
Information Processing Letters 43 (1992) 257-264

North-Holland

5 October 1992

An optimal algorithm for generating minimal
perfect hash functions
Zbigniew J. Czech
Institute of Computer Science, Silesia University of Technology, 44-100 Gliwice, Poland .

George Havas and Bohdan S. Majewski
Department of Computer Science, Key Centre for Software Technology, Unicersity of Queensland, St. Lucia,
Queensland 4072, Australia

Communicated by R.G. Dromey

Received 8 November 1991

Revised 10 May 1992

Abstract

Czech, Z.J., G. Havas and B.S. Majewski, An optimal algorithm for generating minimal perfect hash functions, Information

Processing Letters 43 (1992) 257-264.

A new algorithm for generating order preserving minimal perfect hash functions is presented. The algorithm is probabilistic,

involving generation of random graphs. It uses expected linear time and requires a linear number of words to represent the

hash function, and thus is optimal up to constant factors. It runs very fast in practice.

Keywords: Data structures; probabilistic algorithms; analysis of algorithms; hashing; random graphs

1. Introduction

Consider a set W of m words each of which is
a finite string of symbols over an ordered alpha-
bet 2. A hash function is a function h : W + I

that maps the set of words W into some given
interval of integers I, say [O, k - 11, where k is an
integer, and usually k 2 m. The hash function,
given a word, computes an address (an integer
from Z> for the storage or retrieval of that item.
The storage area used to store items is known as
a hash table. Words for which the same address is
computed are called synonyms. Due to the exis-
tence of synonyms a situation called collision may

arise in which two items w1 and w2 have the
same address. Several schemes for resolving colli-
sions are known. A perfect hash function is an
injection h : W - I, where W and I are sets as
defined above, k 2 m. If k = m, then we say that
h is a minimal perfect hash function. As the
definition implies, a perfect hash function trans-
forms each word of W into a unique address in
the hash table. Since no collisions occur each
item can be retrieved from the table in a single
probe. A hash function is order preserving if it
puts entries into the hash table in a prespecified
order.

Minimal perfect hash functions are used for
memory efficient storage and fast retrieval of
items from a static set, such as reserved words in
programming languages, command names in op-
erating systems, commonly used words in natural

Correspondence to: Dr. G. Havas, Department of Com-
puter Science, Key Centre for Software Technology, Univer-

sity of Queensland, St. Lucia, Queensland 4072, Australia.

0020-0190/92/$05.00 0 1992 - Elsevier Science Publishers B.V. All rights reserved 257

Volume 43, Number 5 INFORMATION PROCESSING LETTERS 5 October 1992

languages, etc. An overview of perfect hashing is
given in [18, Section 3.3.161 and the area is sur-
veyed in [25]. Some recent independent develop-
ments appear in [13,14,16].

Various algorithms with different time com-
plexities have been presented for constructing
perfect or minimal perfect hash functions, includ-
ing [3-8,10,17,19,20,22,30]. In 1985 Sager pro-
posed the mincycle algorithm [28] which uses
graph considerations. The author claimed that
the mincycle algorithm has complexity 0(m4).
Based on this algorithm other solutions have been
developed [9,14-161, with mainly experimental
evidence of time performance.

We present a new algorithm based on random
graphs for finding minimal perfect hash functions
of the form

h(w) = (s(fi(w)) +s(Mw))) mod m,

where f, and f2 are functions that map strings
into integers, and g is a function that maps
integers into [O, m - 11. We show that the ex-
pected time complexity is O(m). The space re-
quired to store the generated function is O(m .
log m) bits, which is optimal for order preserving
minimal perfect hash functions (see [21]).

2. The new algorithm

Consider the following problem. For a given
undirected graph G = (V, E), I E I = m, I V I = II
find a function g : I/+ [O, m - 11 such that the
function h : E + [0, m - l] defined as

h(e=(u, c) EE) =(g(u) +g(u)) mod m

is a bijection. In other words we are looking for
an assignment of values to vertices so that for
each edge the sum of values associated with its
endpoints taken modulo the number of edges is a
unique integer in the range [0, m - 11.

