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Abstract 

Czech, Z.J., G. Havas and B.S. Majewski, An optimal algorithm for generating minimal perfect hash functions, Information 

Processing Letters 43 (1992) 257-264. 

A new algorithm for generating order preserving minimal perfect hash functions is presented. The algorithm is probabilistic, 

involving generation of random graphs. It uses expected linear time and requires a linear number of words to represent the 

hash function, and thus is optimal up to constant factors. It runs very fast in practice. 
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1. Introduction 

Consider a set W of m words each of which is 
a finite string of symbols over an ordered alpha- 
bet 2. A hash function is a function h : W + I 

that maps the set of words W into some given 
interval of integers I, say [O, k - 11, where k is an 
integer, and usually k 2 m. The hash function, 
given a word, computes an address (an integer 
from Z> for the storage or retrieval of that item. 
The storage area used to store items is known as 
a hash table. Words for which the same address is 
computed are called synonyms. Due to the exis- 
tence of synonyms a situation called collision may 

arise in which two items w1 and w2 have the 
same address. Several schemes for resolving colli- 
sions are known. A perfect hash function is an 
injection h : W - I, where W and I are sets as 
defined above, k 2 m. If k = m, then we say that 
h is a minimal perfect hash function. As the 
definition implies, a perfect hash function trans- 
forms each word of W into a unique address in 
the hash table. Since no collisions occur each 
item can be retrieved from the table in a single 
probe. A hash function is order preserving if it 
puts entries into the hash table in a prespecified 
order. 

Minimal perfect hash functions are used for 
memory efficient storage and fast retrieval of 
items from a static set, such as reserved words in 
programming languages, command names in op- 
erating systems, commonly used words in natural 
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languages, etc. An overview of perfect hashing is 
given in [18, Section 3.3.161 and the area is sur- 
veyed in [25]. Some recent independent develop- 
ments appear in [13,14,16]. 

Various algorithms with different time com- 
plexities have been presented for constructing 
perfect or minimal perfect hash functions, includ- 
ing [3-8,10,17,19,20,22,30]. In 1985 Sager pro- 
posed the mincycle algorithm [28] which uses 
graph considerations. The author claimed that 
the mincycle algorithm has complexity 0(m4). 
Based on this algorithm other solutions have been 
developed [9,14-161, with mainly experimental 
evidence of time performance. 

We present a new algorithm based on random 
graphs for finding minimal perfect hash functions 
of the form 

h(w) = (s(fi(w)) +s(Mw))) mod m, 

where f, and f2 are functions that map strings 
into integers, and g is a function that maps 
integers into [O, m - 11. We show that the ex- 
pected time complexity is O(m). The space re- 
quired to store the generated function is O(m . 
log m) bits, which is optimal for order preserving 
minimal perfect hash functions (see [21]). 

2. The new algorithm 

Consider the following problem. For a given 
undirected graph G = (V, E), I E I = m, I V I = II 
find a function g : I/+ [O, m - 11 such that the 
function h : E + [0, m - l] defined as 

h(e=(u, c) EE) =(g(u) +g(u)) mod m 

is a bijection. In other words we are looking for 
an assignment of values to vertices so that for 
each edge the sum of values associated with its 
endpoints taken modulo the number of edges is a 
unique integer in the range [0, m - 11. 

This problem is not always solvable if arbitrary 
graphs are considered. However, if the graph G 
is acyclic, a very simple procedure can be used to 
find values for each vertex, as follows. Associate 
with each edge a unique number h(e) E [O, m - 11 
in any order. For each connected component of 
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G choose a vertex c. For this vertex, set g(c) to 
0. Traverse the graph using a depth-first search 
(or any other regular search on a graph), begin- 
ning with vertex c. If vertex w is reached from 
vertex U, and the value associated with the edge 
e = (CL, w) is h(e), set g(w) to (h(e) - 
g(u)> mod m. Apply the above method to each 
component of G. Pseudocode is given in Fig. 2, 
which solves a problem like that addressed in 
[27]. (Notice that we have reversed our original 
problem, by defining the values of the function h 
first and then searching for suitable values for 
function g.) 

To prove the correctness of the method it is 
sufficient to show that the value of function g is 
computed exactly once for each vertex. This 
property is clearly fulfilled if G is acyclic. The 
solution to this graph problem becomes the sec- 
ond part of our algorithm for generating the 
minimal perfect hash function and is called the 
assignment step. 

