
Reducing Uncertainty of Low-Sampling-Rate
Trajectories

Kai Zheng 1, Yu Zheng 2, Xing Xie 2, Xiaofang Zhou 1,3

1 School of Information Technology and Electrical Engineering,

The University of Queensland, Brisbane 4072, Australia, {kevinz,zxf}@itee.uq.edu.au
2 Microsoft Research Asia, Beijing, China, {yuzheng, xingx}@microsoft.com

3 School of Information, Renmin University of China, China

Key Lab of Data Engineering and Knowledge Engineering, Ministry of Education,China

Abstract—The increasing availability of GPS-embedded mobile
devices has given rise to a new spectrum of location-based
services, which have accumulated a huge collection of location
trajectories. In practice, a large portion of these trajectories are
of low-sampling-rate. For instance, the time interval between
consecutive GPS points of some trajectories can be several
minutes or even hours. With such a low sampling rate, most
details of their movement are lost, which makes them difficult
to process effectively. In this work, we investigate how to reduce
the uncertainty in such kind of trajectories. Specifically, given a
low-sampling-rate trajectory, we aim to infer its possible routes.
The methodology adopted in our work is to take full advantage
of the rich information extracted from the historical trajectories.
We propose a systematic solution, History based Route Inference
System (HRIS), which covers a series of novel algorithms that
can derive the travel pattern from historical data and incorporate
it into the route inference process. To validate the effectiveness of
the system, we apply our solution to the map-matching problem
which is an important application scenario of this work, and
conduct extensive experiments on a real taxi trajectory dataset.
The experiment results demonstrate that HRIS can achieve
higher accuracy than the existing map-matching algorithms for
low-sampling-rate trajectories.

I. INTRODUCTION

The proliferation of GPS-enabled devices has given rise

to a boost of location-based services, by which users can

acquire their present locations, search interesting places around

them and find the driving route to a destination. Meanwhile,

location-based online services such as Google Latitude [1]

and Foursquare [2] allow users to upload and share their

locations are getting popular. These services and products have

accumulated huge amount of location trajectory data, which

inspires many applications such as route planner [3], hot route

finder [4], traffic flow analysis [5], etc, to leverage this rich

information to achieve better quality of services.
A location trajectory is a record of the path of a variety of

moving objects, such as people, vehicles, animals and nature

phenomena. But in practice, a large portion of these trajectory

data is of low-sampling-rate, i.e., the time interval between

consecutive location records is large. For instance, most taxis

in big cities are equipped with GPS sensors which enable them

to report time-stamped locations to a data center periodically.

However, to save energy and communication cost, these taxis

usually report their locations at low frequency. According to

our statistical analysis on the GPS data collected from 10,000+

taxies in a large city, more than 60% of the taxi trajectories are

of low-sampling-rate (the average sampling interval exceeds 2

minutes). Besides, low-sampling-rate trajectories can also be

generated from web applications. In Flickr [6] a set of geo-

tagged photos can be regarded as a location trajectory because

each photo has a location tag and a timestamp respectively

corresponding to where and when the photo was taken. The

average time intervals of this kind of trajectories can be tens

of minutes or even hours.

With such a low sampling rate, most detail information

about the exact movement of objects is lost and great un-

certainty arises in their routes. Consider the trajectories of

vehicles in Figure 1 as an example. If the sampling rate of

the trajectory Ta is high, we can tell the route it travelled

unambiguously. However, when the sampling rate is low (i.e.,

only solid points can be seen), how Ta travels between the

consecutive GPS observations is not certain any more. In

some other kinds of trajectories, such as the one from geo-

tag photos or migratory birds, where the location records are

very sparse, uncertainty becomes even more significant. This

kind of uncertainty will severely affect the effectiveness and

efficiency of subsequent process such as indexing [7][8][9],

querying and mining [10].

Motivated by this, in this paper we aim at reducing uncer-

tainty for low-sampling-rate trajectories. Specifically, given a

low-sampling-rate trajectory, our goal is to infer its possible

routes. The results of our work can be beneficial for a lot

of practical applications, such as traffic management [5], trip

mining from geo-tap photos [11], scientific study of animal

behaviors or hurricane movement [12], etc. The methodology

adopted in this work is to take full advantage of the infor-

mation in the historical trajectory data. Real spatial databases

usually archive a huge amount of historical trajectories, which

can exhibit patterns on how moving objects usually travel

between certain locations. Therefore, given a low-sampling-

rate trajectory as the query, it is possible to discover some

routes which are more popular than others. Then we suggest

these popular routes as our estimation of its real path. In this

way, the enormous possible routes of the query are cut down

to a few popular routes, and consequently the uncertainty is

reduced.



a

b

c

Ta
Tb
Tc

Fig. 1: Uncertainty in low-sampling-rate trajectories

A. Motivational Observations

Why is it feasible to reduce the uncertainty of low-sampling-

rate trajectories by leveraging historical data? At the heart

of the motivation for this work, there are two important

observations based on our analysis on real datasets.

Observation 1: Travel patterns between certain locations

are often highly skewed.

Though the possible routes between two locations far away

to each other are usually enormous, only a few of them are

travelled frequently. This is due to the fact that, when people

travel, they often plan the route based on the experience of

their own or others, rather than choosing a path randomly.

The skewness of travel pattern distribution makes it feasible

to distinguish the possible routes based on their popularity.

Observation 2: Similar trajectories can often complement

each other to make themselves more complete.

Trajectories are samples of objects’ movement, which are

inherently incomplete. Given a set of low-sampling-rate trajec-

tories that travel along the similar routes, there is no way to tell

their exact path if we look at them in an isolated manner, since

each of them is incomplete. Yet an interesting observation is

that, if we consider these trajectories collectively, they may

reinforce each other to form a more complete route. Consider

Figure 1 as an example, in which there are another two low-

sampling-rate trajectories Tb, Tc that travel on the same route

as Ta. As we can see, their sample locations interleave with

each other, which makes it possible to know their complete

route if we can find a way to aggregate them together.

B. Challenges and Contributions

Intuitively, given a low-sampling-rate query trajectory, one

can simply search for the historical trajectories that pass by

all the points of the query. Then we find the routes that have

been travelled by the most historical trajectories. However, this

method cannot work well in practice for two reasons.

• Data sparseness. Since the query can have arbitrary

locations, we usually cannot find any historical trajectory

that matches the whole part of the query very well. Even

if we can, the amount may not be enough to support the

inference. Hence if we simply group the trajectories by

their routes, none of them can fall in the same group in

most cases, which results in a set of non-distinguishable

possible routes.

• Data quality. In a real moving object database, the

quality of historical data cannot be guaranteed, i.e., high-

sampling-rate and low-sampling-rate trajectories co-exist.

As a consequence, the exact routes of many historical

trajectories are also unknown. So how to deal with the

historical data with varies quality is a difficult problem

we need to address.

For a more practical solution, we propose to process a

given query in three steps. Firstly, we divide the whole

query into a sequence of sub-queries and search for the

reference trajectories that can give hints on how each sub-

query travels. Then we infer the local routes for each sub-

query by considering the reference trajectories in a collective

manner. At last, we connect consecutive local routes to form

the global routes and return the ones with the highest scores

to the users. As a summary, the essence of the route inference

approach in this paper is to extract the travel pattern from

history, and infer the possible paths of the query by suggesting

a few popular routes. Compared to the original number of

possible routes, the uncertainty existing in the query trajectory

is reduced significantly in this way. To summarize, the major

contributions of this paper lie in the following aspects:

• We present a new methodology of inferring the possible

route for a low-sampling-rate trajectory by leveraging the

information from historical trajectories.

