2 · · ·Tn

∫ 0

−Tn
· · ·
∫ 0

−T2

∫ 0

−T1
C(φ1, φ2, . . . , φn; t) dφ1 dφ2 · · · dφn.

Again, the Cartesian product of the integration intervals can be regarded as a hy-

pertorus because of the periodicity of the characteristic function C(φ; t) in its phase

arguments and because the lengths of the intervals are equal to the periods. Ge-

ometrically, the probability is the proportion of the rectangular prism (the phase

space) with sides of lengths T1, T2, . . . , Tn (with opposite faces identified) which is

traced out by the movement of a rectangular prism with sides of length τ1, τ2, . . . , τn.

The leading prism moves at a rate which is equal and positive along all axes. We

can picture it as the obvious generalisation of Figure 4 to n dimensions. Eventu-

ally, the leading prism will overlap with the initial prism but, until this occurs, the

rate of growth of the probability of intercept is equal to half the surface area of the

leading prism. This is because, for any two opposite sides of the prism, only one is

“exposed.” Therefore, until overlap occurs, the probability of intercept is the sum

of the volume of the prism with sides of length τ1, τ2, . . . , τn plus the product of half

its surface area with the observation time, normalised by the volume of the phase

space. That is,

(6.2) P(t) =
τ1τ2 · · · τn(1 + t/τ1 + t/τ2 + · · ·+ t/τn)

T1T2 · · ·Tn
for values of t which are sufficiently close to 0.

It is difficult to say more than this from a theoretical point of view. From a

computational point of view, it seems unlikely that we could derive an algorithm

which can efficiently calculate the probability of intercept for any given length of ob-

servation time or any other related statistics because of the apparent computational

difficulties with best simultaneous Diophantine approximation. On the other hand,

we can conceive of an algorithm that computes (6.1) by “monitoring” the progress
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of the leading prism as it traverses phase space. The time required to compute

the integral is then proportional to the length of the observation interval, which is

unfortunate but perhaps unavoidable.

7. Other Approaches

In this chapter, we have developed a theory for predicting intercept times and

calculating the probability of intercept for periodic pulse trains which is founded

upon the theory of Diophantine approximation. For two pulse trains, this led to

expressions for intercept time and probability of intercept which made use of the

convergents of the simple continued fraction expansion of the PRI ratio, or upon the

position of points in a Farey series of appropriate order. We found that the problem

is much more difficult to treat both theoretically and computationally for more than

two pulse trains.

It is therefore worthwhile to examine some other approaches to intercept time

problems which have appeared in the literature. We divide these approaches into

two categories: those which exploit linear congruence and those which replace the as-

sumption of periodicity with stochastic behaviour. We will examine the approaches

based on linear congruence first.

7.1. Exploitation of Linear Congruence. The properties of linear congru-

ence were first exploited for the analysis of intercept time of periodic pulse trains by

Miller & Schwarz (1953) and has been subsequently developed by Friedman

(1954), Hawkes (1983) and Slocumb (1993).

For this approach, we assume the existence of some fundamental unit of time ∆,

of which all the parameters of the problem are integer multiples. That is, we write

Tj = mj∆, τj = uj∆ and φj = vj∆

where mj, uj, vj ∈ Z for j = 1, 2, . . . , n and n is the number of pulse trains. Assume

for simplicity that all the uj are odd and that the kth pulse from the jth pulse train

is on whenever kTj +φj − 1
2
(τj − 1) 6 t = d∆ 6 kTj +φj + 1

2
(τj − 1). Simultaneous

coincidences can then be found by solving the simultaneous linear congruences

kimi ≡ vi − vj + wi − wj (mod mj)

for 1 6 i < j 6 n where wi is allowed to be any integer in the range

−1
2
(ui − 1), . . . , 1

2
(ui − 1).

Some solutions can then be expressed in terms of the greatest common divisor or

least common multiple of the periods. However, this approach is essentially a special

case of the approach we have used throughout the chapter. The greatest common

divisors and least common multiples are calculated using Euclid’s algorithm and

therefore has direct parallels with the process of obtaining the simple continued

fraction expansion of real numbers.
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7.2. Statistical Description of the Pulse Train. Since we quickly reach a

point where we can say very little theoretically about the intercept times or the

probability of intercept of multiple pulse trains as we increase the number of pulse

trains involved and the exhaustive computation required to obtain accurate results

may be unacceptable, some authors have sought to replace the assumption of strict

periodicity of the pulse trains with a stochastic behaviour in the hope of obtaining

a good approximate solution. Of course, in many physical systems it is perfectly

valid to assume such behaviour in preference to periodicity.

The approach adopted by Stein & Johansen (1958) is to describe the fre-

quency of pulses from a pulse train with pulse widths not exceeding a given value

as a function of that value. That is, we associate a function Qj(x) with the jth

pulse train which represents the expected number of pulses per unit time from this

pulse train with pulse widths τ 6 x. The expected number of pulses per unit time,

regardless of pulse width, is limx→∞Qj(x). Obviously, Qj(x) is a non-decreasing

function of x, defined for x > 0. From this, we obtain the frequency density

function

qj(x) =
d

dx
Qj(x).

Notice that this description of the pulse trains is not complete. No information is

given about the interarrival times of pulses. Notwithstanding, Stein & Johansen

are able to derive the frequency distribution function of the pulse train of coinci-

dences, given only the frequency distributions of each pulse train, provided we make

the important assumption that the occurrence of pulses any given pulse train is

statistically independent of the occurrence of pulses from any other pulse train. The

frequency distribution function of the coincidences can then be used to obtain the

expected number of coincidences per unit time and the average duration of coinci-

dences when they occur. Unfortunately, the assumption of statistical independence

between the occurrence of pulses from different pulse trains means that the analysis

is invalid for periodic pulse trains, for if the pulse trains are synchronised then the

occurrence of a pulse from one pulse train determines to some extent the probabil-

ity of the occurrence of pulses from other pulse trains, depending upon the phase

relationships.

Nevertheless, Self & Smith (1985) apply the approach of Stein & Johansen

to the prediction of intercept time in electronic warfare scenarios in which the pulse

trains are often periodic. They derive an expression for the probability of intercept

of a number of pulse trains over a prescribed observation interval. To do this,

they again make use of the assumption of statistical independence of the occurrence

of pulses between pulse trains at any time instant but extend it further by also

assuming that occurrences in adjacent time intervals are also independent. That

is, by breaking up the observation interval into a number of adjacent subintervals

between each of which the probability of intercept is assumed to be independent,
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the coincidence process becomes a Bernoulli process and the probability of intercept

over the whole observation interval can be accumulated in the usual way. Taking

the limit as the size of the component subintervals tends to zero, Self & Smith

obtain the approximate expression

(7.1) P(t) = 1−Kexp(−λt)

for the probability of intercept, where

K = 1− P(0) = 1− τ1τ2 · · · τn
T1T2 · · ·Tn

and

λ =
τ1τ2 · · · τn(1/τ1 + 1/τ2 + · · ·+ 1/τn)

T1T2 · · ·Tn
.

From our discussion in the previous section, we know that the probability of

intercept of multiple periodic pulse trains is very difficult to determine. However,

for short observation intervals, the probability of intercept is a linear function of

the observation length, as described by (6.2). We observe that the expression (7.1)

yields the same value for P(0) and, for small pulse widths, close agreement for

dP(t)/dt at t = 0. Therefore, they are very similar for short observation intervals.

This is demonstrated by Self & Smith in numerical simulations. Indeed, their

simulations show the expression (6.2) to be superior, as we would expect. However,

for long observation intervals both expressions for the probability of intercept are

misleading and will give incorrect values for periodic pulse trains. Similarly, statistics

derived from these expressions such as expected time to intercept may be very

inaccurate. On the other hand, if the pulse trains are not strictly periodic but

exhibit cumulative jitter, which is to say the sequence of TOAs from the jth

pulse train is a random walk with a mean step length of Tj, then as the amount of

jitter is increased, the expression (7.1) appears to become increasingly valid. Kelly

et al. (1996) presents some numerical simulations in support of this.