This problem is not always solvable if arbitrary
graphs are considered. However, if the graph G
is acyclic, a very simple procedure can be used to
find values for each vertex, as follows. Associate
with each edge a unique number h(e) E [O, m - 11
in any order. For each connected component of

258

G choose a vertex c. For this vertex, set g(c) to
0. Traverse the graph using a depth-first search
(or any other regular search on a graph), begin-
ning with vertex c. If vertex w is reached from
vertex U, and the value associated with the edge
e = (CL, w) is h(e), set g(w) to (h(e) -
g(u)> mod m. Apply the above method to each
component of G. Pseudocode is given in Fig. 2,
which solves a problem like that addressed in
[27]. (Notice that we have reversed our original
problem, by defining the values of the function h
first and then searching for suitable values for
function g.)

To prove the correctness of the method it is
sufficient to show that the value of function g is
computed exactly once for each vertex. This
property is clearly fulfilled if G is acyclic. The
solution to this graph problem becomes the sec-
ond part of our algorithm for generating the
minimal perfect hash function and is called the
assignment step.

Now we are ready to present the new algo-
rithm for generating a minimal perfect hash func-
tion. We denote the length of the word w by I w I
and its ith character by w[i]. The algorithm com-
prises two steps: mapping and assignment. In the
mapping step a graph G = (V, E) is constructed,
where 1/= (0,. . . , n - l} with II determined later,
and E = {(f,(w), f,(w)>: w E W}. We introduce
auxiliary functions fl and fi which are designed
to be two independent random functions map-
ping W into [0, y1 - 11. There are various possibil-
ities. Here we choose the functions to be:

mod n,

mod II,

where T, and T2 are tables of random integers
modulo n for each character and for each posi-
tion of a character in a word.

The space required by tables T, and T2 is
O(log n) bits, since each entry is a number in the
range [0, n - l] and there is in effect a constant
number of entries (actually dependent on the
length of keys and the size of character set). As

Volume 43, Number 5 INFORMATION PROCESSING LETTERS 5 October 1992

long as n fits into one computer word this is O(1)
words. If IZ is not less than the alphabet size, by
treating each character w[il as a number we
obtain another suitable pair of mapping func-
tions:

mod IZ.

These can be stored in less space at the expense
of greater time for hash function evaluation on
common machine architectures (since table
lookups are replaced by multiplications). In fact,
we can characterize suitable functions by as little
as one random number, at the expense of even
greater computation time. However, our space
requirements for increasing m are dominated by
the space for storing the function g, so such
considerations are of interest only for small m.

Our goal is to find values of T, and T2 so that
the graph G is acyclic. Because we have no easy
deterministic method for doing this, we randomly
generate tables repeatedly, until we obtain an
acyclic graph (see Fig. 1).

Once an acyclic graph is generated the assign-
ment step is executed. Notice that generating a
minimal perfect hash function can be reduced to
the liroblem described at the beginning of this
section. For an acyclic graph, each edge e =
(u, U> E E corresponds uniquely to some word w
(such that f,(w) = u and fJw> = u), so the search
for the desired function is straightforward. We
simply set h(e = (fl(w), fJw))) = i - 1 if w is the
ith word of W. Then values of function g for
each u E V are computed by the assignment step

begin
visited[v E V] := FALSE;
for v E v loop

if not visited[v] then
g(v) := 0;
traverse(v);

end it
end loop;

end;

Fig. 2. The assignment step.

(see Fig. 2). The function h is a minimal perfect
hash function for W.

Evaluation of the hash function is done in fast,
constant time, involving little more than two stan-
dard hashes. Pseudocode is given in Fig. 3.

3. Complexity analysis

In this section we show that expected time
complexity of the algorithm is linear in the num-
ber of words.

repeat

As a result of the technique used to generate
edges of the graph there is some dependency
among them. However, due to the large degree of
randomness introduced by the mapping func-
tions, the assumption that the m-edged graphs

function b(w : string) : integer;
begin

until G is acyclic;

Fig. 1. The mapping step. Fig. 3. Evaluating the hash function.

procedure traverse(u : vertex);
begin

visited[u] := TRUE;
for w E neighbours(u) loop

if not visited[w] then
g(w) := (h(e = (u,w)) - g(u)) mod m;
traverse(w);

end if;
end loop;

end traverse;

259

Volume 43, Number 5 INFORMATION PROCESSING LETTERS 5 October 1992

are generated uniformly at random should give
quite accurate results, especially since our graphs
are quite sparse. We henceforth make this as-
sumption in our theoretical analysis. We also
treat the alphabet size and maximum key length
as constants, a reasonable assumption for any
specific application area. (In fact, m is bounded
by the alphabet size raised to the maximum key
length, but this is not a practical restriction.)