• We develop a systematic solution, history based route

inference system (HRIS), which covers the whole process

of transforming a given query to a set of possible routes.

• We introduce the concept of reference trajectories, which

are obtained from the historical data, either natively

existing or artificially constructed, and could give hints

on how moving objects usually travel between certain

locations.

• We propose two local route inference algorithms, tra-
verse graph based approach and nearest neighbor based
approach, which considers all the reference trajectories

in a collective way. A hybrid approach that combines

the merits of the two algorithms is also proposed so as

to achieve better performance when the distribution of

historical data fluctuates significantly.

• We define a reasonable scoring function for the global

routes which incorporates the popularity of each local

route as well as the confidence of the connections be-

tween them.

• We build our system based on a real-world trajectory

dataset generated by 33,000+ taxis in a period of 3

months, and evaluate the effectiveness of our system by

using map-matching as a case study. The results show

that the routes suggested by our system is more similar

with the ground truth than the existing map-matching

algorithms for low-sampling-rate trajectories.

The remainder of this paper is organized as follows. In

Section II we introduce the necessary background and give

an overview of our whole system. Then we detail the route

inference component in Section III, followed by our exper-



TABLE I: A list of notations

Notation Definition

R A route on the road network
r A road segment
T A trajectory
T A set of trajectories
Tq , qi The query trajectory and its i-th point
Ci The set of reference trajectories between qi and qi+1

Pi The set of reference points between qi and qi+1

Ri The set of local routes between qi and qi+1

f(Ri) the popularity of local route Ri

g(Ri, Rj) The transition confidence from local route Ri to Rj

s(R) The score of global route R

imental observations in Section IV. Finally we position our

work with respect to the related literature in Section V and

draw a conclusion in Section VI. A partial list of notations

used in this paper are summarized in Table I.

II. SYSTEM OVERVIEW

In this section, we first clarify some terms used in this paper,

and then briefly introduce the architecture of our system.

A. Preliminaries

In this subsection, we will gather the preliminaries necessary

for the development of our main results, and state our problem.

Definition 1 (GPS Trajectory): A GPS trajectory T is a

sequence of GPS points with the time interval between any

consecutive GPS points not exceeding a certain threshold ΔT ,

i.e., T : p1 → p2 → · · · → pn, where 0 < pi+1.t−pi.t < ΔT
(1 ≤ i < n). ΔT is called the sampling interval.

This paper focuses on low-sampling-rate trajectories, of

which ΔT is large. But the concept of ’high/low sampling

rate’ is very subjective and cannot be defined in a strict form.

Based on our observations and experiments on real datasets,

we consider a trajectory with ΔT > 2min as low-sampling-

rate trajectory, since most traditional map-matching algorithms

become less effective on such kind of trajectories.

Definition 2 (Road Segment): A road segment r is a di-

rected edge that is associated with two terminal points (r.s,

r.e), and a list of intermediate points describing the segment

using a polyline. Each road segment has a length r.length
and a speed constraint r.speed which is the maximum speed

allowed on this road segment.

Definition 3 (Road Network): A road network is a directed

graph G(V,E), where V is a set of vertices representing the

intersections and terminal points of the road segments, and E
is a set of edges representing road segments.

Definition 4 (Route): A route R is a set of connected road

segments, i.e., R : r1 → r2 → ... → rn, where rk+1.s =
rk.e, (1 ≤ k < n). The start point and end point of a route

can be represented as R.s = r1.s and R.e = rn.e.

Definition 5 (Candidate Edge): The candidate edges of

point p is the set of road segments whose distance with p is be-

low a certain threshold ε, where the distance between a point p
and a road segment r is defined as dist(p, r) = minc∈r d(p, c).

Problem Statement: Given an archive of historical GPS

trajectories A, an underlying road network G, a low-sampling-

rate query trajectory Tq , we aim to suggest K possible routes

of Tq by leveraging the information learned from A.

B. Architecture

Figure 2 shows the architecture of our system, which

is comprised of two components: preprocessing and route

inference. The first component operates offline and only needs

to be performed once unless the trajectory archive or road

network is updated. The second component is the key part

of our system, and should be conducted on-line based on the

query specified by a user.

Trip Partition

Trajectory Archive

Map Matching

Indexing

Low-sampling-rate Query Trajectory

Simple Reference
Search

Spliced Reference
Search

Reference Trajectories

Graph based
Approach

Nearest Neighbor
based Approach

Route Scoring

Global Route Inference

Reference Search

Local Route Inference

GPS Logs

Preprocessing Route Inference

R-tree Index

Candidate Edges

Fig. 2: System overview

1) Preprocessing Component: To improve the quality of

trajectory archive and facilitate the subsequence process, we

perform some preprocessing before it is utilized by the route

inference component.

Trip Partition. In practice, a GPS log may record an

object’s movement for a long period, during which it could

travel from multiple sources to multiple destinations. There-

fore to better utilize these historical data, we segment the

GPS trajectories into effective trips, which is a route having

one specific source and destination. If the object is stationary

over a relatively long time, it usually implies the end of one

trip and also the start of the next trip. This phenomenon can

be well captured by the concept of stay point [13], which

is a geographical region where a moving object stays over a

certain time interval. So for each historical trajectory in the

archive, we detect its stay points and then remove the GPS

point belonging to the stay points, after which the trajectory

will be naturally split into several trips.

Map Matching. Due to GPS measurement error, the ob-

servation of a GPS point does not reflect its true position

accurately. In this step, we align the observed GPS points

onto the road segments by applying existing map-matching

techniques.

Indexing. A real moving object database usually archives

tens of thousands of trajectories and millions of GPS points,



which prohibits us to search them sequentially. To enhance the

performance of our system, we utilize R-tree to organize all

the GPS points.
2) Route Inference Component: This is the key component

of our system, which will process a given query in three

phases:
Reference Trajectory Search. Apparently not all the his-

torical trajectory are relevant to the query. In this phase, we use

the concept of reference trajectory to describe those historical

trajectories that are useful for inferring the possible routes of

the query. Ideally, the reference trajectories should travel by

similar path with the query. However, due to data sparseness,

normally we cannot find enough trajectories that are similar

with the whole query. For this reason, we propose to partition

the query into a sequence of consecutive location pairs, and

search for the reference trajectories in each local area.
Local Route Inference. In this step, we perform the local

route inference based on the reference trajectories for each

consecutive location pair of the query. To this end, two inde-

pendent approaches are proposed. The traverse graph based
approach constructs a conceptual graph by using the road

segments travelled by some reference trajectories, and perform

the inference based on this graph. The nearest neighbor based
approach algorithm adopts a heuristic way to transfer from one

reference point to its nearest neighbors until the destination

(i.e., qi+1) is reached. Besides, to achieve better effectiveness

and efficiency, a hybrid approach combining the advantages

of the two methods is also presented.
Global Route Inference. In the last step, we infer the global

possible routes for the whole query by connecting consecutive

local routes. To distinguish the global routes, we propose a

scoring function by incorporating the popularity of each local

route as well as the confidence for connecting them. Finally,

we devise a dynamic programming algorithm to get the top-K
global routes in terms of their scores efficiently.

III. ROUTE INFERENCE

In this section, we detail the three phases of route inference

component.