We conclude by mentioning the similar work of Dziech (1993). In his book, he

develops an expression for the probability of intercept for stochastic pulse trains.

He also requires a degree of independence between the occurrence of pulses between

different pulse trains. The expression he derives requires that the statistics of the

interarrival times of pulses from the pulse train of coincidences is known. In general,

it would appear that this is a statistic that is rather difficult to obtain.





C H A P T E R 6

PARAMETER ESTIMATION OF A

PERIODIC PULSE TRAIN

1. Introduction

Periodic pulse trains are a common feature of many physical systems. In this

chapter, we consider a situation in which a single periodic pulse train is observed

and the times-of-arrival (TOAs) of pulses are measured. However, the pulses which

are observed are not consecutive. It is assumed that some (and perhaps many) of

the pulses were not observed. Additionally, we assume that TOAs are not measured

perfectly, but are subject to random errors. The problem is to estimate the period

of the pulse train from the data recorded and associate each of the measured TOAs

with a pulse number or index, relative to the first observed, which takes account of

the intervening missing pulses.

The motivating problem in this instance is passive radar surveillance. Typically,

a radar emits a train of pulses in a periodic sequence. In the simplest and most

frequently encountered case, the pulse train is purely periodic (the sequence has a

length of one). Receivers for passive radar surveillance can often make use of the

period or pulse repetition interval (PRI) to identify the emitter and its mode of

operation. However, for many conceivable reasons, it may not be possible or desir-

able to measure the TOA of each consecutive pulse. It may not be possible because

the signal strength of received pulses varies or because pulses from different sources

overlap, and it may not be desirable because of the need to maintain surveillance

over a range of parameters, such as angle-of-arrival or carrier frequency, which is

wider than the receiver is capable of at any one time. Therefore, pulses may be

missing from the record. For certain receiver types, for example a scanning super-

heterodyne receiver, the record of pulses from a given pulse train may be extremely

sparse. Additionally, measurement of the TOA will be subject to a variety of errors,

such as thresholding effects caused by thermal noise or variability in received power

or simply poor time resolution.

Very little has been published regarding the problem of estimating the period

of a pulse train from sparse, noisy measurements. Indeed, the papers of Casey &

Sadler (1995, 1996) are the only works in the open literature of which the author is

aware. In those papers, a number of generalised Euclidean algorithms are proposed

to recover the period. They demonstrate that, even for a very sparse record in

which 99% of pulses are missing, the period can be reliably estimated. We have

187
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identified a number of areas in which their results can be improved. Firstly, we

formulate statistical models for the measurement process. We make use of a fairly

standard multi-dimensional Euclidean algorithm, derived from the LLL algorithm

of Lenstra et al. (1982) for lattice reduction (see Chapter 3), and explain its

relationship to a method of maximum likelihood for estimation and association.

Furthermore, the algorithm we propose is capable of reliably estimating the PRI

and associating pulse indices for extremely sparse, noisy and short records.

In Section 2, we introduce two statistical models for the measurement process:

a simple model and an extended model. The simple model assumes very little prior

information about the way in which pulses are missing from the record, while the

extended model assumes that the indices of the observed pulses are random variables

with a known distribution.

We discuss the method of maximum likelihood estimation of the PRI and phase

(time offset of the first observed pulse from an arbitrary but fixed time origin) for the

simple model in Section 3. For the extended model, we also introduce the problem

of joint maximum likelihood estimation and association (JMLEA) of the PRI, phase

and pulse indices.

In Section 4, we show how the estimation and association problems can be for-

mulated as a problem of simultaneous Diophantine approximation (see Chapter 4).

We use the theory of simultaneous Diophantine approximation to conclude that,

in general, no maximum likelihood estimates of PRI or phase exist for the simple

model. We also prove the existence of a JMLEA for the extended model, and dis-

cuss conditions under which the JMLEA corresponds to a best approximation in the

relative sense in this formulation. The algorithm we propose for obtaining a JM-

LEA, an adaptation LLL algorithm for simultaneous Diophantine approximation, is

discussed in detail in Section 5.

A relationship with the maximisation of a certain trigonometric sum is elucidated

in Section 6. The trigonometric sum we examine can be regarded as a periodogram

of impulses at the observation times. This allows us to interpret the behaviour of

our algorithm in the frequency domain. We discover that the algorithm offers an

efficient means of finding peaks in the periodogram.

Finally, we present some numerical results in Section 7. We find that our algo-

rithm is able to make correct associations (and hence obtain statistically efficient

estimates) with experimental frequencies in excess of 99%, even when the number

of expected number of missing pulses is 99.9%, the noise variance on the TOA mea-

surements, as a proportion of the PRI, is as high as 0.01 and as few as 9 pulses

are observed. We also present some numerical evidence which suggests that the

algorithm is robust to uncertainties in the known parameters. Finally, we illustrate

the behaviour of the algorithm in the frequency domain.
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2. Signal Model

We will consider two signal models: a simple model and an extended model.

Consider a purely periodic pulse train with pulse repetition interval T and phase

θ. Under this model, pulses are emitted at the times iT + θ, i ∈ Z. We assume

that our record consists of n observations of pulses which are corrupted by noise

and which are not necessarily consecutive. Thus, our observations are of random

variables, which we shall denote Z1, Z2, . . . , Zn, such that

Zi = siT + θ +Xi

where the si ∈ Z are the indices of the observed pulses and the Xi are independent,

identically distributed (i.i.d.) normal random variables representing the observation

errors (noise) with zero mean and variance σ2. We assume that the only admissible

pulse indices are those which satisfy

(2.1) 0 = s1 < s2 < · · · < sn.

We will call this model the simple model. An example of a received pulse train

generated by this model is illustrated in Figure 1. The “true” pulse train is depicted

� �

����� �

�	� �
� ��� ��
 ��� ��� ��� �����

� � � � � � � �

Figure 1. A record of pulses generated by the simple model.

at top. Of the pulses in the true pulse train, only four are recorded, with pulse indices

s1 = 0, s2 = 4, s3 = 9 and s4 = 12. The pulse train which would have been recorded

in the absence of measurement errors is depicted at centre. A representation of the

pulses with noisy TOAs are shown at bottom.

We will find that, in general, no maximum likelihood estimate of the parameters

exists in the simple model. We require more prior information to obtain such an

estimate. For this reason, we propose an extended model, in which we will also

assume that the indices of the observed pulses are random variables. We assume
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that our TOA observations Z1, Z2, . . . , Zn now have the form

Zi = SiT + θ +Xi

where S1 = 0 (a degenerate random variable),

Si+1 − Si = Yi + 1

for i > 1 and the Yi are i.i.d. random variables from a geometric distribution with

parameter λ. Furthermore, the Xi and the Yi are assumed to be mutually indepen-

dent. The parameter λ can be interpreted as the probability of a given pulse being

observed.

The assignment of a distribution to the observed indices can be justified on

physical grounds for certain receiver types. Consider a sensitive receiver which

must search for signals in some parameter space (for example a rotating, receiver

searching in angle and carrier frequency) and suppose its search strategy is fixed. It

is reasonable to suggest that we might analyse the search strategy to discover relative

frequencies with which pulses are observed or missed a priori. If, in addition, the

strategy has a random or pseudo-random component, then it makes sense to consider

the observed pulse indices as random variables. Of course, it is unlikely that this

distribution will be completely independent of the PRI or that the differences in

observed indices arise from a geometric distribution. Nevertheless, we believe that

our extended model, while still simplistic, is representative and serves to demonstrate

what is possible.

3. Parameter Estimation and Association

Consider the method of maximum likelihood for estimation of the parameters T ,

θ and s in the simple model. The joint probability density function (p.d.f.) of the

observations is

(3.1) f
(
z; T, θ, σ2, s

)
=

(
1

2πσ2

)n/2
exp

(
−‖z− T s− θ1‖2

2

2σ2

)
where z is a column vector representing the possible values of the Zi and s is a

column vector representing the pulse indices, which are assumed to be admissible

according to (2.1). As usual, ‖·‖2 denotes the Euclidean norm.

