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ABSTRACT
The skyline of a set of multi-dimensional points (tuples) con-
sists of those points for which no clearly better point exists in
the given set, using component-wise comparison on domains
of interest. Skyline queries, i.e., queries that involve compu-
tation of a skyline, can be computationally expensive, so it is
natural to consider parallelized approaches which make good
use of multiple processors. We approach this problem by us-
ing hyperplane projections to obtain useful partitions of the
data set for parallel processing. These partitions not only
ensure small local skyline sets, but enable efficient merging of
results as well. Our experiments show that our method con-
sistently outperforms similar approaches for parallel skyline
computation, regardless of data distribution, and provides
insights on the impacts of different optimization strategies.

1. INTRODUCTION
There are many applications where a user is interested

in viewing the ‘best’ objects chosen from a large collection,
based on multiple criteria, e.g. price and mileage for used
cars. There are multiple ways to approach this problem.
Top-k queries [5] require a user to define a ranking function
over the object collection, and return the k top-ranked ob-
jects. In contrast, skyline queries, first introduced by [4],
only require users to express their preferences for each do-
main of interest, e.g. price and mileage should both be low.
They then return all objects for which no clearly better ob-
ject exists, i.e., an object which is at least as good on every
domain and strictly better in at least one. Figure 1 shows
such a skyline (containing four points) for used cars. Shaded
areas indicate values for which strictly better points exists.

The resulting skyline can provide a user with a better
understanding of the trade-offs involved, without requiring
any precise ranking functions to be specified. This flexibil-
ity makes skylines preferable to top-k approaches for many
scenarios, and has caused them to receive much attention in
recent years.
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Figure 1: Skyline of used cars

As data sets used for skyline processing are often huge,
computation can be expensive, and efficient algorithms are
vital for applications requiring fast response times. With the
advance of multi-core architectures and other parallel com-
puting platforms, parallel skyline algorithms offer a new way
to boost performance. In this paper we will develop such a
parallel algorithm, with focus on the initial data partition-
ing. The key idea here is to group points based on their
direction from the origin, thus increasing the likelihood of
dominance between them. This is achieved by projecting
points onto a hyperplane, and ensures that local skyline sets
are small. At the same time, merging of result sets can be
done efficiently.

Our approach is closest to the angle-based partitioning
approach of [23], which also generates small local skylines,
but is consistently faster (by up to one order of magnitude),
especially for anti-correlated data sets. The improvement
hails from a more sophisticated merge step, as well as faster
initial partitioning. In addition, we investigate the impact of
an approximate skyline pre-processing step, which is gener-
ally applicable, and has already proven helpful for sequential
skyline computation [12].

The rest of this paper is organized as follows. In Sec-
tion 2 we give a brief overview of existing work on distributed
and parallel skyline computation. The most closely related
approach of [23] is discussed in more detail in Section 3,
where we develop our plane-project-parallel-skyline (PPPS)
algorithm. Experimental evaluation of our and related ap-
proaches can be found in Section 4. Section 5 concludes.



2. RELATED WORK
The skyline operation is useful for extracting interest-

ing information from multidimensional databases. It orig-
inates from the maximal vector problem in computational
geometry [15]. Those early algorithms, including [2, 16],
are in-memory algorithms which are only suitable for small
datasets. In the original database-oriented paper by Borz-
sonyi et al. [4] where the concept of the skyline operator
is introduced for large databases, a number of efficient ex-
ternal memory algorithms are also proposed, including the
block-nested-loop (BNL) algorithm that scans the dataset
while employing a bounded buffer for tracking the points
that cannot be dominated by other points in the buffer, and
the divide-and-conquer (DC) algorithm that recursively par-
titions the dataset until each partition is small enough to
fit in memory to compute the local skyline for each parti-
tion followed by a merge step to form the global skyline.
There exist numerous efficient skyline query processing ap-
proaches, such as the bitmap-based progressive algorithm
[22], the sorting-and-filtering approach [6, 12], the nearest
neighbor based approach [14], and the I/O optimal R-tree
based branch-and-bound algorithm [17, 18].