A. Reference Trajectory Search
Though spatial databases archive a large amount of trajec-

tories, it is neither effective nor efficient to use them all for

a specific query. Intuitively, we only need to utilize the ones

in the surrounding area of the query since the relationship

between two trajectories faraway from each other is usually

weak. In this paper, we use the notion of reference trajectory
to model those historical trajectories that can be useful for the

route inference. Simple reference trajectories natively exist in

the archive while spliced reference trajectories are constructed

from two historical trajectories. In the rest of this paper, we

use reference and reference trajectory interchangeably.
1) Simple Reference Trajectory: Formally, the simple ref-

erence trajectory is defined as follows.
Definition 6 (Simple Reference Trajectory):

Let nn(q, T ) denote the nearest point of trajectory T with re-

spect to point q, i.e., nn(q, Tk) = argminp∈T {d(p, q)}. Given

a radius φ > 0, trajectory Tk is a simple reference trajectory

with respect to the pair 〈qi, qi+1〉, where qi, qi+1 ∈ Tq , if there

exits a sub-trajectory T k
i = (pm, pm+1, ..., pn) ⊆ Tk such that,

1) pm = nn(qi, Tk) and pn = nn(qi+1, Tk).
2) d(pm, qi) ≤ φ and d(pn, qi+1) ≤ φ.

3) ∀p ∈ T k
i , d(p, qi) + d(p, qi+1) ≤ (qi+1.t− qi.t) · Vmax,

where Vmax is the maximum allowed speed of the road

network.

In the above definition, the first and second conditions

require the trajectory to be close enough to qi and qi+1, while

the third condition guarantees that the query object is able to

travel from qi to qi+1 via the route of the reference. We use

Figure 3a to illustrate the intuition of this concept. T1 and

T2 are simple reference trajectories with respect to 〈qi, qi+1〉
as they satisfy all the conditions of Definition 6. T3 is not a

reference trajectory as it does not fall inside the circle centered

at qi+1 (i.e., does not satisfy the condition 2). T4 is not a

simple reference trajectory either, since there is a point a ∈ T4

that violates the condition 3.

iq 1iq

1T

2T

3T

a 4T

(a) Simple reference trajectory

iq 1iq

1T2T
3T

e

4T

1 2

(b) Spliced reference trajectory

Fig. 3: Reference trajectory

Given a pair 〈qi, qi+1〉, we can search for the simple

reference trajectories efficiently with the help of R-tree index

that is already built in the preprocessing component. First,

we issue two range query with radius of φ at qi and qi+1

respectively to retrieve all the trajectories that pass by either

qi or qi+1. Then by joining the two sets of range query results,

we get a list of candidate trajectories that pass by both qi and

qi+1. Finally, the simple reference trajectories can be obtained

by checking these candidates against the condition 3.
2) Spliced Reference Trajectory: In some cases such as

an area with sparse historical data, the requirement for a

trajectory to qualify a simple reference is too strict, which

makes the number of obtained reference trajectories too small

to support our inference. To address this problem, in this

part we extend the concept of reference to include another

kind of trajectories. Consider Figure 3b where neither T1 nor

T2 is a simple reference. But if we splice them together, a

virtual trajectory T3 will be formed, which actually is a good

reference for estimating the true path of the query. Based on



this observation, we propose the notion of spliced reference

trajectory.

Definition 7 (Spliced Reference Trajectory):
Given two trajectories Ta, Tb which are not simple

reference trajectories w.r.t. 〈qi, qi+1〉, trajectory T =
(p1, ..., pm, pm+1, ..., pn) is a spliced reference trajectory w.r.t.

〈qi, qi+1〉, if

1) T satisfies all the conditions of Definition 6.

2) (p1, ..., pm) ⊆ Ta, (pm+1, ..., pn) ⊆ Tb.

3) d(pm, pm+1) ≤ e, where e is a user-specified threshold,

and 〈pm, pm+1〉 is called the splicing pair of T .

Apparently, T3 in Figure 3b is a spliced reference. Essen-

tially, a spliced reference is the mixture of two trajectories

T1 (coming from qi) and T2 (heading towards qi+1) which

have some overlap. Even though neither T1 nor T2 pass by

both qi and qi+1, joining them together can still give hints on

how people usually travels between qi and qi+1. On the first

sight, one may ask why we do not simply use a very large

search radius to include as many simple reference trajectories

as possible. However, it may include too many irrelevant

trajectories, the ones far away from both qi and qi+1. This

kind of trajectories is very unlikely to be useful, and even

worse, they may interfere the inference process. As we can

see from Figure 3b, T4 will be regarded as a reference if we

expand the radius from φ1 to φ2, but it is unreasonable to

leverage T4 to estimate the route from qi to qi+1 as it is too

far away from them.

The search for spliced reference trajectories can be per-

formed as follows. First, the same as the reference search,

we obtain two sets of candidate trajectories by issuing two

range queries and removing the simple reference trajectories.

Then we find all the splicing pairs by performing on-line

spatial join on the two candidate sets [14][15]. Finally we

remove all the spliced trajectories that do not satisfy the

Definition 7. Note that we may get multiple splicing pairs for

the same pair of trajectories, denoted by (Ta, Tb). In this case

we just choose the one (pa, pb) that minimizes the distance

d(pa, qi)+ d(pb, qi+1). In the sequel, these two types will not

be distinguished and are both called reference trajectories.

B. Local Route Inference

In this subsection, we will discuss the techniques used to

infer the local possible routes between qi and qi+1 based on

the reference set Ci derived in the last phase. In the sequel,

for each reference Tk ∈ Ci, we refer to its sub-trajectory in

between qi and qi+1 as T k
i , i.e., T k

i = (pm, ..., pn), where

pm = nn(qi, Tk) and pn = nn(qi+1, Tk) and the GPS points

of all the reference trajectories in Ci as reference points,

denoted by Pi.

Then, how to leverage these reference trajectories to do the
inference? Recall the two key observations made in Section

I. First, though there are a huge amount of possible routes

between qi and qi+1 if we just consider the topological

structure of the road network, most of them are unlikely

to be travelled as the travel preference trajectories are often

skewed towards a few routes (Observation 1). Second, as the

points from different trajectories can complement each other

(Observation 2), there is a better chance to estimate the route

more accurately if we consider multiple reference trajectories

collectively.

In this light, we propose two algorithms, Traverse Graph
based Inference and Nearest Neighbor based Inference, for

the local route inference. The first one constructs a conceptual

graph by using the road segments that have been traversed by

some reference trajectories, and perform the inference based

on this graph. The second algorithm adopts a heuristic way to

transit from one reference point to another until the destination

(i.e., qi+1) is reached. Finally, on top of them, we also propose

a hybrid approach which combines the advantages of the two

methods.

1) Traverse Graph based Approach: A basic assumption

behind our work is that historical data can reflect the popularity

of routes. With this assumption, if a road segment is not

travelled by any reference, there is a high chance that the query

object did not pass by it either. More specifically, given two

routes Ra, Rb between certain locations, if Ra is the shortest

path but is not travelled by any reference while Rb is heavily

traversed but longer than Ra, we have more confidence that

Rb is travelled by the query. This motivates us to focus on the

road segments traversed by some reference trajectories rather

than all the edges in the road network. Before detailing our

algorithm, we need to introduce the following concepts.

Definition 8 (λ-neighborhood): The λ-neighborhood of a

road segment r, denoted by Nλ(r), is defined as Nλ(r) =
{s ∈ E|h(r, s) < λ}, where h(r, s) is the number of hops

needed at least for an object moving from r to s.