If the vector of pulse indices, s, is known a priori then the problem is simply

one of linear regression to estimate T and θ. Recall (e.g. Hogg & Craig, 1978)

that the maximum likelihood estimates for θ and T are

θ̂ =
1

n

n∑
i=1

(
zi − T̂ si

)
and

T̂ =
n
∑n

i=1 zisi − (
∑n

i=1 zi)(
∑n

i=1 si)

n
∑n

i=1 s
2
i − (

∑n
i=1 si)

2 .
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If we define

(3.2) Q = In −
11T

1T1

then it can be shown that the estimates θ̂ and T̂ can be equivalently expressed as

θ̂ =
1

n

(
z− T̂ s

)T
1(3.3)

and

T̂ =
zTQs

sTQs
.(3.4)

Notice that Q is a symmetric projection matrix, by which we mean that Q2 = Q.

Furthermore, if we write the projections of s and z with respect to Q as

(3.5) x = Qs and ζ = Qz

then

T̂ =
ζTx

xTx
.

With our likelihood function being the joint p.d.f. in (3.1) and with z set to the

observed values of the Zi, we find that the likelihood function is maximised with

respect to T and θ at T̂ and θ̂, respectively. Thus, taking the logarithm of the

likelihood function and discarding constants, we find that the likelihood function is

maximised with respect to s, T and θ when

(3.6) F (s) = ζTζ −
(
ζTx

)2

xTx

is minimised, where x is of course a function of s as defined by (3.5). Now, F (s) > 0.

We also note from the form of (3.6) that maximisation of the likelihood function

is equivalent to minimisation of sin2 φ over all admissible s, where φ is the angle

between the vectors ζ and x.

We will show in Section 4 that a unique maximum likelihood estimate does not

exist in general, so we now consider what can be done using the extended model. In

this model, we find that the joint p.d.f. is

(3.7) g
(
z, s; T, θ, σ2, λ

)
= λn−1(1− λ)sn−n+1f

(
z; T, θ, σ2, s

)
when s ∈ Zn (now a column vector, the entries of which represent the possible values

of the Si) is admissible according to (2.1) and the joint p.d.f. is 0 otherwise. If we

were interested only in finding maximum likelihood estimates for T and θ then we

should maximise the likelihood function

L(T, θ) =
∑
s∈Zn

g
(
z, s; T, θ, σ2, λ

)
with respect to T and θ to obtain our estimates T̂ and θ̂. However, suppose we want

to simultaneously associate the observations with a set of pulse indices ŝ. Then,
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in order to make our observations maximally likely, we should simply maximise g

over s, T and θ. We call this joint maximum likelihood estimation and

association (JMLEA).

For any postulated association s, the maximum likelihood estimates for T and θ

remain as they were in (3.4) and (3.3), respectively. So, by taking the logarithm of

g and discarding constant factors, we find that the JMLEA is obtained with respect

to s, T and θ when the function

(3.8) G(s) = F (s) + κsn

is minimised where

(3.9) κ = −2σ2 log (1− λ) > 0.

Clearly, κ ≈ 2σ2λ when λ is small.

We will show that a JMLEA exists for the extended model, as does the maximum

likelihood estimate of T and θ. We will show in the next section that an algorithm

for simultaneous Diophantine approximation will usually furnish the JMLEA if the

amount of measurement error is sufficiently small.

4. Formulation as a Simultaneous Diophantine Approximation Problem

With the problem of maximum likelihood estimation stated in terms of minimis-

ing the function F in (3.6) or G in (3.8), we will show that the problem can be

stated as a problem of finding best simultaneous Diophantine approximations in the

relative sense.

In Chapter 4, we defined the notion of a system for simultaneous Diophantine

approximation (Definition 2.6) and we defined a best approximation in the absolute

sense (Definition 2.7) with respect to the radius and height functions of the system.

We can define a best approximation in the relative sense in the following way.

Definition 4.1. A lattice point x in a lattice Ω is a best approximation in

the relative sense with respect to a radius function, ρ, and a height function,

h, if h is a semi-norm, h(x) > 0 and if, for all y ∈ Ω with h(y) > 0 it is true that

ρ(y)

h(y)
6
ρ(x)

h(x)
⇒ h(y) > h(x)

and

h(y) 6 h(x) ⇒ ρ(y)

h(y)
>
ρ(x)

h(x)
.

If we set Ω = Z2 and, writing v ∈ Ω as v = (p, q), we also set ρ(v) = |qα− p|
and h(v) = |q| then we have a system for simultaneous Diophantine approximation

since ρ and h are transverse semi-norms. Moreover, we can see that our definition of

a best simultaneous Diophantine approximation in the relative sense can be reduced
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to the ordinary definition of a best Diophantine approximation in the relative sense,

given in Chapter 2.

The following is a trivial adaptation of a theorem of Lagarias (1983).

Theorem 4.1. Suppose Ω is a lattice in Rm, ρ is a radius function and h is

a height function which together form a simultaneous Diophantine approximation

system. If h is a semi-norm then there is a set of all best approximations in the

relative sense which can be numbered {vj} for b0 6 j 6 b1 such that for all b0 6 j <

k 6 b1

h(vj) 6 h(vk) and
ρ(vj)

h(vj)
>
ρ(vk)

h(vk)
.

Furthermore, b1 = ∞ if and only if the restriction of ρ to the real span of Ω is not

an extended norm and there exists no x ∈ Ω such that ρ(x) = 0. If b1 < ∞ then

ρ(vb1) = 0. Otherwise,

lim
j→∞

ρ(vj) = 0 and lim
j→∞

h(vj) =∞.

We will now set up our estimation and association problems as problems of best

simultaneous Diophantine approximation. Consider the simple model in which we

hope to find maximum likelihood estimates for T and θ. Let qi denote the ith column

of Q as defined in (3.2). Let {q2,q3, . . . ,qn} be a basis of a lattice Ω in Rn. Observe

that q1 ∈ Ω. Also, any point x in the lattice Ω can be uniquely expressed x = Qs,

where s ∈ Zn with s1 = 0. We define the radius and height functions for x ∈ R2 as

(4.1) ρ(x) = ‖Mx‖2 and h(x) = ‖x‖2

where

M = In −
ζζT

ζTζ

and ζ is the projection of the TOA measurement vector z by Q as described by (3.5).

Notice that M is a symmetric projection matrix like Q. Furthermore, Q projects

along the line R1 onto an orthogonal hyperplane, E , and Ω ⊂ E and ζ ∈ E . M

projects along the line Rζ. Now, ρ and h are transverse because h is a norm. It

should also be clear that the restriction of ρ to E , the real span of Ω, is not a norm.

It is not hard to verify that we can now rewrite the log-likelihood function F

from (3.6) as

F (s) = h(ζ)2

[
ρ(x)

h(x)

]2

.

where, again, x = Qs. Since x ∈ Ω, minimisation of F over admissible index vectors

is equivalent to minimisation of

F ∗(v) =
ρ(v)

h(v)

over all v ∈ Ω which correspond to admissible index vectors.
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Theorem 4.1 implies that either there exists some non-zero lattice point x such

that F ∗(x) = 0 or there exists a non-terminating sequence of lattice points vj such

that

lim
j→∞

F ∗(vj) = 0 and lim
j→∞

h(vj) =∞.

Since F ∗(x) = 0 implies that F ∗(kx) = 0 for all k ∈ Z, we can now see that either

there is no non-zero lattice points which minimises F ∗(·) or an infinitude. We have

neglected to consider the necessity that the lattice points be admissible to our model,

as defined by (2.1). We have only taken care to ensure that s1 = 0. However, if the

observations are time-ordered, which is to say that they satisfy

(4.2) z1 < z2 < · · · < zn,

then we can conclude that there will be no maximum likelihood estimate. We can

expect the observations to be time-ordered with very high probability if the spacing

between the indices is large compared with σ. Of course, in practice, it is very likely

that observations will be made and recorded in time-order.