Now we are ready to present the new algo- 
rithm for generating a minimal perfect hash func- 
tion. We denote the length of the word w by I w I 
and its ith character by w[i]. The algorithm com- 
prises two steps: mapping and assignment. In the 
mapping step a graph G = (V, E) is constructed, 
where 1/= (0,. . . , n - l} with II determined later, 
and E = {(f,(w), f,(w)>: w E W}. We introduce 
auxiliary functions fl and fi which are designed 
to be two independent random functions map- 
ping W into [0, y1 - 11. There are various possibil- 
ities. Here we choose the functions to be: 

mod n, 

mod II, 

where T, and T2 are tables of random integers 
modulo n for each character and for each posi- 
tion of a character in a word. 

The space required by tables T, and T2 is 
O(log n) bits, since each entry is a number in the 
range [0, n - l] and there is in effect a constant 
number of entries (actually dependent on the 
length of keys and the size of character set). As 
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long as n fits into one computer word this is O(1) 
words. If IZ is not less than the alphabet size, by 
treating each character w[il as a number we 
obtain another suitable pair of mapping func- 
tions: 

mod IZ. 

These can be stored in less space at the expense 
of greater time for hash function evaluation on 
common machine architectures (since table 
lookups are replaced by multiplications). In fact, 
we can characterize suitable functions by as little 
as one random number, at the expense of even 
greater computation time. However, our space 
requirements for increasing m are dominated by 
the space for storing the function g, so such 
considerations are of interest only for small m. 

Our goal is to find values of T, and T2 so that 
the graph G is acyclic. Because we have no easy 
deterministic method for doing this, we randomly 
generate tables repeatedly, until we obtain an 
acyclic graph (see Fig. 1). 

Once an acyclic graph is generated the assign- 
ment step is executed. Notice that generating a 
minimal perfect hash function can be reduced to 
the liroblem described at the beginning of this 
section. For an acyclic graph, each edge e = 
(u, U> E E corresponds uniquely to some word w 
(such that f,(w) = u and fJw> = u), so the search 
for the desired function is straightforward. We 
simply set h(e = (fl(w), fJw))) = i - 1 if w is the 
ith word of W. Then values of function g for 
each u E V are computed by the assignment step 

begin 
visited[v E V] := FALSE; 
for v E v loop 

if not visited[v] then 
g(v) := 0; 
traverse(v); 

end it 
end loop; 

end; 

Fig. 2. The assignment step. 

(see Fig. 2). The function h is a minimal perfect 
hash function for W. 

Evaluation of the hash function is done in fast, 
constant time, involving little more than two stan- 
dard hashes. Pseudocode is given in Fig. 3. 

3. Complexity analysis 

In this section we show that expected time 
complexity of the algorithm is linear in the num- 
ber of words. 

repeat 

As a result of the technique used to generate 
edges of the graph there is some dependency 
among them. However, due to the large degree of 
randomness introduced by the mapping func- 
tions, the assumption that the m-edged graphs 

function b(w : string) : integer; 
begin 

until G is acyclic; 

Fig. 1. The mapping step. Fig. 3. Evaluating the hash function. 

procedure traverse(u : vertex); 
begin 

visited[u] := TRUE; 
for w E neighbours(u) loop 

if not visited[w] then 
g(w) := (h(e = (u,w)) - g(u)) mod m; 
traverse(w); 

end if; 
end loop; 

end traverse; 

259 



Volume 43, Number 5 INFORMATION PROCESSING LETTERS 5 October 1992 

are generated uniformly at random should give 
quite accurate results, especially since our graphs 
are quite sparse. We henceforth make this as- 
sumption in our theoretical analysis. We also 
treat the alphabet size and maximum key length 
as constants, a reasonable assumption for any 
specific application area. (In fact, m is bounded 
by the alphabet size raised to the maximum key 
length, but this is not a practical restriction.) 

The second step of the algorithm, assignment, 
runs in O(m + n) time. In each iteration of the 
mapping step, the following operations are exe- 
cuted: (i> generation of tables of random integers; 
(ii) computation of values of auxiliary functions 
for each word in a set; (iii) testing if the gener- 
ated graph G is acyclic. Operation (i> takes at 
most time proportional to the maximum length of 
a word in the set W times size of alphabet Z, 
which is a constant. Operations (ii> and (iii> need 
O(m) and O(m + n> time, respectively. Hence, 
the complexity of a single iteration is O(m + n). 

We now show that the expected number of 
iterations in the mapping step can be made con- 
stant by suitable choice of n. Let pa denote the 
probability of generating an acyclic graph with m 
edges and II vertices. Let X be a random vari- 
able such that p(X=i)=p,(l -pa)f-l. By stan- 
dard probability arguments, the mean of X, which 
is equal to the expected number of iterations 
executed in the mapping step, is l/p, and its 
variance is (1 -p,)/pi. Also, the probability that 
the number of iterations in the mapping step 
exceeds some k is (1 -p,Jk. 