To get the λ-neighborhood of an edge r, we can perform two

depth-first search (one for each vertex of r). All the edges that

can be reached with the depth of less than λ will be included.

Definition 9 (Traverse Graph): A road segment r is called

a traverse edge with respect to 〈qi, qi+1〉, if it is travelled

by some reference trajectories, i.e.,∃p ∈ T k
i such that r is

a candidate edge of p. The traverse graph is a directed graph

Gi = (Vi, Ei), where Vi represents the set of all traverse edges

w.r.t. 〈qi, qi+1〉, and Ei is the set of links from each node to

its λ-neighborhood, i.e.,Ei = {(r → s)|s ∈ Vi, r ∈ Vi, s ∈
Nλ(r)}.

Essentially, the traverse graph is a conceptual graph (i.e.,

it does not exist physically) that incorporates the topological

structure of the underlying road network as well as the

distribution of reference trajectories. Compared to the original

road network, the traverse graph is more concise since it

only consists of the edges that have been traversed by some

reference.

The main structure of this approach is illustrated by Algo-

rithm 1. First, we scan all the reference trajectories once to get

the set TE of the traverse edges. Then, we build the traverse

graph by finding the λ-neighborhood for each edge r ∈ TE.

If there exists a traverse edge s ∈ Nλ(r), we create a directed

link from r to s. Once it is done, we set the candidate edges

of qi, qi+1 as the sources and destinations, and find the top-

K shortest paths [16][17] on this traverse graph. Finally we



project these paths to the original road network and get their

physical routes.

Algorithm 1: Traverse Graph based Inference (TGI)

Input: G,Ci, λ,K
Output: Ri

1 TE ← ∅; // traverse edge set;

2 for each T k
i ∈ Ci do

3 for each pj ∈ T k
i do

4 insert the candidate edges of pj to TE;

5 Vi ← create nodes for all r ∈ Ei;
6 for r ∈ TE do
7 for s ∈ TE ∩Nλ(r) do
8 Ei.add(r → s);

9 Gi ← graphAugmentation(Vi, Ei);
10 Gi ← graphReduction(Vi, Ei);
11 for each candidate edge ri of qi do
12 for each candidate edge ri+1 of qi+1 do
13 Ri.add(KShortestPath(ri, ri+1,K));

14 Ri ← get the physical route on G for each R ∈ Ri;
15 return Ri;

There are two subroutines, graph augmentation (line 9) and

graph reduction (line 10), in Algorithm 1 which are important

for this algorithm to be effective and efficient.
Graph Augmentation. In some cases we may not find a

path from qi to qi+1 since the derived traverse graph is not

strongly connected. This can be caused by various reasons

such as the specified value of λ and/or the distribution of refer-

ence points. To address this issue, we need to increase the con-

nectivity of the traverse graph to make it strongly connected.

This is actually the special case of the k-connectivity graph
augmentation problem, i.e., add a minimum number (cost) of

edges to a graph so as to satisfy a given connectivity condition,

which has been studied for long time [18][19]. Though it is

a hard problem for arbitrary k, it can be transformed to the

min-cost spanning tree problem when k = 1, which has been

solved nicely. Hence this subroutine can proceed as follows.

First, we test if the traverse graph is strongly connected. If not,

we assign two links (one for each direction) to the closest pair

of nodes (va, vb) from different components, after which the

traverse graph will be strongly connected.
Graph Reduction. Note that the traverse graph contains

some redundant edges. Specifically, if rj ∈ Nλ(ri), rk ∈
Nλ(ri), rk ∈ Nλ(rj), and h(ri, rk) = h(ri, rj)+h(rj , rk)+1,

then the link ri → rk is redundant. The existence of these

redundant edges increases the complexity of the traverse graph,

which makes the K-shortest path algorithm less efficient. To

improve the efficiency of the algorithm, we can adopt transitive

reduction algorithms [20] to remove the redundant edges.
Figure 4 exemplifies the construction of a traverse graph.

There are 4 local reference trajectories between qi and qi+1,

whose GPS points have been matched on their corresponding

road segments. Traverse edges are given different colors to dis-

tinguish various reference trajectories . By setting λ = 2, each

traverse edge is connected to the ones within one hop. After

removing redundant edges, the traverse graph is constructed

as shown in Figure 4(b), where we use indirected link to keep

the illustration concise.

r4

r6 r7

q1

q2

r3
r2 r1

r5 r9r8

r10

r11

r12

r6

r8r2

r1 r4

r9

r10

r7

r5

r3

r11

r12
(a) (b)

Fig. 4: Traverse graph construction

2) Nearest Neighbor based Approach: In the traverse graph

based approach, choosing an appropriate λ is very important.

If λ is too small, the connectivity of the traverse graph will be

so low that the effectiveness of the inference is affected. On the

other hand, a too large λ will make the algorithm inefficient,

since searching for the λ-neighborhood for each traverse edge

is costly. This issue becomes more severe when the average

distance of the reference points is large as we have a dilemma

that either effectiveness or efficiency will be lost.

To address this issue, we propose another inference algo-

rithm, NNI (Nearest Neighbor based Inference) that is more

adaptive to the distance of reference points. The basic idea of

this approach is that, since the goal is to find a way to travel

from qi to qi+1 via the reference points, we can start from

qi and search for its nearest neighbor pn which is promising

to lead a way to qi+1. Then we set pn as the new start point

and repeat this process until the destination qi+1 is reached.

Algorithm 2 generalizes this idea to search for the constrained
k nearest neighbor at each position so that it has multiple

choices for the next hop in each recursion. As the recursion

continues, we use a list trace to keep the reference points

which have been chosen in previous steps. Once the destination

is reached, we can derive a route from the points in trace
by applying the map-matching techniques, whose accuracy is

higher as there are more intermediate points in between qi and

qi+1 now.

Now we make some explanations for two parameters α and

β, which are used to control the way of choosing the reference

points for the next hop. Generally, we expect the next point

to satisfy two requirement, based on the heuristics when we

travel in real life: 1) its distance to the destination is usually

smaller than that of the current position, 2) it should not cause

a long distance detour.

• It is too strict to require the next point to be always closer

to the destination due to the constraint of road network.

So we use α as a tolerance threshold, which allow the

next point to be a little further from the destination than

the current position. If the next point is indeed further,

we deduct this deviation from α and use more strict

requirement for the next recursion (line 20). The purpose

of this operation is to guarantee we will eventually reach



the destination rather than keep heading towards the

opposite direction.

• For the second requirement, we use β to control the

tolerance of the detour distance for the next point. If

selecting the next point makes the total travel distance

increase significantly compared to the distance between

current position and the destination, it will not be chosen

by our algorithm.

Algorithm 2: Nearest Neighbor based Inference (NNI)

Input: pc, qi, qi+1, Ci, k, α, β, trace
Output: Ri

1 pc ← qi; // initialize the current point to qi
2 if pc = qi+1 then
3 R ← build route from the points of trace;
4 Ri.add(R);

5 else
6 NN ← ∅; // the point set for next recursion
7 while |NN | < k do
8 p ← next nearest neighbor of pc;
9 if d(p, qi+1)− α > d(pc, qi+1) then

10 continue;

11 if d(pc,p)+d(p,qi+1)

d(pc,qi+1)
> β then

12 continue;

13 if p = qi+1 then
14 NN .clear();
15 NN .add(p);
16 break;

17 NN .add(p);

18 for each p ∈ NN do
19 trace.append(p);
20 α ← α− (d(p, qi+1)− d(pc, qi+1));
21 NNI(p, qi, qi+1, Ci, k, α, β, trace);

Sharing common substructures. The NNI approach can

become time consuming when the number of referent points

gets large. Through analyzing the algorithm, we find the

most costly part lies in the constrained KNN search at each

recursion. See Figure 5(a) as an example, where the points

with different colors belong to different reference trajectories.