Therefore, consider the extended model in which we impose a “cost” on the

number of pulses missing from the record. Here, we set out to jointly estimate T

and θ and associate the observations with a set of pulse indices, s, so as to maximise

the likelihood of our observations. As we described in Section 3, this involves the

minimisation of G(s) in (3.8) over all admissible s.

We can show that a JMLEA must exist and there are at most a finite number

of them. This is because the number of admissible index vectors s with G(s) 6 ν

for any ν ∈ R must be finite. In turn, this is because F (s) > 0, κsn > 0 and the

number of admissible index vectors s with sn 6 ν/κ is finite.

We will state a theorem which suggests that if the radius of the index vector

associated with the JMLEA is sufficiently small then it must be a best simultaneous

Diophantine approximation in the relative sense. However, we require the following

lemmata.

Lemma 4.1. Consider a vector v ∈ Rn. Let Q ∈ Rn×n be defined as in (3.2). If

v1 = 0 then

v2
n 6 2 ‖Qv‖2

2 .

Proof. Let C(v) = ‖Qv‖2
2. We have

C(v) =
n∑
i=1

v2
i +

1

n

(
n∑
i=1

vi

)2

.

Thus,

∂C

∂vj
= 2vj −

2

n

n∑
i=1

vi.
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For a fixed vn and v1 = 0, the extremal values of C(v) occur when

∂C

∂v2

=
∂C

∂v3

= · · · = ∂C

∂vn−1

= 0.

This is satisfied when

v2 = v3 = · · · = vn−1 =
1

n

n∑
i=1

vi

which implies that

v2 = v3 = · · · = vn−1 = 1
2
vn.

The value of C at this point is C(v) = 1
2
v2
n. Now, the second order partial differen-

tials are

∂C

∂vivj
=

2(n− 1)/n if i = j,

−2/n otherwise.

The matrix of these partial differentials is 2Q and, since Q is positive semi-definite,

we conclude that C(v) > 1
2
v2
n when v1 = 0 and vn is fixed. �

Lemma 4.2. Suppose x1, x2, . . . , xn and y1, y2, . . . , yn are two sequences of real

numbers for which

x1 6 x2 6 . . . 6 xn, x1 + x2 + · · ·+ xn = 0,

y1 6 y2 6 . . . 6 yn, y1 + y2 + · · ·+ yn = 0.

If x1 < 0 and y1 < 0 then

x1y1 + x2y2 + · · ·+ xnyn > 0.

Proof. Let

di = xi − xi−1.

Now, di > 0 for each 1 < i 6 n and there exists at least one value for i such that

di > 0. Let

Si = y1 + y2 + · · ·+ yi.

We see that Si < 0 for all 1 6 i < n and Sn = 0. The proof follows from the identity

n∑
i=1

xiyi = xnSn −
n∑
i=2

diSi−1.

�

Note that the above identity is the obvious adaptation to sequences of the formula

for integration by parts.
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Corollary 4.1. If s is an admissible index vector in the sense of (2.1) and z

is a time-ordered set of observations in the sense of (4.2) then zTQs > 0.

Proof. The proof follows by noticing that the vectors Qs and Qz both satisfy

the conditions of Lemma 4.2. �

Theorem 4.2. Consider the simultaneous Diophantine approximation system

consisting of the lattice Ω = QZn and the radius function ρ and height function h

as defined by (4.1). Suppose ŝ is that integer vector with s1 = 0 and sn > 0 which

minimises G(s) for the time-ordered observations z, where G(s) is defined in (3.8).

If ŝ is admissible and

(4.3) ρ(x̂)2 < 1
10

where x̂ = Qŝ then x̂ is a best simultaneous Diophantine approximation in the

relative sense for this system.

Proof. Firstly, we observe that there exists an integer vector that minimises

G(s) with s1 = 0 and sn > 0, for Theorem 4.1 implies that if we continue to decrease

the ratio ρ(x)/h(x) then ρ(x) → 0, where x = Qs. But this implies that sn → ∞.

Therefore, we conclude that a minimum must exist.

Suppose ŝ is not a best approximation in the relative sense for our system. Then

there exists some s∗ with s∗1 = 0 and s∗n > 0 such that

ρ(Qs∗) 6 ρ(Qŝ) and h(Qs∗) 6 h(Qŝ)

but G(s∗) > G(ŝ). From this we must conclude that

(4.4) s∗n > ŝn.

Consider the decomposition of a vector s ∈ Rn into orthogonal components. Let

us write

s = λ1 + µζ + c

where

λ1 = s−Qs, µζ = Qs−MQs and c = MQs

and λ, µ ∈ R. For such a decomposition, we have ρ(Qs) = ρ(c) and h(Qs) =

h(µζ + c). Now, we decompose ŝ and s∗ in this manner so that

ŝ = λ̂1 + µ̂ζ + ĉ and s∗ = λ∗1 + µ∗ζ + c∗.

Corollary 4.1 implies that µ̂ > 0 because ŝ is admissible and z is time-ordered.

Consider how much larger s∗n can be than ŝn. We have

‖ĉ‖2 = ρ(Qŝ) > ρ(Qs∗) = ‖c∗‖2 = ‖(c∗ − ĉ) + ĉ‖2 > ‖c
∗ − ĉ‖2 − ‖ĉ‖2 .

Therefore,

(4.5) ‖c∗ − ĉ‖2 6 2 ‖ĉ‖2 = 2ρ(Qŝ).
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By making use of the orthogonality of ζ and c∗ we find that

(4.6) h(Qŝ)2 > h(Qs∗)2 = ‖µ∗ζ + ĉ‖2
2 = ‖µ∗ζ‖2

2 + ‖ĉ‖2
2 > ‖µ

∗ζ‖2
2

Suppose µ∗ > µ̂. Then

(4.7) ‖µ∗ζ‖2
2 = [‖(µ∗ − µ̂)ζ‖2 + ‖µ̂ζ‖2]2 > ‖(µ∗ − µ̂)ζ‖2

2 + ‖µ̂ζ‖2
2 .

Now ‖µ̂ζ‖2
2 = h(Qŝ)2 − ρ(Qŝ)2. Therefore, (4.6) and (4.7) imply that

(4.8) ‖(µ∗ − µ̂)ζ‖2
2 6 ρ(Qŝ)2.

Now, from Lemma 4.1, we know that

(s∗n − ŝn)2 6 2 ‖Q(s∗ − ŝ)‖2
2

= 2 ‖(µ∗ − µ̂)ζ + c∗ − ĉ‖2
2

= 2 ‖(µ∗ − µ̂)ζ‖2
2 + 2 ‖c∗ − ĉ‖2

2

If µ∗ > µ̂ then we can use (4.5) and (4.8) to show that

(4.9) (s∗n − ŝn)2 6 10ρ(Qŝ)2.

Thus, if ρ(Qŝ)2 < 1
10

then the difference between the indices must be less than one.

Since the indices are integers, they must be equal, contradicting (4.4).

Suppose instead that µ∗ 6 µ̂. Noticing that ζn > 0 because z is time-ordered,

we find that

s∗n − ŝn = (µ∗ − µ̂)ζn + c∗n − ĉn 6 c∗n − ĉn.

In this case, we find that the coefficient on the right hand side of (4.9) can be reduced

from 10 to 8, again furnishing a contradiction with (4.4) if ρ(Qŝ)2 < 1
10

. �

We remark that this theorem is not as strong as we would like. It does not

state that the JMLEA must be a best simultaneous Diophantine approximation for

our system, even if it satisfies (4.3). This will be true only if it also happens to be

that index vector which minimises G(s) when the condition that s is admissible is

replaced by the slightly weaker conditions that s1 = 0 and sn > 0. Computationally,

it appears difficult to verify that a candidate value of s truly minimises G(s) with

respect to these conditions. Nevertheless, it seems reasonable to believe that, for

sufficiently small noise variance, the conditions of the theorem statement will be met

very frequently and the JMLEA will be a best approximation.