Due to its high processing cost, there has been a grow-
ing interest lately in distributed and parallel skyline query
processing. Deviating from centralized skyline query pro-
cessing approaches, a new approach for computing skyline
objects over distributed sources is first presented by Balke
et al. [1]. It supports skyline operations over web databases
where data is vertically partitioned and each site provides
one attribute of the data object. Skyline points are calcu-
lated per site and reported to the user at a central point.
The algorithm first retrieves values in every dimension from
remote data sites using sorted access in round-robin fashion
on all dimensions until all dimension values of an object,
called the terminating object, have been retrieved. Then
those non-skyline objects will be filtered from all those ob-
jects with at least one dimension value retrieved. The prob-
lem setting for this work is specialized, and the use of a
central point can limit the scale of distribution.

There are several data partitioning based approaches for
skyline computation in peer-to-peer environment. Wang et
al. [24] developed the Skyline Space Partitioning (SSP) ap-
proach to compute skylines on a tree-structured P2P plat-
form. That approach uses the z-curve method to partition
the multidimensional data space into linearly ordered re-
gions which can be mapped to different peer nodes accord-
ing to the underlying P2P protocols. As in most partition-
based parallel processing schemes, load-balancing is a criti-
cal issue. Under the SSP approach, a small number of peers
(those that are allocated with partitions close to the ori-
gin of the axes) can often take much heavier workload than
other peers, while many peers do not contribute to the final
skyline results.

Wu et al. [25] are among the first to address the problem
of parallel skyline query execution over a large number of
machines by leveraging on content-based data partitioning.
By using the query range to recursively partition the data re-
gion on every data site involved, and encoding each involved
sub-region dynamically, their method avoids accessing sites
not containing potential skyline points and can report cor-
rect skyline points progressively. The proposed algorithm
named DSL [25] horizontally partitions data across different
machines, i.e. each machine stores a subset of the entire

data record set. One advantage of this approach is that
it provides incremental scalability, where its performance
can be improved by adding additional machines to the clus-
ter. Their system can automatically balance the load by
distributing objects to the new nodes. This work, however,
requires each node to start the skyline computation on its
data after receiving the results of other nodes based on the
partial order. Therefore, its parallelism is limited to the
pipeline fashion. Differing from the previous work, Cui et
al. [8] approach parallel skyline computing without the as-
sumption of any overlay availability on top of the original
network. They tackle constrained skyline queries in large-
scale distributed environments with horizontally partitioned
data distribution. The problem of parallel skyline comput-
ing is also considered in an environment of one-processor-
multiple-disk architecture to enable disk access parallelism
and effective pruning using the parallel R-tree [11].

Dehne et al. [10] propose an optimal coarse-grained par-
allel algorithm for computing skylines in three dimensions;
but their approach does not seem to lead to practical al-
gorithms for higher-dimensional point sets. Random data
partitioning is used in [7] which uses the divide-and-conquer
algorithm by Kung et al. [15] and the branch-and-bound al-
gorithm by Papadias et al. [18] as building blocks. This can
ensure a similar data distribution in each partition to the
original dataset. Then each machine processes the skyline
over its local data using the branch-and-bound algorithm.
The main drawback of this random partitioning approach is
that the size of the local result sets is not minimized and
many points that belong to the local skyline sets do not
belong in the final skyline result set.

In contrast to those parallel skyline algorithms designed
for a shared-nothing distributed environment where the par-
ticipating nodes can only communicate only by exchang-
ing messages [13, 21, 25], [19] focuses on exploiting prop-
erties specific to multi-core architectures in which partici-
pating cores inside a processor share everything and com-
municate simply by updating the main memory. They pro-
posed two parallel skyline algorithms: a parallel version of
the branch-and-bound algorithm [18] and a new parallel al-
gorithm based on skeletal parallel programming, which is
already in use by such database programming models as
MapReduce [9, 20] and Map-Reduce-Merge [26].

Grid-based data space partitioning has been commonly
used in distributed and parallel skyline processing. For ex-
ample, in [25], the space is partitioned based on CAN [21],
whereas in [24] a tree-structured overlay is used to partition
the data space. Such grid-based partitioning, however, is
not suitable for skyline queries when all partitions are to be
examined at different machines in parallel, since many data
partitions do not contribute to the final skyline set (you
can think that many partitions are actually dominated by
other partitions). This can result in significant redundant
processing at some nodes as well as higher overall costs for
data communication and merger after location skylines are
computed. In [23], a novel angle-based space partitioning
scheme is proposed to use the hyperspherical coordinates
of the data points to alleviate most of the problems found
in traditional random and grid partitioning techniques. It
first maps the entire dataset from the Cartesian coordinate
space into a hyperspherical space, in which the data space
is partitioned based on the angular coordinates. While this
type of partitioning has some attractive features, it employs



a centralized step to transform the coordinates of each and
every point of the dataset to hyperspherical coordinates. We
will discuss more details of this approach in the next section
when we introduce our ideas.