By tracking all the recursions during the inference, we can

get a recursion tree, as shown in Figure 5(b). In total we

need to perform 8 KNN search at the branch nodes of the

recursion tree. However, some of them can be saved since

there are common substructures, i.e., p2 → q2 and p5 → q2.

Since we use the depth-first search strategy, at some point

during the recursion, the KNNs of the current point may

already have been obtained, in which case it is a waste of

time to perform the search again. Therefore we can share these

common substructures by keeping all the previous branches.

If the next point we are about to examine is already a node

in the recursion tree, we just connect the current point to this

node and immediately trackback. By this means, we essentially

build a transit graph that demonstrates all the heuristic ways

to transit from q1 to q2. As shown in Figure 5(d), only 6 KNN

searches are needed after sharing the common substructures.

Finally, with this transite graph, we enumerate all the possible

paths from q1 to q2 and infer the route based on the reference

points of each path, the result of which is shown in Figure

5(c).

q1

p1
q2

p4

p2

p3
q1

p1 p3

p2 p2 p4

p5

p5

q2 q2
q2

q2

p5

q2

p

q1

p1 p3

p2
p4

q2

p5

q1
q1

p1
q2

p4

p2

p3

p5

(a) (b)

(d)(c)

Fig. 5: Nearest neighbor based inference

3) Hybrid Approach: The TGI approach uses a fixed radius

λ to search for the neighboring traversed edges. So it will

become less effective when the density of reference points is

low. On the other hand, NNI finds the k nearest neighbors at

each point, hence is not so sensitive to the mutual distance

of the reference points. But when the density goes high,

NNI will be time consuming due to the recursive search.

To make our system more adaptive to the heterogeneous

distribution of trajectories in real application, we propose a

hybrid approach, which uses a threshold τ to which of the two

approaches should be adopted. Before performing the local

route inference, we estimate the density of reference points

by the ratio between the number of points and the area of the

Minimum Bound Box of these points. If the density is lower

than τ , the TGI will be selected; otherwise the NNI will be

chosen. The values of τ will be tuned through empirical study

in the experiments later.

C. Global Route Inference

The output of the last phase is a set of local routes for

each pair 〈qi, qi+1〉. We need to connect consecutive local

routes to obtain the global route for the whole query. Since

the number of global possible routes can be huge and it is

useless to suggest all those results to the users, measurement

for the route quality is also desired so that the final results

can be distinguished. In this subsection, we will discuss how

to derive global possible routes from the local routes. First we

develop a scoring function for global routes by incorporating

the popularity of local routes as well as the confidence to

connect them. Then we propose a dynamic programming

algorithm to compute the top-K global routes with highest

scores efficiently.

1) Route Scoring Function: A global route consists of

a sequence of local routes, so its quality should consider



two aspects: 1) the quality of the each local route itself, 2)

the quality of connections between consecutive local routes.

Correspondingly, we propose the popularity function for each

local route and the transition confidence function for their

connection.

Local Route Popularity. The quality of a local route is

characterized by a popularity function which is an indicator

of how frequently it is travelled by the reference trajectories.

Generally, it is influenced by two factors.

• Apparently, the more reference trajectories traveling by

the route there exist, the greater popularity it has.

• Another factor which is not so obvious is the reference

distribution on the route. To explain this, consider Figure

6 in which the total numbers of reference trajectories that

travel by Ra and Rb are similar. However, we prefer Ra

since its traffic is more stable, which implies there are

more trajectories continuously travelling on it. On the

contrary, the traffic burst of Rb is probably caused by a

major road intersection, where many objects actually pass

by the road intersection rather than travel on Rb.

r1 r2 r3 r4

N
um
be
ro
fr
ef
er
en
ce

r1 r2 r3 r4Ra Rb

N
um
be
ro
fr
ef
er
en
ce

Fig. 6: Reference distribution

To capture these factors, we incorporate the concept of

entropy to the popularity function, since it can naturally reflect

the uniformness of a probability distribution. Let Ci(r) denote

the reference trajectories w.r.t. 〈qi, qi+1〉 that travel by the road

segment r. The popularity of a local route R = (r1, ..., rn) is

defined as:

f(R) = |
⋃

r∈R

Ci(r)| ·
∑

r∈R

{−x(r) log x(r)} (1)

where x(r) is the percentage of the reference trajectories on r
with respect to the total number of reference trajectories, i.e.,

x(r) = |Ci(r)|
|∑r∈R Ci(r)| .

Route Transition Confidence. Let Ci(R) denote the set

of reference trajectories w.r.t. 〈qi, qi+1〉 that travelled by R,

i.e., Ci(R) = ∪r∈RCi(r). Given two local routes Ra ∈ Ri,

Rb ∈ Ri+1, their transition confidence is defined as:

g(Ra, Rb) = exp{Ci(Ra) ∩ Ci+1(Rb)

Ci(Ra) ∪ Ci+1(Rb)
− 1} (2)

The intuition behind this function is that, the more common

trajectories that travelled on both Ra and Rb, the more

confident we are that Ra and Rb can be connected. g(, ) will

get its maximum value 1 when the sets of trajectories on Ra

and Rb are identical, and minimum value 1/e when Ra and Rb

do not share any common trajectory. Note that sometimes the

last edge of Ra and the first edge of Rb may not be identical

since qi+1 can be matched onto several candidate edges. But

this is not a big issue since we can always use shortest path

to bridge this gap in between them. Now we are in position

to introduce the scoring function of a global route.

Global Route Score. Let Ri �Rj denote the concatenation

of two local routes Ri and Rj . For a global route R = R1 �
R2 � ... �Rn, the score of R is computed as the multiplication

of individual route popularity and the transition confidence

between them, i.e.,

s(R) = f(R1) · g(R1, R2) · f(R2) · ... · f(Rn)

=
n∏

i=1

f(Ri) ·
n−1∏

i=1

g(Ri, Ri+1)

2) Top-K Global Routes: Now the problem becomes to,

given a sequence of sets of local routes (R1,R2, ...,Rn), find

the top-K global routes in terms of their scores. To answer

this query, a naive method is to enumerate all possible global

routes and then find the top-K. But it cannot scale well with

either the length of query trajectory or the cardinality of the

local route set. Assume the average cardinality of each local

route set is m, the length of query trajectory is n, the number

of combination for global routes will be approximately mn−1.

To address this issue, we propose a dynamic programming

algorithm, K-GRI (top-K Global Route Inference) to find the

top-K global routes efficiently.

The key structure of our method is a matrix M [, ]. The entry

M [i, j] maintains K (partial) global routes with the highest

scores among the ones ending with Rj
i , i.e., (∗ �Rj

i ) = {R1 �
R2 � ... �Rj

i , ∀Rm ∈ Rm, 1 ≤ m < i}. Then the entry M [i+
1, k] can be derived by the following recursion formula.