5. An Algorithm For Estimation and Association

We have shown in the previous section that, when the noise variance is small,

the JMLEA in the extended model is likely to be a best approximation in the rel-

ative sense with respect to the simultaneous Diophantine approximation system

consisting of the lattice Ω = QZn, the radius function ρ and the height function
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h, defined in (4.1). As we discussed in Chapter 4, no computationally efficient al-

gorithm is known which can be guaranteed of finding an uninterrupted sequence of

best approximations for lattices of rank higher than two. Therefore, if we are to

obtain estimates and associations in a reasonable amount of time, we must turn to

sub-optimal methods, and hope that these methods are good enough to find the

particular best approximation we require most of the time, and that these approxi-

mations correspond to the JMLEA.

Underlying the method is the LLL algorithm of Lenstra et al. for lattice reduc-

tion, which we discussed in Chapter 3. In Chapter 4, we discussed several variants

of the LLL algorithm for simultaneous Diophantine approximation, including the

HJLS algorithm and the PSLQ algorithm. However, we have chosen to implement

our own variation, largely because of the convenience and reliability of the imple-

mentations of the LLL algorithm in the LiDIA library (LiDIA Group, 1995).

Our aim is to calculate a basis of Ω which contains small vectors with respect to

a certain norm on each iteration. The norm is adjusted on each iteration in order to

obtain a sequence of good approximations, with the hope that this sequence includes

the lattice point associated with the JMLEA. On the kth iteration, we use the norm

(5.1) ‖v‖(k) =
(
1− γk

)
ρ(v) + γkh(v)

where 0 < γ < 1 is an adjustable constant which, as γ is reduced, increases the

speed of the algorithm at the expense of missing some good approximations (which

may include the JMLEA). If we can be assured that the vectors in our basis are

within some constant factor of the smallest vectors with respect to the norm ‖·‖(k)

then, with each successive iteration of our algorithm, the basis will tend to contain

vectors with smaller and smaller radius, but with larger and larger height. If we are

“lucky” enough that the basis we calculate contains the shortest vector with respect

to ‖·‖(k) then we have found a best approximation in the relative sense. From

Lagarias (1982), we know that the size of successive best approximations in the

absolute sense grow exponentially in height. Although we don’t know this for best

approximations in the relative sense, it seems reasonable to adopt the exponential

form of (5.1).

We now discuss how the LLL algorithm is modified for our purpose. Notice that

‖v‖(k) can be equivalently expressed as

‖v‖(k) =
∥∥Lkv

∥∥
2

where

L = γI + (1− γ)M.

Now, L is invertible if γ > 0 and the inverse is

L−1 = γ−1I +
(
1− γ−1

)
M,
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as can be readily checked. Therefore, if we Lovász-reduce a basis of the lattice

LkQZn then, by applying the inverse transformation L−k to the reduced basis ma-

trix, we have a basis of Ω for which we can be sure that each element is within a

factor of 2(n−1)/2 of the size of the corresponding element in a Minkowski-reduced

basis with respect to ‖·‖(k). In this sense, each of the basis vectors is within a con-

stant factor of the shortest possible. This is a consequence of (6.16) in Theorem 6.5

from Chapter 3.

To minimise the amount of computational work required for reduction, we use

the basis matrix B(k−1) obtained from the reduction on the (k − 1)th iteration as

the input to the reduction step on the kth iteration, after premultiplication by L. In

this way, we maintain a basis of LkQZn.

We can now state an algorithm for attempting to discover the JMLEA. Before we

do, a few minor points need to be clarified. The procedure LLLreduce is essentially

Algorithm 7.1 from Chapter 3. It takes as its input a basis matrix B and outputs

a Lovász-reduced basis matrix B′. However, it differs in that it also outputs the

unimodular transformation U such that B′ = BU. We find this useful for updating

the matrix of index vectors, S(k). Initially, S(0) is set to the identity matrix without

the first column (the ei on line 3 represent the ith column of In) which is a basis

of all index vectors with s1 = 0. The initial basis matrix is set to QS(0). Also,

since LLLreduce takes no care to ensure that the corresponding index vectors in the

Lovász-reduced basis matrix have sn > 0, we must do this separately (at line 11).

Algorithm 5.1.

1 begin

2 B(0) := (q2,q3, . . . ,qn);

3 S(0) := (e2, e3, . . . , en);

4 ŝ := arg minv∈{e2,e3,...,en} {G(v)};
5 k := 0;

6 while min16i6n

{
κs

(k)
n,i

}
< βG(ŝ) do

7 k := k + 1;

8
(
B(k),U

)
:= LLLreduce

(
LB(k−1)

)
;

9 S(k) := S(k−1)U;

10 for i := 1 to n− 1 do

11 if s
(k)
n,i < 0 then s

(k)
i := −s

(k)
i fi;

12 if G(s
(k)
i ) < G(ŝ) then ŝ := s

(k)
i fi;

13 od

14 od

15 end.

We have already described most of what Algorithm 5.1 is doing in trying to

discover the JMLEA. To summarise, it is calculating a sequence of good approxima-

tions and returning that index vector which minimises G from the sequence of index
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vectors corresponding to those approximations. It remains to briefly describe the

stopping criterion for our algorithm. The algorithm terminates when the right-hand

term in the expression for G in (3.8) has become so large for all the index vectors

corresponding to approximations from the most recent reduction that, regardless of

the left-hand term, we cannot better that of ŝ. Because further reductions would

most likely only increase the right-hand term further, it is appropriate to end the

search. However, we have included a “safety factor” β > 1 to allow the search to

continue a little longer, just in case.

Notice that Algorithm 5.1 only produces an association ŝ. The estimates T̂ and

θ̂ are then obtained by substitution into (3.4) and (3.3), respectively.

It is unclear exactly how much computation is required by our algorithm in total.

However, from our knowledge of the computational efficiency of the LLL algorithm,

there is very good reason to be optimistic that the amount of computation required

should be considerably less than a “brute force” search over index vectors. Numerical

results obtained for Section 7 indicate that, usually, only a small number of iterations

are required.

6. A Related Trigonometric Sum

In this section, we point out the relationship between the simultaneous Dio-

phantine approximation problem discussed in Section 4 and the maximisation (in

magnitude) of the trigonometric sum

(6.1) A(ω) =
n∑
j=1

e−izjω.

It is natural to wonder if a relationship of some kind exists, because the magnitude

of (6.1) can be thought of as the periodogram of the function

u(t) =
n∑
j=1

δ(t− zj),

a train of impulses (Dirac delta functions) at the measured TOAs. It seems in-

tuitively obvious that a good candidate for the PRI of the observed pulse train is

the inverse of a frequency which maximises |A(ω)|. Furthermore, in Example 6.2 of

Section 6 of Chapter 2, we showed that the correspondence of successive maxima

of a periodogram with n = 3 and the best Diophantine approximations of the ratio

α = (z2 − z1)/(z3 − z1) is one-to-one, in a certain sense.

We will now show a relationship between |A(ω)| and ρ(x) as defined in (4.1) for

n > 3. Given a vector of pulse indices, s, we define the function

ω(s) =
2π

T̂ (s)
= 2π

xTx

ζTx
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where, as usual, x = Qs and ζ = Qz. Let

ε = ω(s)ζ − 2πx.

That is,

εi = ω(s)(zi − z) + 2π(si − s),

where z and s denote the arithmetic means of the zi and si, respectively. We note

that
n∑
i=1

εi = 0 and
n∑
i=1

ε2i = 4π2ρ(x)2.