3. PARALLEL SKYLINE PROCESSING
We will now describe our approach to parallel skyline pro-

cessing. For parallel algorithms, there is typically a tradeoff.
If we spend time to pre-process the data before allocating
tasks to different processors, the processing itself and/or the
final merge phase may become cheaper. On the other hand,
the time used for pre-processing contributes to the overall
running time. Finding a good balance which minimizes over-
all running time is vital.

Computationally, there is a significant difference between
cases where the skyline set is small and cases where it is
large. For small skyline sets, skyline computation is I/O
bound, but it becomes CPU-bound for large skyline sets
as the number of dominance-checks between skyline points
grows (quadratically in the worst case). To ensure that our
algorithm is efficient for both small and large skyline sets,
we must combine a number of processing techniques. By
focusing on preprocessing steps which can be performed as
part of a single scan of the data set for data partitioning, we
remain efficient for small skyline sets.

As a first step we attempt to reduce the number of points
to consider for further computation. Here we employ fast
algorithms for approximating the skyline. That is, we fil-
ter out points which we can quickly identify as not being
part of the skyline. An approach for approximate skyline
computation is discussed in Section 3.1.

Next we must partition our data set. Each partition will
then be transferred to one of the available processors for lo-
cal skyline computation. Here it is vital to partition in such
a manner that non-skyline points can be eliminated during
local skyline computation as much as possible, i.e., we would
like to group points which are likely to dominate each other
into the same partition. The angle-based approach for sky-
line partitioning proposed in [23] achieves this, but requires
rather complex and costly conversion of points into hyper-
sphere coordinates, and does not cater for efficient merg-
ing. We will show that equally good partitions can be found
through hyper-plane projection (which is much simpler and
cheaper to compute), and that such projections allow for ef-
ficient merge steps. Our partitioning approach is detailed
in Section 3.2, while efficient merging of local skylines is
discussed in Section 3.3.

Note that the computation of the approximate skyline of
P (see Section 3.1) and its partition into P1, . . . , Pn can be
done together in a single parse of P , thereby minimizing I/O
costs for large data sets.

3.1 Approximate Skyline
Computing the exact skyline of a set P can be expen-

sive, as each point may be compared to many other points.
However, it is often possible to eliminate the majority of
non-skyline points with few comparisons, especially in cases
where the skyline set is small. The idea for this is the follow-
ing: We pick a small set B ⊂ P of comparison points, then
test for every point in P whether it is dominated by a point
in B. Those that are dominated can safely be discarded, so
that the resulting approximate skyline set is guaranteed to
contain all skyline points, but likely some non-skyline points

as well. Importantly, for fixed size B (we found |B| ≈ 10
to work well), computing the approximate skyline can be
done in linear time with a single pass over the data set. For
details on strategies for selecting B see [12], which employs
similar techniques for optimizing sort-based skyline compu-
tation. As we want to avoid scanning the data set multiple
times, we select B based on a small sample subset of P .

In addition to reducing transport and computation costs,
early elimination of non-skyline points has another positive
side-effect. As we partition P such that input sets are of
similar size for each processor, it can easily happen that the
respective local skylines differ significantly in size. As the
skyline size impacts on computation time, this can cause un-
balanced workloads. Removal of non-skyline points tends to
strengthen the relationship between input and output (sky-
line) size, thus reducing the chance for and/or severity of
imbalanced loads.