The second step of the algorithm, assignment,
runs in O(m + n) time. In each iteration of the
mapping step, the following operations are exe-
cuted: (i> generation of tables of random integers;
(ii) computation of values of auxiliary functions
for each word in a set; (iii) testing if the gener-
ated graph G is acyclic. Operation (i> takes at
most time proportional to the maximum length of
a word in the set W times size of alphabet Z,
which is a constant. Operations (ii> and (iii> need
O(m) and O(m + n> time, respectively. Hence,
the complexity of a single iteration is O(m + n).

We now show that the expected number of
iterations in the mapping step can be made con-
stant by suitable choice of n. Let pa denote the
probability of generating an acyclic graph with m
edges and II vertices. Let X be a random vari-
able such that p(X=i)=p,(l -pa)f-l. By stan-
dard probability arguments, the mean of X, which
is equal to the expected number of iterations
executed in the mapping step, is l/p, and its
variance is (1 -p,)/pi. Also, the probability that
the number of iterations in the mapping step
exceeds some k is (1 -p,Jk.

To obtain a high probability of generating an
acyclic graph in an iteration we must deal with
very sparse graphs. We choose II = cm, for some
constant c. Detailed probabilistic arguments ap-
pear in [261. Briefly, they proceed as follows. For
random labeled graphs with m edges and n = cm
vertices as n + w, the expected number of cycles
of length k tends towards 2k/(2kck) [l, p.981.
This result is for graphs with no self-loops (k = 1)

(4 a bceglnoprtuvy

2 11 1 13 21 11 1

3 9 21 13 5 19 20 1 0 3 12

a bceglnoprtuvy

T, 2 ’ 2 21 24 8 12

3 9 23 5 2 1 12 17 2 11 8

(b) a b c e g 1 n o p I t u v y

J-1 2 19 3 14 7 20 24

3 11 21 15 14 10 3 2 17 1 15

a bceglnoprtuvy

T2 2 3 13 I 11 21 22

3 10 12 19 3 10 2 8 1 24 15

Fig. 4. Contents of the mapping tables: (a) during the first iteration, (b) during the second iteration.

260

Volume 43. Number 5 INFORMATION PROCESSING LETTERS 5 October 1992

or multiple edges (k = 2); however, it may be
extended to cover them. Then, the probability of
having an acyclic graph tends towards
exp(- Cz= ,2k/(2kck)) [12]. Since, for c > 2,

lim i 2“/(2kck) = i ln(A),
n+m k=,

the probability of getting an acyclic graph tends

towards p,” = {(c - 2)/c . For c G 2, pz = 0.
Thus, for c > 2 the probability of generating

an acyclic graph approaches a nonzero constant,
so we choose n > 2m. For n = 3m, the expected
number of iterations for large m is E(X) = l/p:
= 6. Therefore, the complexity of the mapping
step is O(m + n), and the complexity of the algo-
rithm is O(m + n). Since n = cm the complexity
of the algorithm is linear in m, the number of
words.

We can slightly improve the performance of
the algorithm by modifying the functions fi and
f2 so that there are no self-loops. One way is to
change the definition of f2 to ensure that f2(w)
#f,(w), another is to generate bipartite graphs.

For the former case p,” = e’/‘,/w. If bi-
partite graphs are generated, the probability of
generating a

= G/c.

cycle-free graph increases to pr

Other improvements can be made

if special properties of the words in W are taken
into account.

4. A simple example

Consider the set of 12 month names, abbrevi-
ated to the first three characters. We want to
construct a minimal perfect hash function so that
the ith month, i E (1,. . . ,12} is kept in the (i -
1)th location of the hash table.