We can employ these identities to find that

|A(ω(s))| =
∣∣e−i[ω(s)z−2πs]A(ω)

∣∣
=
[( n∑

j=1

cos εj

)2

+
( n∑
j=1

sin εj

)2]1/2

=
[( n∑

j=1

1− 1
2
ε2j +O

(
ε4j
))2

+
( n∑
j=1

εj +O
(
ε3j
))2]1/2

=
[(
n− 2π2ρ(x)2 +O(ρ(x)4)

)2
+O(ρ(x)3)2

]1/2

= n− 2π2ρ(x)2 +O(ρ(x)4).

Thus, we can see that there is indeed a link between the maximisation in magnitude

of the trigonometric sum A(ω) (the periodogram) with the radius function ρ used

in formulating the simultaneous Diophantine problem. It also provides us with a

way of visualising the behaviour of Algorithm 5.1 in the frequency domain, which

we will make use of in the next section.

7. Numerical Results

We now assess the performance of Algorithm 5.1 with some numerical tests. The

algorithm was coded in C++. The LiDIA library (LiDIA Group, 1995) was used

for its implementations of variants of the LLL algorithm. The constants β = 2 and

γ = 0.5 were used for all numerical testing.

The first test performed was of the ability of the algorithm to find the correct

association with the true pulse indices for various noise levels and various numbers

of observed pulses under the condition λ = 0.001 and T = 1. Indeed, these settings

for λ and T are used throughout this section. Figure 2 shows the results obtained.

Each data point plotted is the average frequency of successful association from 500

trials. We can see that a success rate better than 99% is achieved even for a small

number of observed pulses (n > 8) up to and exceeding a noise level of 1% of the
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Figure 2. The experimental frequency of correct association of the

pulse indices as a function of the standard deviation of the measure-

ment errors, σ, for various numbers of pulses, n, with T = 1 and

λ = 10−3.

PRI. Of course, given that the correct association is made with the pulse indices,

the variance of T̂ is that which is obtained by linear regression. That is,

var T̂ =
σ2

‖Qŝ‖2
2

.

We can also see that, for any fixed n, the probability of correct association ap-

pears to approach an upper bound depending on n as σ is decreased. The upper

bound represents the probability that the true pulse indices are coprime. The lim-

iting probability is related to the Riemann zeta function. See Casey & Sadler

(1996) for a discussion of its relationship with the PRI estimation problem. The

probability that n numbers chosen at random are coprime asymptotically approaches

1 very quickly as n increases, and we witness this in Figure 2.

The graphs of Figure 2 were all computed under the assumption that the constant

κ, defined in (3.9), was known exactly. In practice, we expect that there would be

some uncertainty as to the exact value of κ. Figure 3 shows the effect of uncertainty

in the true value of κ to the probability of correct association, for the case where

n = 10 and T = 1. The value κ′ is used in place of κ in Algorithm 5.1. The graph

for κ′ = κ is of course the same as that for n = 10 in Figure 2. For κ′ = 103κ and

κ′ = 10−3κ we notice a degradation in performance, which is to be expected. We

also notice that the performance is more severely affected for κ′ = 10−3κ. This, and

experimental evidence for other values of κ′ (not presented here), leads us to believe

that it is better to overestimate κ than to underestimate it. In any case, we can see

that the estimation and association algorithm is fairly robust to uncertainty in κ,



NUMER I CAL RE SULT S 203

�

��� �

��� �

��� �

��� �

�

����	�
 ����	
� ����	
� ����	�� ����	��

����� ��� 	�� �

����� ��� � �

�������

� �� �
�� �
�  
!"
�! �
��
�#
$%%
!�&
$#&
! �

')(+*-,
./*-0+.1./2�3)45*-(64879,:7<;>=@?BADCE2�*<FHG�062�CE2�,I(J2K0H067-06F�L
M

Figure 3. The experimental frequency of correct association of the

pulse indices for n = 10 and T = 1 for erroneous estimates of κ.
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Figure 4. Interpretation of the outputs of the algorithm as a max-

imisation of the periodogram.

with > 98% probability of correct association when σ < 10−4, even though κ′ is out

by three orders of magnitude.

Finally, we consider an interpretation of the behaviour of the lattice points pro-

duced by Algorithm 5.1 in the frequency domain. Figure 4 shows the square of the

magnitude of A(f), f = 2πω, as defined in (6.1) for a particular set of observations

with n = 7, T = 1, λ = 10−3 and σ = 10−2. As witnessed in Figure 2, we have ob-

tained over 95% experimental frequency of correct association for these parameters.

The circles represent peaks at frequencies ω
(
s

(k)
j

)
/(2π) for each of the matrices of

index vectors S(k) considered by Algorithm 5.1. Our algorithm, then, considers a
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proportionally large number of low frequencies before “accelerating” away into the

higher frequencies. In fact, the rate of increase in frequencies appears to be exponen-

tial. If a logarithmic scale had been used along the frequency axis, we would see that

the frequency samples considered by the algorithm are roughly equally distributed

over the range. For the set of observations used to generate Figure 4, the algorithm

was able to correctly associate indices. Observe that the frequency corresponding

to these indices (at f = 0.999 997) is the largest peak in the periodogram for the

range plotted.

Note that the number of different frequency points considered by the algorithm

is 41. In contrast, the number of samples calculated to plot the full periodogram in

Figure 4 was 600 000.



C H A P T E R 7

CONCLUSIONS

The aim of this thesis has been to explore the topic of approximation of lin-

ear forms by lattice points, with emphasis on some problems of signal processing

and, in particular, electronic support measures. The presentation has focussed on

algorithms for Diophantine approximation, simultaneous Diophantine approxima-

tion and lattice reduction. The application has been to problems involving periodic

pulse trains. Periodic pulse trains are a common feature of many ESM problems

and many other physical problems. The thesis has demonstrated the applicability

and effectiveness of Diophantine approximation to the solution of probability of in-

tercept problems between periodic pulse trains and to the estimation of the period

of a pulse train of which only a few sparse and noisy observations exist.

In Chapter 2, we introduced Diophantine approximation of a single real number.

The intention was to explore methods of calculating best Diophantine approxima-

tions, both homogeneous and inhomogeneous, in both the absolute and relative

senses, and to examine their relationship with other mathematical objects such as

simple continued fractions, diagonal functions and Farey series. We began with ho-

mogeneous Diophantine approximation and showed how the best approximations in

the absolute sense and relative sense could be calculated efficiently using Euclid’s

algorithm. We then showed the link between the sequence of best homogeneous

Diophantine approximations of a number in the absolute sense and the convergents

of its simple continued fraction expansion. The relationship was shown to be al-

most one-to-one. For inhomogeneous Diophantine approximation, we proved that

the best approximations can be obtained efficiently using Cassels’ algorithm. We

then showed that the successive maxima of diagonal functions satisfying certain

conditions enjoy an almost one-to-one correspondence with best homogeneous Dio-

phantine approximations. We demonstrated that a periodogram of three samples

with positive amplitudes is an example of such a diagonal function. We concluded

the chapter with a discussion of the relationship between Farey series and best ho-

mogeneous Diophantine approximations. We review some of the basic properties of

Farey series and showed how best homogeneous approximations with a prescribed

approximation error can be located in a Farey series of the appropriate order.

We reviewed the theory of the geometry of numbers in Chapter 3. We introduced

point lattices and introduced Minkowski’s first (fundamental) and second theorems.

We discussed the problem of finding short vectors in a lattice and developed a

“brute force” algorithm for finding the shortest vector. We reviewed various notions

205
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of lattice reduction, namely those of Gauss, Minkowski, Hermite, Korkin &

Zolotarev and Lovász. We demonstrated the relationship between Gaussian

reduction of a lattice and the centred continued fraction expansion of a complex

number. Given the apparent computational infeasibility of the shortest lattice vector

problem, we highlighted the importance of reduction in the sense of Lovász. It is

important because an algorithm exists — the LLL algorithm — that can produce a

Lovász-reduced basis from an arbitrary basis in an amount of time which is bounded

above by a polynomial in the size of the input. At the same time, a Lovász-reduced

basis contains vectors which are within a constant factor of the shortest possible

vectors, in a certain sense. The behaviour of the LLL algorithm is analysed in the

last section of Chapter 3.