3.2 Partitioning via Hyperplane Projection
For partitioning the data space, we will employ techniques

similar to the angle-based partitioning approach from [23].
The central idea in [23] is to transform each point (treated
as a vector in some euclidian space) into hypersphere coor-
dinates. Partitioning is then done based on the transformed
values, ignoring the distance from the origin. As a result,
points which lie in similar direction from the origin, but pos-
sibly at different distances, are likely to be assigned to the
same partition. Hence points that can dominate a given non-
skyline point are likely to lie in the same partition, thus al-
lowing it to be eliminated during local skyline computation.
Figure 2 illustrates this approach - on the left the partition
in the original space is shown, on the right the same par-
tition after projection and transformation into hypersphere
coordinates.
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Figure 2: Angle-based Partitioning

Unfortunately, transformation into hypersphere coordi-
nates is time-consuming. This is less noticeable in cases
where the skyline is large, but can become a bottleneck if
the skyline set is small (and thus computation fast), as these
transformations are performed centrally. In our approach,
we avoid costly transformation of coordinates into hyper-
sphere coordinates. Instead, we use projection onto the hy-
perplane x1 + . . . + xd = 1. Note that we do not project
orthogonally, but by intersecting the line through the origin
with the hyperplane. Afterwards, points are allocated to
partitions based on their projections. This is illustrated in
Figure 3 - the partition of the original space is shown on the
left and its hyperplane projection on the right, where it is
possible to decide which partition a point belongs to based
on a single projected coordinate.

In 2-dimensional space, every angle-based partition is also
a hyperplane-based partition and vice versa, although this
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Figure 3: Hyperplane-projection-based Partitioning

fails to hold for dimension higher than 2. Note that unlike
the angle-based coordinate transformation, our projection
does not affect the dimensionality of the data set. While all
projected points lie in a hyperplane, these projections are
still represented in the original euclidian space. Importantly,
points that are in a dominance relationship are likely to have
similar hyperplane projections, and thus are likely allocated
to the same partition for local skyline computation. This
realizes the driving goals behind the angle-based partitioning
approach [23], but unlike transformations into hypersphere
coordinates, hyperplane projections are simple and cheap to
compute:
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While grid-based partitioning methods, which define a
space partition by partitioning each dimension, are not di-
rectly applicable to the resulting hyperplane, as the positive
section of the hyperplane is not a hypercube, recursive par-
titioning methods are well suited. Here we split a given
dataset into two partitions, based on a single coordinate.
Each partition is then split again (using a different coordi-
nate), until the desired number of partitions (=number of
processors) is reached. The split conditions (e.g. x2 ≤ 0.2)
should be chosen such that each partition contains roughly
the same number of points for a randomly selected sample
set. This can be done efficiently by using one of the well-
known selection algorithms such as quick-select, which find
the kth smallest element in (worst-case or expected) linear
time [3].

Of course, the number of parallel processors available need
not be a power of 2 in general. In such a case, whenever we
perform a split, we also split the set of processors into two
groups of nearly equal size (e.g. 3 and 4 if 7 processors are
available), and then select the split point such that the point
partitions contain points in the same ratio (e.g. 3:4), and
assign each partition to their respective set of processors.
A similar approach can be used to deal with processors of
different computational power.

Compared to the dynamic space partitioning approach
suggested in [23], which repeatedly splits the largest par-
tition into two until the desired number of partitions is
reached, our method has two advantages. First, it allows
partitioning of the entire data set in a single pass, which
reduces I/O costs for large data sets. Second, partitions are
very similar in size, whereas the partitions obtained by the
method in [23] differ by up to factor two.

Example 1. Consider the set of 3D points P given below:
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Projection on the hyperplane x + y + z = 1 results in the
following projected points:
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Imposing a split condition x1 ≤ 0.4 partitions P into
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Note that rotating dimensions for splitting helps to ensure
that the projections of points within a partition are similar
in all dimensions, thus increasing the probability that points
within the same partition dominate each other.

Finally, the choice of hyperplane x1 + . . . + xd = 1 works
best if all coordinates have roughly the same range of val-
ues. If this is not the case, we can scale dimensions, e.g.
by their (estimated) average value Ave(Xi), giving us the
transformation
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3.3 Merging Skylines
When merging the partial skyline sets to obtain the final

skyline results, we focus on two objectives. First, the merg-
ing process should make good use of all processors, i.e. the
workload should be shared. Second, we want to make merg-
ing efficient by reducing the number of comparisons between
partial skyline points.

Our basic approach for addressing the first objective is
rather straight forward. We perform a bottom-up merge, us-
ing the recursively constructed space partitioning tree (Al-
gorithm 1). This is clearly advantageous to a centralized
merge, as the workload is shared. It also ensures that par-
tial skyline sets merged still have similar projections, so non-
skyline points are eliminated early.

