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Introduction

The modular group is a much studied object in mathematics.

Indeed in the documentation for the award of the 2009 Abel Prize

to Mikhail Gromov, this group is described as

one of the most important groups in the modern history of mathematics

It is perhaps best known as the projective special linear group L2(Z), with a

standard representation as a group of linear fractional transformations.

It is SQ-universal and has a large collection of interesting quotients,

including most of the nonabelian finite simple groups.

We study the modular group as a finitely presented group; it is isomorphic to

the free product of the cyclic groups C2 and C3, which gives its natural and

shortest presentation: {x, y | x2, y3}.
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What are the one-relator quotients of this group?

In other words, which groups can we obtain by adding one extra relator

w(x, y) to the standard presentation?

We are happy when we can either give the order of the group when finite

or a proof of infiniteness otherwise.

If we can tell you the order, we can tell you its structure.

How can we determine the order of a finite FP-group?

Favorite tool: coset enumeration.

How can we prove a group to be infinite?

Simplest method:

it or one of its subgroups has an infinite abelian quotient.
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More complicated methods: cohomology; geometry; graphical; rewriting

(Knuth-Bendix); prove infinitely many different properties (eg, quotients);

Golod-Shafarevich; Small Cancellation Theory, . . .

Or any of the above for a subgroup, quotient or section.

So, which groups can we obtain by adding one extra relator w(x, y) to the

standard presentation?

Many interesting cases are already known, including infinite sequences.

Work on Schur multipliers gives a necessary condition for a finite 2-generator

group to be presentable with 3 relators.

Suffice it to say that a finite {2, 3}-generated group is not presentable as a

one-relator quotient of the modular group unless rank(M(G)) = 0 or 1.

One-relator quotients of the modular group have been much considered over

time.
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Indeed, in 1856 Hamilton produced what we can read as a presentation for A5

(which he called “Icosian Calculus”) via a one-relator quotient of the modular

group.

In 1901 G.A. Miller identified the triangle groups 〈x, y | x2, y3, (xy)n〉 for

n = 2, 3, 4 and 5, referring to Burnside (1897).

In 1902 he showed that they are infinite for n > 5.

In 1987 Conder substantially identified all one-relator quotients of the

modular group defined using inequivalent extra relators with length up to 24.

There are 71 isomorphism types among those quotients which come from 300

presentations (34 distinct finite orders and 24 infinite).

(Subsequently Ulutaş and Cangül (2004) wrote a paper on this topic, but

sadly their work is neither comprehensive nor fully correct.)
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Generalized triangle groups: wn, n > 1 : 8 finite (Baumslag, Morgan, Shalen

1987; Howie, Metaftsis, Thomas 1995; Lévai, Rosenberger, Souvignier 1995)

Finite simple groups PSL(2, m): – for prime m ≥ 5

(Campbell and Robertson, 1980; 2m + 5 syllables u = xy, v = xy−1):

u2vu(m−3)/2vu2vu(3m−3)/2v

Finite soluble groups (Campbell, Heggie, Robertson and Thomas 1992):

xy−1xy(xyxy−1)n−1xy−1xy

G(n) is metabelian with order 6(n2 + 3) if n 6≡ 3 mod 4

and has derived length 3 and order 12(n2 + 3) if n ≡ 3 mod 4.

The trivial group : ? how many ? (lots)

Importantly, many successful investigations (dating from 1980) into efficient

presentations for simple groups have specifically studied one-relator quotients

of the modular group.

6



To better understand the nature of one-relator quotients of the modular

group, we extend Conder’s 1987 work by investigating longer presentations.

We describe a canonical form for them.

In that context, we study all such quotients with extra relator having length

up to 36, and determine the order of almost all of them.

Up to equivalence, there are 8296 presentations where the extra relator has

length greater than 24.

We confirm Conder’s 1987 results and we determine the order of all of the

groups, except for six with length 36.

The presentations of the groups whose order we have not been able to

determine provide interesting challenge problems.

When we can determine the order of a finite group, we are able to give

detailed structural information about it.
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Most of our results are based on computer calculations, which are sometimes

substantial.

We use Magma, which provides excellent facilities for our needs.

(Alternatively GAP can be used to do the required computations.)

We provide supplementary materials, including some Magma programs on my

website, together with their outputs.

http://www.itee.uq.edu.au/∼havas/orqmg/

These programs and outputs give further details on our calculations and also

provide information on computer resource usage.
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Conder’s approach revisited

Conder (1987) was motivated by a problem about graph embeddings to study

what he called at the time “three-relator quotients of the modular group”.

We now prefer the term one-relator, reflecting the count of extra relators,

rather than the total relator count.

We define the modular group Γ = 〈x, y | x2, y3〉 and consider its one-relator

quotient G = 〈x, y | x2, y3, w(x, y)〉.

Any non-trivial element (other than x, y or y−1) in Γ is conjugate to an

element of the form xyǫ1xyǫ2 . . . xyǫn where ǫi = ±1, which has n syllables

and length 2n.

We consider such elements as candidates for the extra relator.

There are 2n of these, for n syllables.
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We reduce the number to be considered by utilising automorphisms of the

modular group.