In Chapter 4, we discussed simultaneous Diophantine approximation. The first

part of the chapter described a theory for simultaneous Diophantine approximation

using (ρ, h)-minimal sets. These sets can be employed in algorithms for producing

the best simultaneous Diophantine approximations according to a quite general defi-

nition. The second part of the chapter discusses computationally efficient algorithms

for producing good simultaneous Diophantine approximations.

The chapter began by discussing the theory of (ρ, h)-minimal sets. We used this

theory to construct algorithms which find best approximations for lattices of rank

two and three. The algorithms have a fairly simple, additive form and are guar-

anteed to find all the best approximations (or equivalent lattice points) of a given

system with radius less than or equal to the minimum radius of the input lattice

basis vectors. For lattices of rank two, we show that the algorithms are equivalent

to additive forms of Euclid’s algorithm or Gauss’ algorithm (discussed in Chapter 2

and Chapter 3, respectively), depending on the nature of the simultaneous Dio-

phantine approximation system it is applied to. For lattices of rank three, we were

able to improve the computational efficiency of the algorithm. This resulted in an

algorithm — the “accelerated” algorithm — which is very similar in structure to an

algorithm of Furtwängler but which is capable of producing best approximations

according to our more general definition. We provided a number of numerical ex-

amples to demonstrate the ability of the algorithms for lattices of rank three to find

sequences of best approximations. We demonstrated the operation of the algorithm

for finding best approximations of a line by lattice points — “traditional” simulta-

neous Diophantine approximation — with respect to various norms including the

Euclidean norm and sup-norm. We also demonstrated its operation for finding best

approximations of a plane by lattice points, i.e. best approximate integer relations.

However, the implementation of these algorithms depends on geometric proper-

ties which disappear in higher dimensions. Furthermore, it is likely that the problem

of finding best approximations is computationally infeasible for lattices of arbitrary

rank. For this reason, Chapter 4 continues by discussing approaches to simultaneous
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Diophantine approximation which aim to find good, rather than best, approxima-

tions in lattices of arbitrary rank with a modest amount of computational effort.

Brun’s algorithm was discussed in this context. We found that the algorithm is

attractive in its simplicity and has a natural geometrical interpretation. However,

it is known that the algorithm does not always produce very good approximations.

We then reviewed some of the more recent algorithms for simultaneous Diophantine

approximation which are based on the LLL algorithm. As a typical example of this

class of algorithms, we chose to examine the HJLS algorithm of Hastad et al. in

detail. We also discussed the similar but independently-developed PSLQ algorithm

of Ferguson & Bailey as well as algorithms of Just and Rössner & Schnorr.

We concluded the chapter by presenting a numerical example which compared the

performance of our accelerated algorithm, Brun’s algorithm and the HJLS algo-

rithm on lattices of rank three. For that example (Example 6.1), we found that

both Brun’s algorithm and the HJLS algorithm were not particularly good at find-

ing best approximations, discovering only three and four, respectively, of the seven

best approximations discovered by the accelerated algorithm.

Our discourse then turned to the application of this theory to some problems in

signal processing. In Chapter 5, problems of determining intercept times or prob-

abilities between two or more periodic pulse trains was discussed. Calculation of

these quantities is important in the design and analysis of ESM equipment such as

radar warning receivers. The chapter began with a discussion of the problem for two

pulse trains. When only two pulse trains are involved, we found that the calculation

of the intercept time for in phase initial conditions, which is to say the condition

in which both pulse trains have the same phase, is a Diophantine approximation

problem. As such, the pulse indices at which the first intercept occurs correspond to

a best homogeneous Diophantine approximation in the absolute sense to the ratio

of the PRIs of the pulse trains involved. Therefore, the intercept time can be effi-

ciently computed using Euclid’s algorithm, and the pulse indices correspond to the

numerator and denominator of a convergent in the s.c.f. expansion of the PRI ratio.

For arbitrary phase initial conditions, we found that the pulse indices corresponding

to the first intercept are a best inhomogeneous Diophantine approximation. Thus,

they can be efficiently found using Cassels’ algorithm. We also found that, given

one coincidence between the two pulse trains, all future coincidences can be found

by means of a recurrence relation.

We then considered the probability of intercept of two pulse trains, under the

assumptions that one or both of the phases is a random variable, uniformly dis-

tributed over the range of the associated PRI. Where one phase is random and the

other known — the discrete time case — the probability of at least one coincidence

after N pulses from the pulse train with known phase has a piecewise linear form in

N , consisting of four segments. The boundaries between the segments are found to

be determined by the denominators of convergents and intermediate fractions of the
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s.c.f. expansion of the PRI ratio. For the problem where both phases are random —

the continuous time case — we gave an expression for the probability of at least one

intercept occurring within an observation interval of length t. We found that the

expression for the probability of intercept as a function of t again consists of four

linear segments but is complicated by the addition of an extra quadratic segment

between two of the linear segments. However, we showed that the expression for

discrete time case can be made to serve as a good approximation for the continu-

ous time expression. For two pulse trains, we were able to make use of the theory

relating best Diophantine approximations to the Farey series that we developed in

Chapter 2 to give an expression for the discrete time probability of intercept as

function of the PRI ratio. The expression was given in terms of neighbouring points

and their parents (see Definition 5.1) in a Farey series of the appropriate order. A

recursive procedure can then be devised which allows an average or representative

probability of intercept to be calculated if the value of the PRI ratio is not known

precisely.

For intercept problems involving more than two pulse trains, we found that the

theory was much less well-developed. We were able to express the intercept time

problems as simultaneous Diophantine approximation problems: as a homogeneous

problem for in phase initial conditions or as an inhomogeneous problem otherwise.

For three pulse trains, we found that the intercept time could therefore be calculated

using either the additive or accelerated algorithm from Chapter 4. We were not able

to derive expressions for the probability of intercept. However, we were able to give

an exact expression for the continuous time probability over short time intervals and

we were able to prove the negative result that the expression for the probability of

intercept does not consist of a fixed number of linear segments for more than two

pulse trains. To conclude the chapter, we reviewed some other approaches which

have appear in the literature. In particular, we noted the similarity between our

expression for the continuous time probability of intercept with that derived by

Self & Smith. We warned of the dangers of using either expression as a source of

information about the probability of intercept over a long time interval.

In Chapter 6, we examined the problem of estimating the period of a pulse train

from which only a few, sparse and noisy measurements of TOAs have been made.

This problem arises in an ESM setting where a scanning receiver infrequently ob-

serves the portion of parameter space in which a periodic emitter is operating. We

proposed two statistical models for the observation process: a simple model and

an extended model. In the simple model, we assumed that the measurement errors

were independent, identically-distributed (i.i.d.) normal random variables but we as-

sumed very little about the way in which pulse went missing from the record. In the

extended model, we made the assumption that the differences between consecutive

observed pulse indices were i.i.d. random variables from a geometric distribution.

We formulated the maximum likelihood estimation problem for both models for
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estimation of the PRI and phase of the pulse train. If the pulse indices of the obser-

vations are known, we found that the problem was simply one of linear regression.

As the pulse indices are unknown, we found that maximum likelihood estimation of

the parameters for the simple model was equivalent to a simultaneous Diophantine

approximation problem in which we seek the best simultaneous Diophantine approx-

imation in the relative sense which has the least approximation error. Because of

this, we concluded that there were either no maximum likelihood estimates of the

parameters or there were an infinitude.