We select c to be 2&, hence n = 25. More-
over, we notice that the second and the third
characters of the keys are unique for any key,
therefore we restrict the definition of tables T,
and Tz so that there are only two rows in each
table. The space required to store such tables is
2 X 2 X 26 = 104 bytes. Suppose that in the map-
ping step the randomly generated contents of
tables T, and T, are as shown in Fig. 4(a), with
unused letters omitted. Then, for each key we
compute the edge, which corresponds to it. Thus
we have:

f,(jun) := (T,(2, u) + T,(3, n)) mod 25

= (11 + 19) mod 25 = 5,

0 4 7 8 9 10 11 13 14 16 17 18 19 20 21 22

Fig. 5. The graph generated in the second iteration of the mapping step.

261

Volume 43, Number 5 INFORMATION PROCESSING LETTERS 5 October 1992

f2(jun) := (7’,(2, a) + 7’,(3, n)) mod 25

= (5 + 7) mod 25 = 12;

f,(feb) := (13 + 9) mod 25 = 22,

fi(feb) := (21 + 9) mod 25 = 5;

f,(BUY) := (11 + 1) mod 25 = 12,

f*(mar) := (5 + 17) mod 25 = 22.

The last edge has closed a cycle (5, 12, 22) and
there is no point in computing edges for the
remaining keys with the current contents of ta-
bles T, and T,. (Although the option of early
detection of cycles was not included in the pseu-
docode given in Fig. 1, it is quite easy to imple-
ment. We use a set union algorithm [29] to do so.
This results in a theoretically inferior solution, as
the best set union algorithms have worst-case
complexity O(n + mcu(n, n)), where cu(n, n) is the
functional inverse of Ackermann’s function.
However, linear time performance of set union
algorithms is expected on the average [2,24,31],
and, as the authors of [291 point out “for all
practical purposes, a(m, n) is a constant no larger
than four.“)

Because of the cycle, the mapping process has
to be repeated. The contents of tables T, and T,
generated in the second iteration are shown in
Fig. 4(b). This time the mapping leads to an
acyclic graph, shown in Fig. 5. In the assignment
step for each connected component we select a
vertex and assign 0 to it. Then we perform a
regular search on the component, computing the
values associated with the remaining vertices.

We start with vertex 0, hence g(0) := 0. Sup-
pose we explore the right branch first. Thus

g(17) := (1 -g(O)) mod 12= 1,

g(9) := (8 - g(17)) mod 12 = 7,

g(18) := (4 -g(9)) mod 12 = 9,

g(7) := (5 -g(9)) mod 12 = 10.

Next, after returning to vertex 0, we explore the
left branch. Here we set

g(13) := (6 -g(O)) mod 12 = 6,

g(4) := (0 -g(13)) mod 12 = 6,

g(22) := (3 -g(4)) mod 12 = 9.

262

This ends the assignment step for the largest
component. The same procedure is then applied
to the remaining components. It is easy to see
that g(8) = 0, g(10) = 10, g(19) = 1; g(l1) = 0,
g(21) = 2 and g(14) = 0, g(16) = 7, g(20) = 9 are
suitable values. This ends the generation phase of
the hash function.

Now, to calculate the hash table address for
not, say, we compute

f,(nou) := (7 + 1) mod 25 = 8,

fZ(nou) := (11 + 24) mod 25 = 10.

Then the hash table address of MX is (g(8) +
g(10)) mod 12 = (0 + 10) mod 12 = 10. (With no
extra work(!) we have gained also the information
that noti is the 10 + 1 = 11th month of the year.)

5. Experimental results

The new algorithm, without any specific im-
provements, was implemented in the C language.
All experiments were carried out on Sun SPARC
station 2, running under the SunOS’” operating
system. The results are summarized in Table 1.
An entry in the table produced for the algorithm
was generated as follows: for each specified m

(number of words) 250 random sets of words
were selected. The table entries represent the
averages over these 250 trials. Words were cho-
sen from 24692 words in a dictionary. The dictio-
nary was obtained by removing from the standard