To obtain a high probability of generating an 
acyclic graph in an iteration we must deal with 
very sparse graphs. We choose II = cm, for some 
constant c. Detailed probabilistic arguments ap- 
pear in [261. Briefly, they proceed as follows. For 
random labeled graphs with m edges and n = cm 
vertices as n + w, the expected number of cycles 
of length k tends towards 2k/(2kck) [l, p.981. 
This result is for graphs with no self-loops (k = 1) 

(4 a bceglnoprtuvy 

2 11 1 13 21 11 1 

3 9 21 13 5 19 20 1 0 3 12 

a bceglnoprtuvy 

T, 2 ’ 2 21 24 8 12 

3 9 23 5 2 1 12 17 2 11 8 

(b) a b c e g 1 n o p I t u v y 

J-1 2 19 3 14 7 20 24 

3 11 21 15 14 10 3 2 17 1 15 

a bceglnoprtuvy 

T2 2 3 13 I 11 21 22 

3 10 12 19 3 10 2 8 1 24 15 

Fig. 4. Contents of the mapping tables: (a) during the first iteration, (b) during the second iteration. 
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or multiple edges (k = 2); however, it may be 
extended to cover them. Then, the probability of 
having an acyclic graph tends towards 
exp( - Cz= ,2k/(2kck)) [12]. Since, for c > 2, 

lim i 2“/(2kck) = i ln( A), 
n+m k=, 

the probability of getting an acyclic graph tends 

towards p,” = {(c - 2)/c . For c G 2, pz = 0. 
Thus, for c > 2 the probability of generating 

an acyclic graph approaches a nonzero constant, 
so we choose n > 2m. For n = 3m, the expected 
number of iterations for large m is E(X) = l/p: 
= 6. Therefore, the complexity of the mapping 
step is O(m + n), and the complexity of the algo- 
rithm is O(m + n). Since n = cm the complexity 
of the algorithm is linear in m, the number of 
words. 

We can slightly improve the performance of 
the algorithm by modifying the functions fi and 
f2 so that there are no self-loops. One way is to 
change the definition of f2 to ensure that f2(w) 
#f,(w), another is to generate bipartite graphs. 

For the former case p,” = e’/‘,/w. If bi- 
partite graphs are generated, the probability of 
generating a 

= G/c. 

cycle-free graph increases to pr 

Other improvements can be made 

if special properties of the words in W are taken 
into account. 

4. A simple example 

Consider the set of 12 month names, abbrevi- 
ated to the first three characters. We want to 
construct a minimal perfect hash function so that 
the ith month, i E (1,. . . ,12} is kept in the (i - 
1)th location of the hash table. 

We select c to be 2&, hence n = 25. More- 
over, we notice that the second and the third 
characters of the keys are unique for any key, 
therefore we restrict the definition of tables T, 
and Tz so that there are only two rows in each 
table. The space required to store such tables is 
2 X 2 X 26 = 104 bytes. Suppose that in the map- 
ping step the randomly generated contents of 
tables T, and T, are as shown in Fig. 4(a), with 
unused letters omitted. Then, for each key we 
compute the edge, which corresponds to it. Thus 
we have: 

f,(jun) := (T,(2, u) + T,(3, n)) mod 25 

= (11 + 19) mod 25 = 5, 

0 4 7 8 9 10 11 13 14 16 17 18 19 20 21 22 

Fig. 5. The graph generated in the second iteration of the mapping step. 
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f2( jun) := (7’,(2, a) + 7’,(3, n)) mod 25 

= (5 + 7) mod 25 = 12; 

f,( feb) := (13 + 9) mod 25 = 22, 

fi( feb) := (21 + 9) mod 25 = 5; 

f,( BUY) := (11 + 1) mod 25 = 12, 

f*(mar) := (5 + 17) mod 25 = 22. 

The last edge has closed a cycle (5, 12, 22) and 
there is no point in computing edges for the 
remaining keys with the current contents of ta- 
bles T, and T,. (Although the option of early 
detection of cycles was not included in the pseu- 
docode given in Fig. 1, it is quite easy to imple- 
ment. We use a set union algorithm [29] to do so. 
This results in a theoretically inferior solution, as 
the best set union algorithms have worst-case 
complexity O(n + mcu(n, n)), where cu(n, n) is the 
functional inverse of Ackermann’s function. 
However, linear time performance of set union 
algorithms is expected on the average [2,24,31], 
and, as the authors of [291 point out “for all 
practical purposes, a(m, n) is a constant no larger 
than four.“) 

Because of the cycle, the mapping process has 
to be repeated. The contents of tables T, and T, 
generated in the second iteration are shown in 
Fig. 4(b). This time the mapping leads to an 
acyclic graph, shown in Fig. 5. In the assignment 
step for each connected component we select a 
vertex and assign 0 to it. Then we perform a 
regular search on the component, computing the 
values associated with the remaining vertices. 