M [i+ 1, k] = topK
|Ri|
j=1 {R|R = R′ �Rk

i+1, ∀R′ ∈ M [i, j]}
The correctness of this formula is guaranteed by the downward
closure property, which is, if a route R1 � ...�Ri+1 belongs to

the top-K among ∗�Ri+1, its sub-route R1 � ...�Ri must also

belong to the top-K among ∗ �Ri. For example, in Figure 7

if the global route R4 = R1
1 � R1

2 � R2
3 � R2

4 is the one with

the highest score, then it is for sure that R3 = R1
1 � R1

2 � R2
3

is also the top-1 among ∗ � R2
3. Otherwise, we can always

replace R3 by the one whose score is higher, denoted by R′
3,

to get a a better route R′
4 = R′

3 � R2
4, which is contradictory

to our presumption.

1
1R

3
1R

2
1R

1
2R

2
2R

2
3R

3
3R

2
4R

1
3R

1
4R

1 2 3 4

Fig. 7: Global route inference

The main procedure of this method is illustrated in Algo-

rithm 3. First we initialize the matrix by adding each local



route Rj
1 ∈ R1 into M [1, j]. Then we perform the induction

from i = 2 to n. Finally we scan the entries M [n, ∗] once to

get the top-K global routes.

Complexity Analysis. Assume the average number of

routes in any Ri is m, the length of the query is n. For each

iteration of i, there are totally km2 operations, resulting a

polynomial complexity of O(knm2).

Algorithm 3: K-GRI

Input: (R1, ...,Rn),K
Output: R

1 M [, ] ← empty matrix;
2 for j = 1 to |R1| do
3 M [1, j].add(Rj

1);

4 for i = 2 to n do
5 for j = 1 to |Ri| do
6 for k = 1 to |Ri−1| do
7 for each R′ ∈ M [i− 1, k] do
8 M [i, j].add(R′ �Rj

i );

9 M [i, j] ← top(M [i, j],K);

10 for j = 1 to |Rn| do
11 R.add(M [n, j]);

12 return top(R,K);

IV. EVALUATION

In this section, we apply our solution to map-matching

scenario to validate the effectiveness of HRIS. All algorithms

in our system are implemented in C# and run on a computer

with Intel Xeon Core 4 CPU (2.66GHz) and 8GB memory.

A. Settings

Road Network: Our evaluation is performed based on the

road network of Beijing which has 106,579 road nodes and

141,380 road segments.

Taxi Trajectories: We build our system based on a real

trajectory dataset generated by 33,000+ taxis of Beijing in

a period of 3 months. After the preprocessing, we obtain a

trajectory archive containing over 100K trajectories.

B. Evaluation Approaches

Query: All the query trajectories used in our experiments

are re-sampled to the desired sampling rates from trajectories

collected from GeoLife project 1, which are initially high-

sampling-rate (average sampling interval is 20s).

Ground truth: By applying map-matching algorithms to

the high-sampling-rate trajectories from which the queries are

derived, we can get their routes with high accuracy, and use

them as the ground truth in the experiments.

Evaluation metrics: We evaluate our system in terms of

its efficiency and inference quality. The efficiency is measured

using the actual program execution time. The inference quality

1http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-
9fd4-daa38f2b2e13

is measured by the similarity between the inferred route RI

and the ground truth RG, i.e.,

AL =
LCR(RG, RI).length

max{RG.length, RI .length}
where LCR is the longest common road segments of RG and

RI .

Competitors: Three map-matching algorithms are used as

our competitors in the effectiveness test, namely, incremental

[21], ST-matching [22] and IVMM [23]. The incremental

approach matches a given GPS point by utilizing the geometric

information as well as the priori information on the edge that

was matched to the previous point. As we target low-sampling-

rate trajectories, the other two methods that are specially

designed for low-sampling-rate trajectories are included for

fairness. ST-matching does not only consider the spatial geo-

metric and topological structures of the road network, but also

consider the temporal constraints of the trajectories. Based on

spatio-temporal analysis, a candidate graph is constructed from

which the best matching path sequence is identified. IVMM is

an interactive voting-based map-matching algorithm. Basically

it leverages three kinds of information: the position context of

a GPS point as well as the topological information of road

networks, the mutual influence between GPS and the strength

of mutual influence weighted by the distance between GPS

points. Compared to ST-matching, it does not only consider the

spatial and temporal information of a GPS trajectory but also

devise a voting-based strategy to model the weighted mutual

influences between GPS points.

Parameters: The table below lists all the parameters used

throughout the experiments. All the parameters are set to be

the default values unless specified explicitly.

TABLE II: Parameter Settings

Notation Explanation Default value

SR Sampling rate 3 min
L Length of query trajectory 20km
φ Reference search radius 500m

τ Parameter τ1 in LRI 200/km2

λ Radius of λ-neighborhood 4
k1 Parameter K in TGI 5
k2 Parameter K in NNI 4
α Parameter α in NNI 500m
β Parameter β in NNI 1.5
k3 Parameter K in K-GRI 1

C. Evaluation Results

Effect of sampling rate. First, we compare the overall

inference quality of our system with three competitors at dif-

ferent sampling rates: an incremental algorithm that performs

matching based on the previous matching result of a point, ST-

matching approach and IVMM approach which are specially

designed for low-sampling-rate trajectories. For fairness, we

use the top-1 global route to compute the accuracy of our

approach. The comparison results are shown in Figure 8a.

Clearly, HRIS outperforms the competitors for all sampling

rates significantly. When the sampling interval varies from 3



to 10 minutes, though IVMM and ST-matching also have rea-

sonable effectiveness, HRIS can achieve even higher accuracy,

with at least 10% improvement of IVMM constantly. When

the sampling rate becomes lower (<10min), the accuracy

of IVMM and ST-matching drop sharply, since the shortest

path assumption does not hold any more. In contrast, the

performance of HRIS is much more stable and still gets 60%+

accuracy when the sampling interval is 15min.

2 4 6 8 10 12 14 16
0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
L

Sampling rate

 Incremental
 ST-matching
 IVMM
 HRIS

(a) Accuracy vs. sampling rate

10km 15km 20km 25km 30km
0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85
A
L

L

 Incremental
 ST-matching
 IVMM
 HRIS

(b) Accuracy vs. query length

Fig. 8: Accuracy comparison

Effect of query length. We also compare the performance

of different approaches for queries with different lengths. As

Figure 8b shows, when the query length varies from 10km

to 30km which covers the travel distances of most vehicles,

HRIS has constantly higher accuracy than all other methods.

As the query length increases, there is slow reduction in the

inference quality of HRIS, IVMM and ST-matching, while

the performance of incremental method seems insensitive to

this change. One possible reason is that longer query trajectory

makes the mutual influence between the points more complex,

which affect the effectiveness of the global methods that take

this influence into consideration.

Effect of φ. Figure 9 shows the influence of the reference

search range φ to the inference accuracy and running time of

our system. Overally speaking, the accuracy increases with φ
since more reference trajectories are included to do the infer-

ence. But it does not mean we should expand the search radius

unlimitedly since, from Figure 9a, accuracy at all sampling

rates becomes nearly stable when φ is above a certain value.

The reason is, we already have enough evidence for inferring

the routes, thus further enlarging φ only brings some irrelevant

trajectories which are less useful for the inference. Through

comparing the performance at different sampling rates, we find

that more reference trajectories are required when the sampling

interval increases. Another reason we should not have φ too

large is an efficiency problem. As Figure 9b shows, the running

time increases significantly with φ as more trajectories need

to be processed in the route inference phase. Besides, the

efficiency at high sampling rates deteriorate more quickly,

since many candidate trajectories in the reference search step

violate the temporal constraint (condition 3 of Definition 6)

when the average time interval between consecutive points of

the query is small.