Table 1

Experimental results

I?l=n/3 iterations mapping assignment total

512 1.704 0.037 0.010 0.047

1024 1.684 0.052 0.019 0.072

2048 1.776 0.095 0.037 0.132

4096 1.676 0.169 0.067 0.236

8192 1.668 0.320 0.142 0.463

16384 1.680 0.628 0.293 0.921

24692 1.688 0.950 0.444 1.394

32768 1.636 1.353 0.597 1.949

65536 1.696 2.718 1.198 3.916

131072 1.676 5.448 2.416 7.864

262144 1.768 11.273 4.813 16.087

524288 1.736 22.493 10.414 32.907

Volume 43, Number 5 INFORMATION PROCESSING LETTERS 5 October 1992

Unix dictionary all words shorter than 3 charac-
ters, longer than 18 characters or containing
characters other than letters. For each experi-
ment the words were selected using shuffling 1231.
For m > 24692, artificial sets of random words
were generated. The values of m, iterations, map-
ping, assignment and total are the number of
words, average number of iterations in the map-
ping step, time for the mapping step, time for the
assignment step and total time for the algorithm,
respectively. All times are in seconds.

The experimental results fully back the theo-
retical considerations. Also, the time require-
ments of the new algorithm are very low. Observe
that the average number of iterations is approxi-
mately equal to 6 as indicated by the theory.
Likewise the mapping, assignment and total times
grow approximately linearly with m. A compari-
son with the timing results given in [16] reveals
that this algorithm is much faster than that given
there. For example, their algorithm took 763.07
seconds to generate a minimal perfect hash func-
tion for 524288 keys on a Sequent machine.

In the implementation of the algorithm we
used an edge-oriented representation of graphs
1111. This allowed us to handle edges as concrete
objects, represented by integers, and not as pairs
of vertices. Because of this, the space complexity
of the algorithm is linear in the number of words
too, with a very small constant factor.

6. Conclusions

A new algorithm for generating order preserv-
ing minimal perfect hash functions has been de-
veloped. The expected time complexity of the
algorithm is O(m), so the algorithm is time opti-
mal. Its space complexity, also optimal, is
cm log m + O(1) log n bits, or cm + O(1) words,
as long as n fits into a word. Observe that the ith
word of W is placed at (i - 11th location of the
hash table, hence the generated hash function
preserves the order of the words in an input. This
allows arbitrary arrangement of them, which may
be useful in some applications. The generated
function is quickly computable, and the space

needed to store it may be made as small as
m(2 + E), E > 0. Extensive experimental results
have confirmed the theoretical results. They also
have shown that the time requirements of the
new algorithm are very low, even for very large
sets.

Acknowledgment

We thank Nick Wormald of the University of
Melbourne for help with calculating the probabil-
ity of generating an acyclic graph. We also thank
the anonymous referees whose thoughtful com-
ments led to an improved presentation. The sec-
ond author was supported in part by Australian
Research Council grant A49030651 and in part by
DIMACS/Rutgers NSFSTC88-09648.

References

111

121

[31

[41

151

[61

[71

Bl

[91

[lOI

ill1

[121

B. Bollobas, Random Graphs (Academic Press, London,

1985).

B. Bollobas and I. Simon, On the expected behaviour of

disjoint set union algorithms, in: Proc. 17th Arm. ACM
Symp. on Theory of Computing - STOC’85 (1985) 224-
231.
M.D. Brain and A.L. Tharp, Near-perfect hashing of

large word sets, Software - Practice and Experience 19
(1989) 967-978.
M.D. Brain and A.L. Tharp, Perfect hashing using sparse

matrix packing, Inform. Systems 15 (3) (1990) 281-290.

N. Cercone, J. Boates and M. Krause, An interactive

system for finding perfect hash functions, IEEE Software
2 (1985) 38-53.
C.C. Chang, The study of an ordered minimal perfect

hashing scheme, Comm. ACM 27 (1984) 384-387.
C.C. Chang and R.C.T. Lee, A letter-oriented minimal

perfect hashing scheme, Comput. J. 29 (1986) 277-281.
R.J. Cichelli, Minimal perfect hash functions made sim-

ple, Comm. ACM 23 (1980) 17-19.