We must note though that this basic approach still re-
quires pairwise comparison of all skyline points, which can
be expensive if the final skyline set is large. To reduce
this cost, which is our second objective, space-partitioning
schemes commonly utilize the following two observations:

Proposition 1. If there exists a coordinate x such that
all p1 ∈ P1 have lower x-value than all p2 ∈ P2, then

1. no point in P2 can dominate a point in P1, and

2. a point in P1 dominates a point in P2 iff it dominates
it (or is equal to) in the (d − 1)-dimensional subspace
excluding the x-coordinate.

While the pre-condition of Proposition 1 only holds for the
projected points, and points in P2 can still dominate points
in P1, not all is lost. When comparing partial skyline points
p1 ∈ P1 and p2 ∈ P2, it is still likely (just not certain) that



p1 has a smaller x-value than p2. Hence, we will sort partial
skyline points in P2 by their x-value, which enables us to
only compare those points in p1, p2 where p1.x ≤ p2.x holds,
which likely are few. In our experiments we found that this
heuristic works extremely well.

It is also possible to employ this heuristic when filtering
out non-skyline points in P2. Here we sort points in P1 by
the sum of their values other than x. We found this heuristic
to be beneficial here as well, albeit to a lesser degree, and
mainly for cases of low dimensionality.

Furthermore, the second conclusion remains valid, i.e.,
dominance of points in P2 by points in P1 on the (d − 1)-
dimensional subspace implies actual dominance.

Theorem 2. Let S1, S2 be the subspaces of R
d defined by

S1 :
x1

x1 + . . . + xd

≤ c

S2 :
x1

x1 + . . . + xd

> c

for some constant c, p ∈ S1 and s ∈ S2. Then p dominates
s iff p dominates or equals s on X2, . . . , Xd.

Proof. The ‘only if’ direction is trivial, so consider the
‘if’ direction. By definition of S1, S2 we have

p1

p1 + p2 + . . . + pd

≤ c <
s1

s1 + s2 + . . . + sd

⇒ p1 · (s1 + s2 + . . . + sd) < s1 · (p1 + p2 + . . . + pd)

⇒ p1 · (s2 + . . . + sd) < s1 · (p2 + . . . + pd)

≤ s1 · (s2 + . . . + sd)

⇒ p1 < s1

which shows that p dominates s.

Hence we can first compute the skyline (approximate or
exact) of P1 w.r.t. X2, . . . , Xd before using it to eliminate
points in P2. During our experiments we found that this
strategy is useful for up to about 5 dimensions. For more
dimensions the number of skyline points in P1 eliminated
becomes too small to compensate for the additional cost in
computing the skyline on X2, . . . , Xd.

A detailed description of our recursive split and merge ap-
proach is given in Algorithm 1. Here we use the notations [p]
to denote the hyperplane-projection of p, and p.d to denote
the d-th coordinate of p. For a set of points P we use the
notation

[P ] := {[p] | p ∈ P}

P.d := {p.d | p ∈ P}

We note that direct application of Algorithm 1 is only
efficient if the entire data set fits into memory. In order
to avoid multiple passes for large data sets, we first apply
the splitting phase of Algorithm 1 to a small sample set,
storing the split values found in a space partition tree (an
annotated binary tree describing how the data space is to be
partitioned). Afterwards we can use our space partition tree
to assign each data point to its partition in a single pass.

3.4 Local Skyline Size
We conclude this section with a brief qualitative analysis

regarding the size of local skylines under different partition-
ing strategies, in order to give the reader a better intuition
about them. The central idea is that a “good” partition-
ing will ensure that many points which dominate each other

Algorithm 1 Split-Skyline-Merge (SSM)

Input: P = points, n = #processors, d = split dimension
Output: skyline of P
1: if n = 1 then
2: S := skyline(P )
3: return S
4: else
5: n1 := n div 2; n2 := n − n1

6: P1, P2 := SPLIT (P, n1, n2, d)
7: next d := d + 1 mod #dimensions
8: S1 := SSM(P1, n1, next d)
9: S2 := SSM(P2, n2, next d)

10: return MERGE(S1, S2, d)

Subroutine SPLIT(P, n1, n2, d)

Output: P1, P2 with P1∪P2 = P , [P1].d < [P2].d, |P1|
|P2|

≈ n1
n2

11: split index := |P | · n1
n1+n2

12: split value := quick select([P ].d, split index)
13: P1 := {p ∈ P |[p].d ≤ split value}
14: P2 := {p ∈ P |[p].d > split value}
15: return P1, P2