We start with vertex 0, hence g(0) := 0. Sup- 
pose we explore the right branch first. Thus 

g(17) := (1 -g(O)) mod 12= 1, 

g(9) := (8 - g( 17)) mod 12 = 7, 

g( 18) := (4 -g(9)) mod 12 = 9, 

g(7) := (5 -g(9)) mod 12 = 10. 

Next, after returning to vertex 0, we explore the 
left branch. Here we set 

g(13) := (6 -g(O)) mod 12 = 6, 

g(4) := (0 -g(13)) mod 12 = 6, 

g(22) := (3 -g(4)) mod 12 = 9. 
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This ends the assignment step for the largest 
component. The same procedure is then applied 
to the remaining components. It is easy to see 
that g(8) = 0, g(10) = 10, g(19) = 1; g(l1) = 0, 
g(21) = 2 and g(14) = 0, g(16) = 7, g(20) = 9 are 
suitable values. This ends the generation phase of 
the hash function. 

Now, to calculate the hash table address for 
not, say, we compute 

f,( nou) := (7 + 1) mod 25 = 8, 

fZ( nou) := (11 + 24) mod 25 = 10. 

Then the hash table address of MX is (g(8) + 
g(10)) mod 12 = (0 + 10) mod 12 = 10. (With no 
extra work(!) we have gained also the information 
that noti is the 10 + 1 = 11th month of the year.) 

5. Experimental results 

The new algorithm, without any specific im- 
provements, was implemented in the C language. 
All experiments were carried out on Sun SPARC 
station 2, running under the SunOS’” operating 
system. The results are summarized in Table 1. 
An entry in the table produced for the algorithm 
was generated as follows: for each specified m 

(number of words) 250 random sets of words 
were selected. The table entries represent the 
averages over these 250 trials. Words were cho- 
sen from 24692 words in a dictionary. The dictio- 
nary was obtained by removing from the standard 

Table 1 

Experimental results 

I?l=n/3 iterations mapping assignment total 

512 1.704 0.037 0.010 0.047 

1024 1.684 0.052 0.019 0.072 

2048 1.776 0.095 0.037 0.132 

4096 1.676 0.169 0.067 0.236 

8192 1.668 0.320 0.142 0.463 

16384 1.680 0.628 0.293 0.921 

24692 1.688 0.950 0.444 1.394 

32768 1.636 1.353 0.597 1.949 

65536 1.696 2.718 1.198 3.916 

131072 1.676 5.448 2.416 7.864 

262144 1.768 11.273 4.813 16.087 

524288 1.736 22.493 10.414 32.907 
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Unix dictionary all words shorter than 3 charac- 
ters, longer than 18 characters or containing 
characters other than letters. For each experi- 
ment the words were selected using shuffling 1231. 
For m > 24692, artificial sets of random words 
were generated. The values of m, iterations, map- 
ping, assignment and total are the number of 
words, average number of iterations in the map- 
ping step, time for the mapping step, time for the 
assignment step and total time for the algorithm, 
respectively. All times are in seconds. 

The experimental results fully back the theo- 
retical considerations. Also, the time require- 
ments of the new algorithm are very low. Observe 
that the average number of iterations is approxi- 
mately equal to 6 as indicated by the theory. 
Likewise the mapping, assignment and total times 
grow approximately linearly with m. A compari- 
son with the timing results given in [16] reveals 
that this algorithm is much faster than that given 
there. For example, their algorithm took 763.07 
seconds to generate a minimal perfect hash func- 
tion for 524288 keys on a Sequent machine. 

In the implementation of the algorithm we 
used an edge-oriented representation of graphs 
1111. This allowed us to handle edges as concrete 
objects, represented by integers, and not as pairs 
of vertices. Because of this, the space complexity 
of the algorithm is linear in the number of words 
too, with a very small constant factor. 

6. Conclusions 

A new algorithm for generating order preserv- 
ing minimal perfect hash functions has been de- 
veloped. The expected time complexity of the 
algorithm is O(m), so the algorithm is time opti- 
mal. Its space complexity, also optimal, is 
cm log m + O(1) log n bits, or cm + O(1) words, 
as long as n fits into a word. Observe that the ith 
word of W is placed at (i - 11th location of the 
hash table, hence the generated hash function 
preserves the order of the words in an input. This 
allows arbitrary arrangement of them, which may 
be useful in some applications. The generated 
function is quickly computable, and the space 

needed to store it may be made as small as 
m(2 + E), E > 0. Extensive experimental results 
have confirmed the theoretical results. They also 
have shown that the time requirements of the 
new algorithm are very low, even for very large 
sets. 
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