Z.J. Czech and B.S. Majewski, Generating a minimal

perfect hashing function in Ofm*) time, Podstawy
Sterowania (1992), to appear. ,
M. Dietzfelbinger and F. Meyer auf der Heide, A new

universal class of hash functions, and dynamic hashing in

real time, in: Proc. 17th Internat. Coil. on Automata,
Languages and Programming - ICALP’90 (1990) 6-19.
J. Ebert, A versatile data structure for edge-oriented
graph algorithms, Comm. ACM 30 (1987) 513-519.

P. Erdijs and A. RCnyi, On the evolution of random

graphs, Publ. Math. Inst. Hung. Acad. Sci. 5 (1960) 17-61;

263

Volume 43, Number 5 INFORMATION PROCESSING LETTERS 5 October 1992

[I31

[I41

[I51

[161

[I71

[181

[I91

ml

D11

Reprinted in: J.H. Spencer, ed., The Art of Counting:
Selected Writings, Mathematicians of Our Time (MIT

Press, Cambridge, MA, 1973) 574-617.

E. Fox, Q.F. Chen, A. Daoud and L. Heath, Order

preserving minimal perfect hash functions and informa-

tion retrieval, ACM Trans. Inform. Systems 9 (2) (1991)

281-308.

E. Fox, Q.F. Chen and L. Heath, LEND and faster

algorithms for constructing minimal perfect hash func-

tions, Tech. Rept. TR-92-2, Virginia Polytechnic Institute

and State University, February 1992.

E. Fox, L. Heath and Q.F. Chen, An O(n log n) algo-
rithm for finding minimal perfect hash functions, Tech.

Rept. TR-89-10, Virginia Politechnic Institute and State

University, Blacksburg, VA, April 1989.

E.A. Fox, L.S. Heath, Q. Chen and A.M. Daoud, Practi-

cal minimal perfect hash functions for large databases,

Comm. ACM 35 (1) (1992) 105-121.
M.L. Fredman, J. Komlos and E. Szemeredi, Storing a

sparse table with O(1) worst case access time, J. ACM 31
(1984) 538-544.
G.H. Gonnet and R. Baeza-Yates, Handbook of Algo-
rithms and Data Structures (Addison-Wesley, Reading,

MA, 1991).

M. Gori and G. Soda, An algebraic approach to Cichelli’s

perfect hashing, BIT 29 (1989) 209-214.
G. Haggard and K. Karplus, Finding minimal perfect

hash functions, ACM SIGCSE Bull. 18 (1986) 191-193.

G. Havas and B.S. Majewski, Optimal algorithms for

WI

D31

r241

[251

ml

D71

LN

u91

[301

[311

minimal perfect hashing, Tech. Rept. 234, Key Centre for

Software Technology, The University of Queensland, July
1992.

G. Jaeschke, Reciprocal hashing: A method for generat-

ing minimal perfect hashing functions, Comm. ACM 24
(1981) 829-833.
D.E. Knuth, The Art of Computer Programming, Vol. 3:
Sorting and Searching (Addison-Wesley, Reading, MA,

2nd ed., 1973).

D.E. Knuth and A. Schiinhage, The expected linearity of

a simple equivalence algorithm, Theoret. Comput. Sci. 6
(1978) 281-315.
T.G. Lewis and C.R. Cook, Hashing for dynamic and

static internal tables, Computer 21 (1988) 45-56.
B.S. Majewski, N.C. Wormald, Z.J. Czech and G. Havas,

A family of generators of minimal perfect hash functions,

Tech. Rept. 16, DIMACS, Rutgers University, April 1992.

T.J. Sager, A new method for generating minimal perfect
hash functions, Tech. Rept. CSc-84-15, Dept. of Com-

puter Science, University of Missouri-Rolla, 1984.
T.J. Sager, A polynomial time generator for minimal

perfect hash functions, Comm. ACM 28 (1985) 523-532.
R.E. Tarjan and J. Van Leeuwen, Worst-case analysis of

set union algorithms, L ACM 31 (1984) 245-281.
V.G. Winters, Minimal perfect hashing in polynomial

time, BIT 30 (2) (1990) 235-244.
A.C. Yao, On the expected performance of path com-

pression algorithms, SIAMJ. Comput. 14 (19%) 129-133.

264