Subroutine MERGE(S1, S2, d)
Input: local skylines S1, S2 with [S1].d < [S2].d
Output: skyline(S1 ∪ S2)
16: sort S1, S2 by d-th coordinate
17: for all p1 ∈ S1 do
18: for all p2 ∈ S2 with p2.d ≤ p1.d do
19: if p2 dominates p1 then
20: S1 := S1 \ {p1}
21: if #dimensions ≤ 5 then
22: S′

1 := skyline(S1) on dimensions other than d
23: else
24: S′

1 := S1

25: for all p2 ∈ S2 do
26: if ∃p1 ∈ S′

1 with p1 dominates p2 then
27: S2 := S2 \ {p2}
28: return S1 ∪ S2

are assigned to the same partition, so that local skylines
are small. In turn, having small local skylines ensures fast
response times. In [23] the notion of pruning power was in-
troduced, measuring the percentage of space a point p dom-
inates within its partition under some partitioning X . For
uniform data distribution, this equates to the probability
that it dominates another random point within its partition:

Pow(X , p) := P
`

p ≤ q | X (p) = X (q)
´

where X (p) denotes the partition w.r.t. X in which p lies. A
large (average) pruning power typically translates into small
local skylines, although the exact relationship between these
two measures is complex, even for uniform distributions, and
not explored further.

However, it appears that pruning power is ill-suited for
qualitative comparison of partitionings, requiring complex
analysis even for uniform data distribution [23], thereby pro-
viding little intuition. We will thus use the following alter-
native measure:



Definition 3 (local match ratio).
The local match ratio of a partitioning X is

LMR(X ) := P
`

X (p) = X (q) | p ≤ q
´

=P
`

X (p) = X (q) | p ≤ q ∨ q ≤ p
´

For a fixed point p the local match ratio w.r.t. X is

LMR(p,X ) := P
`

X (p) = X (q) | p ≤ q ∨ q ≤ p
´

Note that the average pruning power and the local match
ratio of a partition are closely related:

LMR(X ) = Pow(X ) ·
P

`

X (p) = X (q)
´

P (p ≤ q)

Figure 4 illustrates the difference between plane-projection
and grid-based partitions for uniform data distribution. Shades
areas indicate points comparable to p.

b

p
b

p

LMR(X ) > 0.5 LMR(X ) = 0.5

Figure 4: Local match ratio for plane-project and
grid-based partitioning

From the left graph in Figure 4, it is clear that the LMR
for plane-projection based partitioning is at least 0.5 for ev-
ery point p, resulting in a global LMR value strictly larger
than 0.5 (approximately 0.56), i.e., at least half of the shaded
area lies in the same partition as p. For grid-based partition-
ing (right graph in Figure 4), the LMR value is precisely 0.5.
An interesting case which highlights the benefits of the LMR
measure is random partitioning. Its LMR value is always 0.5
(for 2 equally probable partitions), regardless of dimension-
ality and data distribution, thus serving as a good baseline
for comparison.

While we omit a quantitative analysis (see [23] for details
of how pruning power can be calculated - LMR is similar),
it should by now be clear that plane-projection based par-
titioning leads to smaller local skylines than grid-based or
random partitioning, at least for uniform data distributions.
For anti-correlated data we would expect grid-based parti-
tions to work relatively well. A quantitative comparison for
different data distributions and dimensions can be found in
the following Section 4.

4. EXPERIMENTS
In order to test the efficiency of our approach for paral-

lel skyline computation, we ran it over randomly generated
data sets, and compared it to alternative approaches. Here
we considered uniform, correlated and anti-correlated data
distributions, under different parameter settings. The ex-
periments were run on a PC with 2.6GHz AMD Athlon 64

Table 1: Default Parameter Settings
parameter value range

nr. of points 100k 10k–1M
dimensions 5 2–8

nr. of processors 8 2–64
network speed 1GBit/s 10MBit/s–∞

X2 dual core processor and 3GB RAM. The default param-
eter settings are shown in Table 1.

For each parameter, we ran one set of experiments (on uni-
form, correlated and anti-correlated data), where we varied
that parameter while keeping the other ones at their default
setting. While our implementation is actually sequential,
we track time as if computation was performed in parallel,
and simulate costs for transporting data between processors
(here an infinite network speed means no extra cost, which
may be realistic e.g. for multi-core processors, where each
core takes the role of a processor).

