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Introduction

The modular group is a much studied object in mathematics.

Indeed in the 2009 Abel Prize documentation for Gromov’s award this group

is described as

“one of the most important groups in the modern history of mathematics”.

It has standard representations as a group of geometric transformations and

as a group of matrices.

It is (isomorphic to) the projective special linear group PSL(2, Z).

It is SQ-universal.

It has a large collection of interesting quotients.

This includes most of the nonabelian finite simple groups.
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We study the modular group as a finitely presented group.

It is isomorphic to the free product of the cyclic groups C2 and C3 and has

natural and shortest presentation: {x, y | x2, y3}.

We investigate the question: what are the one-relator quotients of this group?

We are happy when we can either give the order of the group when finite or a

proof of infiniteness otherwise.

If we can tell you the order, we can tell you its structure.

How can we determine the order of a finite FP-group?

Favorite tool: coset enumeration.

How can we prove a group to be infinite?
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Simplest method: abelian quotient invariants of it or one of its subgroups

reveals it.

More complicated study of the group itself: cohomology; geometry; graphical;

rewriting (Knuth-Bendix); prove infinitely many different properties (eg,

quotients), Golod-Shafarevich, . . .

Or any of the above for a subgroup, quotient or section.

So, which groups can we obtain by adding one extra relator w(x, y) to the

standard presentation?

Many interesting cases are already known, including infinite sequences.

Triangle groups: (xy)n — infinite for n ≥ 6 (GA Miller 1902)

Generalized triangle groups: wn — almost all infinite

(Baumslag, Morgan, Shalen 1987, HMT95, LRS95: only 8 finite )
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Finite simple groups PSL(2, m): – for prime m ≥ 5

(Campbell and Robertson, 1980; 2m + 5 syllables u = xy, v = xy−1):

u2vu(m−3)/2vu2vu(3m−3)/2v

Finite soluble groups (Campbell, Heggie, Robertson and Thomas 1992):

xy−1xy(xyxy−1)n−1xy−1xy

G(n) is metabelian with order 6(n2 + 3) if n 6= 3 mod 4

and has derived length 3 and order 12(n2 + 3) if n = 3 mod 4.

The trivial group : ? how many ? (lots)

Work on Schur multipliers gives a necessary condition for a finite 2-generator

group to be presentable with 3 relators.

Suffice it to say that a finite {2, 3}-generated group is not presentable as a

one-relator quotient of the modular group unless rank(M(G)) = 0 or 1.
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One-relator quotients of the modular group have been much considered over

time.

Indeed, in 1856 Hamilton produced what we can read as a presentation for A5

(which he called “Icosian Calculus”) via a one-relator quotient of the modular

group: 〈ι, κ, λ | ι2 = 1, κ3 = 1, λ5 = 1, λ = ικ〉.

In 1901 G.A. Miller identified the groups 〈x, y | x2, y3, (xy)n〉 for n = 2, 3, 4

and 5 (referring to Burnside (1897)) and in 1902 showed that they are infinite

for n > 5.

In 1987 Conder substantially identified all 270 one-relator quotients of the

modular group, where the extra relator has length up to 24.

Subsequently Ulutaş and Cangül (2004) wrote a paper on this topic.

(Sadly it is neither comprehensive nor fully correct.)
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In addition, many successful investigations into efficient presentations for

simple groups have specifically studied one-relator quotients of the modular

group, dating from 1980.

To better understand the nature of one-relator quotients of the modular

group we extend Conder’s 1987 work by investigating longer presentations.

We describe a canonical form for them.

In that context, we study all such quotients with extra relator having length

up to 36 and determine the order of almost all of them.

Up to equivalence, there are 8326 presentations where the extra relator has

length greater than 24.

We confirm Conder’s 1987 results and we determine the order of all of the

groups, except for seven with length 36.
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The presentations of the groups whose order we have not been able to

determine provide interesting challenge problems.

When we can determine the order of a finite group, we are able to give

detailed structural information about it.

All of our results are based on computer calculations, sometimes substantial.

We use Magma, which provides excellent facilities for our needs.

(Alternatively GAP can be used to do the required computations.)

We provide supplementary materials, including some Magma programs on my

website, together with their outputs.

These programs and outputs give some further details on our calculations and

also provide information on computer resource usage.
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Conder’s approach revisited

In 1987 Conder was motivated by a problem about graphs to study what he

called at the time “three-relator quotients of the modular group”.

We now prefer the term one-relator, reflecting the count of extra relators,

rather than the total relator count.

Following Conder’s ideas but not the detail, we define the modular group

Γ = 〈x, y | x2, y3〉 and consider its one relator quotient

G = 〈x, y | x2, y3, w(x, y)〉.

Any non-trivial element (other than x, y or y−1) in Γ is conjugate to an

element of the form xyǫ1xyǫ2 . . . xyǫn where ǫi = ±1.

We consider such elements as candidates for the extra relator and say they

have n syllables or length 2n.
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There are 2n.