Effect of reference density. Next, we investigate how the

performance of local route inference algorithms are affected

200m 500m 1km 2km 5km

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

 �

A
L

 SR = 3
 SR = 6
 SR = 9
 SR=12
 SR=15

(a) Accuracy

200m 500m 1km 2km 5km
0

10

20

30

40

50

60

70

80

90

100

R
un

ni
ng

 ti
m

e 
 (s

)

�

 SR = 3
 SR = 6
 SR = 9
 SR=12
 SR=15

(b) Running time

Fig. 9: Effect of φ

by the density of reference points. Specifically, we compare

the performance of the traverse graph based approach and the

nearest neighbor based approach. As shown in Figure 10a,

though the accuracy of both approaches increases with the

density of reference points, their ways of change are different.

When the density is relatively low (< 200/km2), NNI has

better performance. But the accuracy of TGI increases faster

and outperforms NNI when ρ > 200/km2. On the other hand,

according to Figure 10b, NNI is more efficient than TGI when

ρ < 100/km2 but its time cost boosts quickly as the density

increases. In contrast, TGI has better scalability with respect to

ρ and becomes superior than NNI when ρ > 100/km2. This

set of experiments can also guide us to choose the appropriate

threshold τ in the hybrid algorithm for local route inference.

As we can see from Figure 10a, the performance of TGI and

NNI switch when ρ is about 200/km2. Therefore, we can set

τ = 200/km2 so that the hybrid approach will always adopt a

better approach when the density of reference points fluctuates.

50 100 200 500 1000
0.4

0.5

0.6

0.7

0.8

A
L

ρ

 TGI
 NNI

(a) Accuracy

50 100 200 500 1000
0

10

20

30

40

50

60

70
R

un
ni

ng
 ti

m
e 

(s
)

ρ

 TGI
 NNI

(b) Running time

Fig. 10: Effect of ρ

Effect of λ. In this experiment, we study the effect of λ
which defines the radius of λ-neighborhood in the traverse

graph based inference algorithm (TGI). As shown in Figure

11a, the accuracy of all queries increases with λ when λ ≤ 4,

after which queries with SR = 3, 9, 15 reach their peak

performance at λ = 4, 6, 8 respectively. Given a fixed search

radius φ, the reference points are relatively sparse when the

query sampling interval is large. Hence a greater λ is needed

in order to construct a traverse graph with high connectivity.

In Figure 11b we compare the running time of TGI algorithm

with and without graph reduction. When λ is very small, the

derived traverse graphs almost do not have any redundancy.

So the algorithm with optimization is even more costly than

the simple one, since the optimization itself has time cost.



However, with the increase of λ, the advantage of this opti-

mization becomes more obvious, since the traverse graph has

more redundant links.

1 2 3 4 5 6 7 8 9 10 11
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
L

λ

 SR = 3
 SR = 9
 SR = 15

(a) Accuracy

1 2 3 4 5 6 7 8 9 10 11

10

20

30

40

50

60

R
un

ni
ng

 ti
m

e 
 (s

)

λ

 SR = 3
 SR = 3, graph reduction
 SR = 9
 SR = 9, graph reduction

(b) Running time

Fig. 11: Effect of λ

Effect of k1. In this part, we examine the effect of the

parameter K in the TGI algorithm, which is the required

number of shortest paths from each pair of starting edge

(candidate edge of qi) and ending edge (candidate edge of

qi+1). As demonstrated by Figure 12a, though increasing k1
does no harm to the accuracy of our system, it seems to suffice

to use a relatively small k1 (e.g.,k ∈ [4, 8]) for the system to

achieve good performance on queries with various sampling

rates. On the other hand, choosing a large k1 will make the

system less efficient. As we can see from Figure 12b, the

running time increases with k1. We also find that when k1 is

larger, the effect of graph reduction is more significant.

2 4 6 8 10 12 14
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

A
L

k1

 SR = 3
 SR = 9
 SR = 15

(a) Accuracy

2 4 6 8 10 12 14

10

20

30

40

50

60

70

80

90

R
un

ni
ng

 ti
m

e 
(s

)

k1

 SR = 3
 SR = 3, graph reduction
 SR = 9
 SR = 9, graph reduction

(b) Running time

Fig. 12: Effect of k1

Effect of k2. Figure 13 shows the influence of the parameter

K in the nearest neighbor based inference algorithm (NNI).

From the effectiveness aspect (Figure 13a), the larger sampling

intervals of queries, the greater k2 is needed for our system

to achieve the highest accuracy. From the efficiency point of

view (Figure 13b), our algorithm needs more time to process

a query when k2 is larger, since there are more successors

on each node of the recursion tree. As expected, by sharing

common substructures which has been visited during previous

recursions, the efficiency of the system can be improved

considerably.
Effect of k3. At last, we investigate the effect of the

parameter K in the global route inference algorithm (K-GRI).

For the effectiveness test, we find the top-k3 global routes for

each query, and record their average and maximum accuracy

respectively, the results of which are shown in Figure 14a. Not

2 3 4 5 6
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

A
L

k2

 SR = 3
 SR = 9
 SR = 15

(a) Accuracy

2 3 4 5 6
0

20

40

60

80

100

120

140

160

R
un

ni
ng

 ti
m

e 
(s

)

k2

 SR = 3
 SR = 3, share substructure
 SR = 9
 SR = 9, share substructure

(b) Running time

Fig. 13: Effect of k2

surprisingly, the maximum accuracy always increases with k3,

which means the uncertainty gets lower if we increase k3.

Mean while, the average accuracy rises a little when k3 is

small and then drop quickly. This implies that most possible

routes which are similar with the real path of the query

usually get higher scores by our system, and have already

been suggested by setting a small k3. Figure 14b compares the

efficiency of the K-GRI algorithm with the brute-force method

which enumerates all the possible connections of local routes.

Clearly, by using the dynamic programming, our proposed

algorithm outperforms the brute-force method by at least two

orders of magnitude.

1 2 3 4 5
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

A
L

k3

 SR=3 average
 SR=3 max
 SR=9 average
 SR=9 max

(a) Accuracy

1 5 10 20 50
0.1

1

10

100

1000

R
un

ni
ng

 ti
m

e 
(s

)
k3

 brute-force method
 K-GRI

(b) Running time

Fig. 14: Effect of k3

V. RELATED WORK

Hot route discovery. Our work is relevant to the hot route

discovery problem, which aims to identify routes that are

frequently travelled. In [4], Li et al. propose a density-based

algorithm FLowScan to extract hot routes according to the

definition of “traffic density-reachable”. An on-line algorithm

is also developed by Sacharidis et al. [24] for searching and

maintaining hot motion paths that are travelled by at least

a certain number of moving objects. But these two work

are tailored for mining paths with high traffic only. Besides,

mining trajectory patterns could potentially help in discovering

a popular route. Giannotti et al. [25] study the problem of

mining T-pattern, which is a sequence of temporally annotated

points, and target to find out all T-patterns whose support

is not less than a minimum support threshold. In [3] and

[13], existing sequential pattern mining algorithms are adopted

to explore frequent path segments or sequences of points of

interest, while in [10], mining periodic movements through



region is investigated. These pattern can indicate a popular

movement between certain locations. Hence if the start and

end locations of the query are right on the pattern, we may

suggest it to the user as a recommended route. However, we

cannot apply these approaches since the query in our work

has arbitrary locations and may not match with any existing

pattern.