The different skyline algorithms we considered are

• Plane-Project-Parallel-Skyline (PPPS)

• Angle-based-Parallel-Skyline (APS)

• Grid-based-Parallel-Skyline (GPS)

• Random-Parallel-Skyline (RPS)

• Sort-Filter-Skyline (SFS)

Our algorithm PPPS is described in detail in Section 3. Al-
gorithm APS refers to the Angle-based-space-partitioning
approach described in [23], using dynamic space partition-
ing. The GPS algorithm (Grid-based Parallel skyline) par-
titions the data set without projecting first, but unlike APS
makes use of (a simplified version of) the merge strategy
described in Section 3.3. RPS partitions the data set ran-
domly, thus reducing pre-processing costs, at the price of not
being able employ efficient merge strategies. The only non-
parallel algorithm is SFS [6], which sorts the data set before
making dominance checks. SFS is used as basic algorithm
for local skyline computation and merging, and for baseline
comparison. All skyline algorithms employ the approximate
skyline computation pre-processing step described in Sec-
tion 3.1, as it reduces transport and partitioning costs (this
actually makes our SFS implementation more similar to the
advanced LESS algorithm [12]).

A direct comparison of computation speed for hypersphere-
and hyperplane projection under varying dimensionality is
given in Figure 5. As predicted, hyperplane projection is sig-
nificantly faster, with the difference increasing for growing
dimensionality.

Figure 6 shows computation time of the different algo-
rithms for different randomly generated data sets, with vary-
ing pairwise correlation. Note that possible correlation val-
ues are limited from below by 1/(1 − n), where n is the
number of dimensions (5 here), so for negative correlation
the given values are linearly scaled accordingly (-1 indicates
pairwise correlation of − 1

4
, − 1

2
corresponds to pairwise cor-

relation of − 1
8
, etc).

The running times seem to indicate that the benefit of
applying parallel algorithms is smaller for uniform or pos-
itively correlated data sets. The reason here is that the
actual skyline is small, so that a large percentage of the
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Figure 5: Projection speed comparison
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Figure 6: Varying correlation

time is just spent on pre-processing steps and data trans-
port. However, larger skylines can also occur for uniform
and positively correlated data when the dimensionality is
high. Figures 7, 8 and 9 show results for varying number
of dimensions and anti-correlated (corr=-0.5), uniform and
correlated (corr=0.5) data, respectively.

Once again we see that parallel skyline computation is
only effective in cases where the actual skyline is reason-
ably large, this time due to high dimensionality. In all such
cases, our PPPS algorithm is considerably faster (note that
time is in log-scale) than the alternatives considered. It is
worth noting that the difference to the angle-based partition-
ing approach (APS) is not just due to the faster projection
method, but mainly caused by the efficient merge algorithm.
GPS outperforms APS for the same reason.

In order to judge the impact of the different optimization
applied, namely

1. approximate skyline pre-processing, and

2. efficient merging

we compare our PPPS algorithm with variants employing
none or only one of the above optimization. Figure 10 shows
the behavior of the different algorithms for varying corre-
lations. PPPS(A+M) denotes the PPPS algorithm with
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Figure 7: Varying dimensions (anti-correlated)
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Figure 8: Varying dimensions (uniform)

both approximate skyline pre-processing and efficient merge,
PPPS(M) is PPPS without approximate skyline, etc.

We find that approximate skyline pre-processing is helpful
for uniform or correlated data sets, as it reduces transport
costs as well as sorting costs for SFS. For anti-correlated
data is has virtually no impact, as other costs dominate and
the approximate skyline grows in size. Efficient merging
on the other hand is extremely beneficial for anti-correlated
data, but actually increases processing costs for uniform and
correlated data sets, due to overheads exceeding costs for
simple “brute-force” skyline merge.

Figures 11, 12 and 13 show how the different algorithms
scale with data set size. The dimensionality used is 5, 10
and 15 for the anti-correlated, uniform and correlated case
respectively, to ensure that the skyline is large enough to
necessitate parallel skyline algorithms.