However we can significantly reduce the number we look at by utilizing

automorphisms of the modular group. We define u = xy and v = xy−1.

In Γ, u−1v = y−1x−1xy−1 = y−2 = y and vu−1v = xy−1y = x so Γ has an

alternative presentation P = {u, v | (vu−1v)2, (u−1v)3}.

This presentation provides a good environment for describing canonical

representatives for the extra relator.

Taking the automorphisms of Γ into account reduces the number of

presentations significantly.

Indeed our program reveals:

1, 2, 2, 4, 4, 8, 9, 18, 23, 44, 63, 122, 190, 362, 612, 1162, 2056, 3914, . . .

Do you recognize this?
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It is the number of n-bead necklaces (turning over is allowed) where

complements are equivalent.

http://www.research.att.com/∼njas/sequences/A000011

( 2⌊n/2⌋ + Σd|n(2n/dφ(2d))/(2n) )/2

Our methods and the easy cases

We have implemented a Magma program which generates (almost) all

canonical representatives of extra relators and tries to determine group order.

Our first, quite quick approach, is the following.

Try to enumerate the cosets of the trivial subgroup (using the x, y

presentation, defining a maximum of 106 cosets using a well-chosen ACE

strategy).
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If that fails, look at the AQI of all (conjugacy classes of) subgroups with

index up to 33.

8569 presentations (ex 8596 necklaces): ACE fails to complete for 237.

So 8332 of these define finite groups (and 7/27 omitted).

Trivial : 1855, C2 : 2183, C3 : 681, |G| = 6 : 931 (C6 : 133, S3 : 798)

Small {2, 3}-generated simple groups:

60 : 23 – A5; 168 : 11 – L2(7); 504 : 7 – L2(8); 660 : 3 – L2(11);

1092 : 7 – L2(13) 2448 : 7 – L2(17); 3420 : 4 – L2(19); 4080 : 3 – L2(16);

Missing 5616 : 0 – L3(3); shortest has 21 syllables

Missing 12180 : 0 – L2(29); shortest has 19 syllables
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14880 : 3 – L2(31); shortest has 17 syllables

39732 : 1 – L2(43); shortest has 17 syllables (2p + 5 = 91)

1 : 1855, 2 : 2183, 3 : 681, 6 : 931, 12 : 242, 18 : 92, 24 : 171, 42 : 193, 48 : 148,

54 : 48, 60 : 42, 72 : 43, 78 : 150, 96 : 72,

114 : 118, 120 : 20, 126 : 75, 144 : 38, 150 : 80, 162 : 25, 168 : 53, 180 : 13,

186 : 66, 192 : 10, 216 : 18, 222 : 51, 234 : 31, 240 : 20, 258 : 37, 288 : 10,

294 : 56, 312 : 13, 324 : 11, 336 : 59, 342 : 9, 360 : 9, 366 : 10, 378 : 3, 384 : 12,

402 : 4, 432 : 33, 438, 486 : 2, 504 : 29, 576 : 13, 624 : 9, 648 : 12, 660 : 4,

672 : 23, 720 : 11, 750 : 10, 768 : 21, 936 : 6,

1008 : 32, 1152 : 4, 1092 : 8, 1200 : 3, 1296 : 9, 1320 : 9, 1368 : 2, 1440 : 5,

1512 : 4, 1536 : 13, 1944 : 5, 1980 : 2, 2016 : 11, 2058 : 2, 2160 : 14, 2184 : 12,

2304 : 7, 2448 : 9, 2520, 2640 : 15, 2736 : 2, 2880 : 5, 3024 : 2, 3072 : 2, 3276,

3402, 3420 : 4, 3456 : 2, 3600 : 2, 3888 : 5, 3960 : 10, 4032 : 2, 4080 : 3,

4320 : 10, 4368 : 9, 4378 : 6, 4536 : 2, 4608 : 2, 4680 : 2, 5040 : 3, 5184,
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5760 : 4, 5832 : 2, 6000, 6048 : 3, 6072 : 5, 6144 : 9, 6552 : 5, 6840 : 4,

7056 : 4, 7344 : 3, 7500, 7560 : 2, 7800 : 2, 8064, 8400, 8640, 8748, 9000 : 2,

9072, 9792 : 2, 9828,

10260 : 2, 10368, 10752, 11520 : 2, 11160, 11664 : 2, 11880, 12144 : 4, 12288,

13104 : 3, 13320 : 2, 13680 : 4, 14040, 14112 : 2, 14400, 14880 : 3, 15120,

15552 : 4, 17280 : 3, 18432, 18750 : 10, 18816, 19440 : 2, 19656 : 2, 20520,

21168 : 4, 21504 : 2, 24192 : 4, 25200 : 2, 25272, 26208 : 4, 27216 : 4, 27720,

31104, 31680 : 2, 32256 : 5, 32400, 32736, 36864, 38304, 39732, 39366, 42000,

44064, 44640 : 2, 45360, 51840 : 4, 52488, 57456, 61560, 72756, 75924, 77760,

81648, 83160, 84240, 90720 : 2, 97200,

112320, 122760, 123120, 145152, 184860 : 2, 233280, 234000, 278640, 346752,

362880, 367416, 653184, 777600.