Trajectory similarity search. An important step in our

system is to find the reference trajectories that travel similarly

with the given query. A considerable amount of work on the

similarity search for trajectory/time series has been proposed

before. The pioneering work of this area by Agrawal et al.

[26] adopts Discrete Fourier Transform (DFT) to transform

trajectories to multi-dimensional points, and then compare

their Euclidean space in feature space. Faloutsos et al. [27]

extend this work to allow subsequence matching. These meth-

ods require the trajectories to have the same length. In contrast,

DTW [28] removes this restriction by allowing time-shifting

in the comparison of trajectories. LCSS [29] allows to skip

some points other re-align them, thus is more robust to noises.

Chen et al. [30] propose the EDR distance, which is similar

to LCSS in using a threshold to determine if two points are

matched, while considering penalties to gaps. In [31], ERP

distance is proposed aiming to combine the merits of DTW

and EDR by using a reference point for computing distance.

While those work concern on the shape similarity, [32] propose

a new type of query, k-BCT query, which finds trajectories that

best connect multiple query locations. However, our work is

quite different in that the reference trajectories we find are

similar with part of the query. For example, if a trajectory

travels on the same route with the query for some time, it will

be regarded as a reference since it can be used to infer certain

part of the query.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we investigate the problem of reducing uncer-

tainty for a given low-sampling-rate trajectory, by leveraging

travel patterns inferred from the historical data. To achieve

this goal, a history based route inference system (HRIS) has

been proposed, which includes several novel algorithms to

perform the inference effectively. By using the map-matching

as an application, we validate the effectiveness of our system,

compared with the existing map-matching algorithms which

are specially designed for low-sampling-rate trajectories.

In the future work, we plan to incorporate more information

into the route inference system, such as the time, weather and

real time traffic condition, to further enhance the effectiveness

of our system. Besides, we will also extend our solution to

deal with the case where the road network is not available,

which is a more challenging problem.

VII. ACKNOWLEDGMENTS

We wish to thank the anonymous reviewers for the insightful

comments and suggestions that have improved the paper. This

work was supported by the ARC grants DP110103423 and

DP120102829.

REFERENCES

[1] “Google latitude. http://www.google.com/latitude.” [Online]. Available:
http://www.google.com/latitude

[2] “Foursquare. http://foursquare.com/.” [Online]. Available:
http://foursquare.com/

[3] H. Gonzalez, J. Han, X. Li, M. Myslinska, and J. Sondag, “Adaptive
fastest path computation on a road network: A traffic mining approach,”
in VLDB, 2007, pp. 794–805.

[4] X. Li, J. Han, J. Lee, and H. Gonzalez, “Traffic density-based discovery
of hot routes in road networks,” Advances in Spatial and Temporal
Databases, pp. 441–459, 2007.

[5] R. Kuehne, R. Schaefer, J. Mikat, K. Thiessenhusen, U. Boettger, and
S. Lorkowski, “New approaches for traffic management in metropolitan
areas,” in Proceedings of IFAC CTS Symposium, 2003.

[6] “Flickr. http://www.flickr.com.”
[7] M. Hadjieleftheriou, G. Kollios, V. Tsotras, and D. Gunopulos, “Efficient

indexing of spatiotemporal objects,” in EDBT, 2002, pp. 251–268.
[8] Y. Tao and D. Papadias, “Mv3r-tree: A spatio-temporal access method

for timestamp and interval queries,” in VLDB, 2001, pp. 431–440.
[9] D. Pfoser, C. Jensen, and Y. Theodoridis, “Novel approaches to the

indexing of moving object trajectories,” in VLDB, 2000, pp. 395–406.
[10] N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou, Y. Tao, and

D. Cheung, “Mining, indexing, and querying historical spatiotemporal
data,” in SIGKDD, 2004, pp. 236–245.

[11] T. Rattenbury and M. Naaman, “Methods for extracting place semantics
from flickr tags,” ACM Transactions on the Web (TWEB), vol. 3, no. 1,
pp. 1–30, 2009.

[12] J. Lee, J. Han, and K. Whang, “Trajectory clustering: a partition-and-
group framework,” in SIGMOD, 2007, p. 604.

[13] Y. Zheng, L. Zhang, X. Xie, and W. Ma, “Mining interesting locations
and travel sequences from gps trajectories,” in WWW, 2009, pp. 791–
800.

[14] L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and J. Vitter, “Scalable
sweeping-based spatial join,” in VLDB, 1998, pp. 570–581.

[15] J. Patel and D. DeWitt, “Partition based spatial-merge join,” ACM
SIGMOD Record, vol. 25, no. 2, pp. 259–270, 1996.

[16] J. Yen, “Finding the k shortest loopless paths in a network,” management
Science, vol. 17, no. 11, pp. 712–716, 1971.

[17] J. Hershberger, M. Maxel, and S. Suri, “Finding the k shortest simple
paths: A new algorithm and its implementation,” ACM Transactions on
Algorithms (TALG), vol. 3, no. 4, p. 45, 2007.

[18] K. Eswaran and R. Tarjan, “Augmentation problems,” SIAM Journal on
Computing, vol. 5, p. 653, 1976.

[19] A. Frank, “Augmenting graphs to meet edge-connectivity requirements,”
in Foundations of Computer Science. IEEE, 2002, pp. 708–718.

[20] A. Aho, M. Garey, and J. Ullman, “The transitive reduction of a directed
graph,” SIAM Journal on Computing, vol. 1, p. 131, 1972.

[21] J. Greenfeld, “Matching gps observations to locations on a digital map,”
in 81th Annual Meeting of the Transportation Research Board, 2002.

[22] Y. Lou, C. Zhang, and et al, “Map-matching for low-sampling-rate gps
trajectories,” in ACM GIS, 2009, pp. 352–361.

[23] J. Yuan, Y. Zheng, C. Zhang, X. Xie, and G. Sun, “An interactive-voting
based map matching algorithm,” in MDM, 2010, pp. 43–52.

[24] D. Sacharidis, K. Patroumpas, M. Terrovitis, V. Kantere, M. Potamias,
K. Mouratidis, and T. Sellis, “On-line discovery of hot motion paths,”
in EDBT, 2008, pp. 392–403.

[25] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi, “Trajectory pattern
mining,” in SIGKDD, 2007, pp. 330–339.

[26] R. Agrawal, C. Faloutsos, and A. Swami, “Efficient similarity search in
sequence databases,” FDOA, pp. 69–84, 1993.

[27] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, “Fast subsequence
matching in time-series databases,” ACM SIGMOD Record, vol. 23,
no. 2, pp. 419–429, 1994.

[28] B. Yi, H. Jagadish, and C. Faloutsos, “Efficient retrieval of similar time
sequences under time warping,” in ICDE, 2002, pp. 201–208.

[29] M. Vlachos, D. Gunopoulos, and G. Kollios, “Discovering similar
multidimensional trajectories,” in ICDE, 2002, p. 0673.

[30] L. Chen, M. Özsu, and V. Oria, “Robust and fast similarity search for
moving object trajectories,” in SIGMOD, 2005, pp. 491–502.

[31] L. Chen and R. Ng, “On the marriage of lp-norms and edit distance,”
in VLDB, 2004, pp. 792–803.

[32] Z. Chen, H. Shen, X. Zhou, Y. Zheng, and X. Xie, “Searching trajectories
by locations: an efficiency study,” in SIGMOD, 2010, pp. 255–266.