As is to be expected, the increase in time is more than
linear but slightly less than quadratic in the size increase,
similar to the underlying SFS algorithm used for local sky-
line computation. The difference in speed between the al-
gorithms grows slightly with increasing data set size, up to
about 50,000, from which point on it remains fairly constant.
This is due to the preprocessing costs (approximate skyline
computation, partitioning, transport costs) becoming less
significant, as they grow only linearly in the data size. Our
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Figure 9: Varying dimensions (correlated)
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Figure 10: Varying correlation (by optimization)

PPPS algorithm is consistently the fastest, by more than one
order of magnitude compared to SFS. This is interesting in
so far as the speed factor exceeds the number of processors (8
here). The explanation is that the efficient merge step helps
greatly in reducing skyline point comparisons, making our
approach superior to SFS/LESS even when run sequentially.

The effect that the number of processors has on processing
time is shown in Figures 14, 15 and 16.

For PPPS, computation time drops quickly with rising
number of processors, up to about 32 for our anti-correlated
data set, at which point preprocessing and merge costs be-
come dominant and further increases in the number of pro-
cessors bring no significant benefit. For APS this point is
reached earlier at about 8 processors, and later for GPS,
while the random partitioning approach (RPS) hardly prof-
its from parallel processing power at all. Again, the rea-
son is an inefficient merge step, which becomes more costly
as the partitions become finer. We conclude that random
partitioning is not suitable for parallel skyline computation,
regardless of the number of processors available. We found
that the point at which further increases in the number of
processors does not improve performance of PPPS (respec-
tively APS) increases slowly with growing data set size.

It is worth noting that in cases where the skyline set is
large, merging of local skylines can be quite expensive. On
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Figure 11: Varying size (anti-correlated)
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Figure 12: Varying size (uniform)

the other hand, this step often eliminates only a very small
fraction of points. Thus, if a good approximation of the
actual skyline set is sufficient for the application scenario,
one may want to omit this final merge step. This is partic-
ularly profitable if the application requires further parallel
processing of the skyline set, as this may eliminate the need
for synchronization and merge completely. Table 2 shows
the size of the actual skyline and of the (union of) local sky-
line sets resulting from the different partitioning approaches,
for different data sets.

Table 2: Local-Approximate Skyline Sizes
dimensions 5 10 15
correlation anti-corr uniform correlated
skyline size 17668 26442 13812

plane-project 18378 (+4%) 34366 (+30%) 17646 (+28%)

angle-based 18363 (+4%) 34884 (+32%) 17962 (+30%)

grid-based 19578 (+11%) 46568 (+76%) 20910 (+51%)

random 26783 (+52%) 47584 (+80%) 20618 (+49%)

We find that random partitioning leads to large local sky-
lines in all cases. Grid-based partitioning provides small
local skylines for anti-correlated data in few dimensions, al-
beit still larger than for plane-project or angle-based pro-
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Figure 13: Varying size (correlated)
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Figure 14: Number of processors (anti-correlated)

jection, but fails for uniform or correlated ones with high
dimensionality. This confirms the quantitative results of
Section 3.4. Plane-projection and angle-based partitioning
approaches perform best in all cases, but the difference be-
tween local skyline and global skyline is still significant for
high-dimensional data.

5. CONCLUSION
We have investigated a novel approach to parallel skyline

computation, based on a data partitioning strategy which
uses projection of points onto a hyperplane. It combines
the benefits of small local skylines, as achieved by angle-
based partitioning [23], with an effective merge strategy, as
used in various grid-based partitioning schemes, and out-
performs both. In addition, we investigated the benefits of
initial approximate skyline pre-computation, and the impact
of various optimizations under different data distributions.
For future work, we will to investigate a combination of our
partitioning strategy with the recursive merge-approach de-
vised in [15].

Acknowledgement: The work reported in this paper is
supported by the Australian Research Council research grants
DP0987557 and LP0882957. Yang’s research is also partially

 0.1

 1

 10

 100

 1000

2 4 8 16 32 64

tim
e 

(s
ec

)

processors

SFS
RPS
APS
GPS

PPPS

Figure 15: Number of processors (uniform)

 0.1

 1

 10

 100

 1000

2 4 8 16 32 64

tim
e 

(s
ec

)

processors

SFS
RPS
APS
GPS

PPPS

Figure 16: Number of processors (correlated)

supported by the National Science Foundation of China (grant
number: 61070056, 61033010) and National High Technol-
ogy Research and Development Program 863 of China (grant
number: 2008AA01Z120).

6. REFERENCES
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