Structure of all finite ones easily determined.

237 coset enumerations failed to complete, 171 for good reason.
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Their presentations define infinite groups (and our program or theory (GT)

provides a proof).

On this laptop: Total time: 773.812 seconds, Total memory usage: 69.20MB.

66 presentations to go.

Try harder.

Lemma. A group is finite if its largest metabelian quotient is finite and it has

a cyclic subgroup with finite index.

ACE (107 cosets, P (u, v)/〈v〉)

LIS (G(x, y), index 33 subgroups and subgroup cores with index ≤ 215).

24 more finite groups:
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Indexes: 1, 3, 4, 13, 64 : 2, 516, 588, 3276, 6084, 7392, 8192, 78624, 87500,

98304, 110592, 172032, 292032, 353808, 367416, 403368, 1572864, 3538944,

5308416.

Now harder to determine structure.

24 infinite with proofs; 15 by AQI, 9 GT (also have massive subgroup

p-quotients and/or many PSL images).

18 left (1 with 17 syllables, rest with 18).

Try harder again (108 cosets; LIS to 55; cores to 216).

3 more indexes: 31, 712500, 746928; 1 more infinite.

14 left.

Harder work proves 4 of these are infinite, 2 finite.
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(Golod-Shafarevich), infinitely many different PSL quotients (Plesken and

Fabianska, 2009), and infinite quotient by finding a matrix representation.

Coset enumerations allowing billions of cosets, including:

INDEX = 63824112 (m=814813557 t=814913514) 243411337

INDEX = 36 (m=1038797675 t=1046881197)

What is this group G with cyclic subgroup with index 63824112?

Let us play bingo: |U3(11)| = 70915680 = 2532511337

We started off knowing G has largest soluble quotient with order 18.

We readily find the index 2 subgroup maps onto U3(11) . . .

Another tidbit. Consider G3649 with 20 syllables.
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John Cannon showed:

Index = 464486400, Total cosets = 464486400.

Order of group is 464486400 = [ <2, 15>, <3, 4>, <5, 2>, <7, 1> ].

Degree of permutation representation is 34560.

Chief factors:-

G

| Cyclic(3)

*

| A(1, 8) = L(2, 8)

*

| Cyclic(2)

*

| Cyclic(2) (2 copies)

*

| Cyclic(2) (6 copies)

*
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| Cyclic(2)

*

| Cyclic(2) (2 copies)

*

| Cyclic(3)

*

| Cyclic(5) (2 copies)

1

CPU time for group 3649 is 52218.620 seconds.

[Almost all of the CPUtime goes into constructing the perm rep of

degree 34560 from the regular representation.]
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The last 8

Length 17

u10v2uvuv2

It is easy to show that PSL(2, 25) and PSL(3, 3) are images, and under

related subgroups we can see 21+12.

All that has order 358 848 921 600 = 2203452132.

Do you recognize this?

It is like the largest known quotient of (2, 3, 13; 4) (Holt and Rees 1999).

Coxeter (1939) defined: (p, q, r; s) = 〈x, y | xp, yq, (xy)r, [x, y]s〉

Our group is easily seen to be a central extension of (2, 3, 13; 4).
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That was all we knew till a couple of weeks ago.

At a meeting in Edinburgh I suggested to Derek that I thought (2, 3, 13; 4)

looked like it should be finite.

So we focussed on proving just that.

And, yes, it is finite and our group is a 2-fold cover.

On to length 18.
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#2086 u4vu3v3uv4uv

Its abelian quotient is C6, which is its largest known quotient.

The derived group is perfect with presentation:

bbABAbbaBBa, baaBAAABaab, babaBABABababA

We know it does not have any L2 quotients or any ”small” simple quotients.

???

#2507 u4vuvu2v2uvuv4

Maps onto 2 : L2(19) : 32, whose order is 61560.

#2767 u4vuv4u3vuv3

Sections include 2, 3, 78, 19 and L̂2(7).

So order is at least 220 814 937 504.
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#2878 u4v2u2v4u2vuv2

Sections include 2, 3, 19 and L2(13).

So order is at least 124488.

#3179 u3vu2vu2v2uv2uv3

Sections include 3, 19 and L̂2(13).

So order is at least 124488 (same as for #2878, but different structure).

#3405 u3vu2v2uv3u2vuv2

Sections include 23, 3, 5, 7 and L̂2(11).

So order is at least 158400.

#3646 u3vuvuv3u2vuvuv2

Sections include 2, 3, 19 and L2(64).

So order is at least 67616640.
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Questions

Why are so many one-relator quotients of the modular group finite?

Are all {2, 3}-generated simple groups one-relator quotients of the modular

group?
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