For the extended model, we proposed a method of joint maximum likelihood es-

timation and association (JMLEA) of the PRI, phase and pulse indices. We found

that, with sufficiently small measurement noise, the JMLEA is likely to be associ-

ated with a best simultaneous Diophantine approximation in a certain system. For

this reason, we proposed a simultaneous Diophantine approximation algorithm for

attempting to find the JMLEA. The algorithm we proposed is based on the LLL al-

gorithm. We were also able to show a strong connection between the particular

simultaneous Diophantine approximation system required for this problem and the

maximisation of the periodogram of TOA data, further extending the results of this

nature in Chapter 2. Finally, we presented some numerical simulations that show

that our algorithm is able to correctly associate pulse indices, and thereby obtain

statistically efficient estimates of the PRI and phase, with an experimental frequency

exceeding 99% even for records of 9 pulses in which the expected number of missing

pulses is 99.9% and the measurement error, as a proportion of PRI, was as high as

0.01. Moreover, we found that the algorithm appears to be quite robust with respect

to parameters which are assumed to be known a priori, namely the measurement

noise variance and the expected number of missing pulses.

In the author’s opinion, the important original contributions of this thesis are:

• the enunciation and proof of the conditions under which the auxiliary con-

vergents and intermediate auxiliary convergents of Cassels’ algorithm are

best inhomogeneous Diophantine approximations,

• the demonstration of the relationship between Diophantine approximation

and certain diagonal functions and, in particular, the periodogram,

• the development of the theory of (ρ, h)-minimal sets leading to the deriva-

tion of algorithms for best simultaneous Diophantine approximation for

lattices of rank three,

• the elucidation of the relationship between intercept time problems and the

theory of Diophantine approximation, leading to a unified treatment of a

number of intercept time problems and

• the application of a variant of the LLL algorithm to joint maximum likeli-

hood estimation and association of PRI, phase and pulse indices for short,

sparse and noisy TOA records of a periodic pulse train, thereby obtaining

results which improve the state-of-the-art.
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We conclude this thesis with a short discussion about further research which

might follow from this work. The geometry of numbers and simultaneous Diophan-

tine approximation are areas of mathematics that contain many open problems and

are of great interest to the mathematical community. The development of algo-

rithms is an important part of the theoretical development. The original algorithms

presented here for simultaneous Diophantine approximation do not seem well-suited

for generalisation to systems involving lattices of higher rank while retaining the

freedom of choice of radius and height functions. However, the author intends to

explore other avenues in this field.

The obvious area for improvement in the results concerning intercept time prob-

lems is in the problem of coincidence of more than two pulse trains. However, as we

have already noted, the theoretical obstacles appear to be formidable at this time.

Some progress might be made in the application of the additive and accelerated

algorithms of Chapter 4 to the formulation of the probability of intercept between

three pulse trains, but the practical interest in such a result may not be commen-

surate with the amount of effort required to obtain it. However, it may be easier

to extend the results for coincidence of two pulse trains to problems where the two

pulse trains involved are not strictly periodic but rather have some closely-related

modulation such as stagger or jitter. A staggered pulse train is one which is

created from the superposition of several periodic pulse trains with the same PRI

but different phases. A jittered is a periodic pulse train to which some noise has

been added to the TOAs.

The results we presented that relate simultaneous Diophantine approximation

to maximisation of the periodogram do not appear to be the best possible. A more

thorough characterisation of the relationship with best simultaneous Diophantine

approximations seems possible and desirable. While we have demonstrated an algo-

rithm that can be interpreted as finding successive peaks in a periodogram, a more

thorough exploitation of the properties of the periodogram should yield improved

performance and application to a wider range of problems.

However, it is the application of simultaneous Diophantine approximation to

other problems in signal processing which holds the most interest for the author.

Applications which the author has identified include stochastic resonance, the cal-

culation of coefficients for FIR filters and for beamforming and signal and image

compression. The work presented in Chapter 6 for estimation of the period of an

imperfectly observed pulse train can be generalised not only to different statistical

models for pulse trains, such as an incoherent model where errors accumulate, but

also to point processes in higher dimensions. For example, the method could be

generalised to estimating the basis of a point lattice of which only sparse and noisy

observations exist. In conjunction with a better understanding of its relationship

with the periodogram, the theory could be useful in irregular sampling. These are

application areas which the author intends to study at the earliest opportunity.
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Daudé, H., Flajolet, P. & Vallée, B. (1994). An analysis of the Gaussian

algorithm for lattice reduction. In Adleman, L. M. & Huang, M.-D. (eds.),

Algorithmic Number Theory, no. 877 in Lecture Notes in Computer Science,

144–158. Springer-Verlag, Berlin.

Delone, B. N. & Faddeev, D. K. (1964). The Theory of Irrationalities of the

Third Degree, vol. 10 of Translations of Mathematical Monographs. American

Mathematical Society, Providence, Rhode Island.

Descombes, R. (1956). Sur la répartition des sommets d’une ligne polygonale

régulière non fermée. Ann. Sci. École Norm. Sup. (3), 73, 283–355.
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ERRATA

p. v l. 2↓ The text “geometry numbers” should read “geometry of num-

bers.”

p. xi l. 2↓ The following sentence should be appended: “We use C to denote

the complex numbers.”

p. xi An additional item of notation should be described. We should

add: “In reference to Boolean expressions, the operations ∧ , ∨
and ¬ denote and, or & not. In accordance with the usual conven-

tion, ¬ takes precedence over ∧ which in turn takes precedence

over ∨ .”

p. 8 l. 19↓ The word “fist” should read “first.”

p. 29 l. 10↓ The occurrence of qN−1 in the denominator should be replaced by

qN−3.

p. 47 l. 7↑ The occurrence of A2
2 on the left hand side should be replaced by

A2
3.

p. 54 l. 10,12↓ The word “lesser” should be replaced by “smaller.”

p. 59 l. 10↓ The qualification “0 6 c1, c2 < 1” is unnecessarily strong and

should be replaced by “c1, c2 are not both integers.”

p. 61 l. 3↓ The word “mapping” should read “a mapping.”

p. 62 l. 2↑ After the text “there exists a unique upper triangular matrix R ∈
Rn×n” there should follow the qualification “with positive diagonal

elements.”

p. 63 l. 11↑ The occurrence of ‖x + x‖ should be replaced by ‖x + y‖.
p. 65 l. 11↑ The reference to “Figure 16” should be to “Figure 2.”

p. 73 l. 1↓ The occurrence of Q should be replaced by Q′.

p. 73 l. 5↑ Between the sentence which ends “. . . when i > 0” and the sen-

tence which begins “We call an expansion of this type. . . ,” we

should insert the following clarification: “If the fraction is con-

tinued only n times then the final term is εn−1/ξn, where ξn ∈ C,

0 6 R{ξ−1
n } 6 1

2
and |ξn| 6 1.”

p. 75 l. 8↑ The word “bound” should read “bounded.”

p. 84 l. 4↓ The word “constant” should read “a constant.”

p. 92 l. 1↑ The word “are” should read “is.”

p. 140 l. 4↓ The word “parallelepiped” should read “parallelepipeds.”
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p. 146 l. 17↑ The text “so that. . . ” should be replaced by “on which the ex-

change is performed satisfies. . . ”

p. 147 l. 9,10↓ The index j should be replaced by i throughout.

p. 147 l. 3↑ The word “integers” should read “integer.”

p. 148 l. 2↓ The occurrence of α should be replaced by αi.

p. 174 l. 6↑ The word “is” should read “are.”

p. 175 l. 7↓ The word “or” should read “and.”

p. 188 l. 15↑ The text “an adaptation LLL algorithm” should read “an adap-

tation of the LLL algorithm.”

p. 189 l. 5↑ The word “are” should read “is.”

p. 193 l. 11↓ The second last sentence of Theorem 4.1 should be deleted. The

last sentence should begin “In this case, . . . ” instead of “Other-

wise, . . . ”

p. 194 l. 6↓ The word “points” should read “point.”

p. 194 l. 3↑ The occurrence of + should be replaced by −.

p. 195 l. 9↓ The occurrence of ∂C should be replaced by ∂2C.

p. 199 l. 13↑ On line 6 of Algorithm 5.1, “min16i6n” should read “min16i6n−1.”

p. 203 l. 5↑ The text “magnitude of A(f), f = 2πω” should read “magnitude

of A(ω), ω = 2πf .”