We define u = xy and v = xy−1.

Then u−1v = y−1x−1xy−1 = y−2 = y and vu−1v = xy−1y = x, so Γ has

alternative presentation {u, v | (vu−1v)2, (u−1v)3}, which we call P .

This presentation is more convenient for describing canonical representatives

for the extra relator.

Taking the automorphisms of Γ into account reduces the number of

presentations significantly.

Each relator we need to consider is a reduced word in u and v, and two such

words are equivalent if one can be obtained from the other by cyclic

permutation, reflection, or complementation (swapping u and v).

10



Hence the number of n-syllable relators is equal to the number of n-bead

necklaces, where each bead is one of two colours, turning over is allowed, and

complements are equivalent.

In particular, for syllable counts from 1 to 18 we obtain (in order) 1, 2, 2, 4,

4, 8, 9, 18, 23, 44, 63, 122, 190, 362, 612, 1162, 2056 and 3914 relators,

matching the necklace count in given by Sloane:

http://www.research.att.com/∼njas/sequences/A000011




∑

d|n

(

2n/dϕ(2d)/(2n)
)

+ 2[n/2]



 /2

where φ is the Euler phi function.

The dominant term is 2n−2/n.
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Our methods and the easy cases

We have implemented a Magma program which generates canonical

representatives of extra relators with from 3 to 18 syllables, and tries to

determine the order of the groups they define, using coset enumeration.

The most common form of proofs of finiteness based on coset enumeration

rely on showing that a provably finite subgroup has finite index in the group.

The most common form of proofs of infiniteness based on coset enumeration

rely on showing that a subgroup (with finite index) has infinite abelianisation.

We start by using coset enumeration over the trivial subgroup, allowing a

maximum of 106 cosets.

If that fails, we look for subgroups with index up to 33 (in principle) and with

infinite abelianisation.
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The three presentations with extra relator having less than three syllables

define finite groups.

For extra relator with from 3 to 18 syllables, we see that 8336 presentations

define groups with explicit finite order, while 191 define infinite groups.

This leaves 66 groups with order to be determined, out of an initial total

count of 8596.

A somewhat modified program (up to 107 cosets and subgroup index up to

42) reduces the number of outstanding cases to 48.

We find 11 more finite groups, and 7 infinite ones.

It is interesting to note that the two largest indices are found with quite easy

coset enumerations, while some small index cases are quite difficult.
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Commentary on the easy cases

Even though the methodology used thus far is both standard and relatively

naive, it has proved to be very successful in determining the group order and

even in addressing the isomorphism problem in most cases.

We progressively refine the techniques to address the harder problems.

Using the trivial group as subgroup in coset enumeration to prove finiteness is

not ideal.

It has one implicit advantage, however, namely that when the enumeration

succeeds, we get a regular representation for the group.

Given a representation for a permutation group of moderate size, it is

straightforward to test its isomorphism with any group for which we have a

permutation representation.
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This means we have an implicit solution for the isomorphism problem among

these finite quotients.

It is also easy to study group structure, eg, we can readily compute the

normal subgroup lattice.

For the infinite groups, the information revealed about subgroups and

sections by the Low Index Subgroups algorithm enables us to divide them into

collections of distinct isomorphism types.

Output thus far reveals (inter alia):

trivial, 1856 presentations; C2, 2183; C3, 681; C6, 134; and S3, 799.

The largest two (thus far): orders 2 359 296 and 8 491 392.

Among the first 8336 finite groups found: 185 different orders, ??? isotypes.

We can readily determine the structure of all of these finite groups . . .
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Small simple groups: all 43 order 60 – A5; 14/53 order 168 – L2(7); 10/26

order 504 – L2(8); all 4 order 660 – L2(11); all 8 order 1092 – L2(13); all 9

order 2448 – L2(17); all 4 order 3420 – L2(19); and all 3 order 4080 – L2(16).

The smallest {2, 3}-generated simple group which does not occur is L3(3),

which has order 5616.

Its shortest presentations as a one-relator quotient of the modular group

require (extra relators with) 21 syllables.

Also missing is L2(29), having order 12180, whose shortest presentations

require 19 syllables.

In contrast, both L2(31), with order 14880 and three presentations, and

L2(43), with order 39732 and one presentation, do appear, with 17 syllables.

Note that the CR80 presentation for L2(43) uses 91 syllables

(the general presentation for L2(p) uses 2p + 5 syllables).
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We have already seen infinite families of presentations that define an infinite

number of different groups.

It is also easy to demonstrate infinite families of distinct presentations for the

same group.

Theorem 1. For each n ≥ 0, unvn+1 gives us the trivial group.

Proof. Since unvn+1 = 1, the element z = un = v−(n+1) is central.

Conjugating by x gives un = z = zx = (v−(n+1))x = un+1,

so u = 1, and the result follows.

Theorem 2. For each n > 0, unv gives us the cyclic group Cm, where

m = gcd(n − 1, 6).

Proof. Since v = u−n, the group is cyclic, and hence abelian.

The first two relations give u2 = v4 and u3 = v3,

from which it follows easily that v = u−1 and u6 = 1.

The third relation implies also un−1 = 1, so the group has order

gcd(n − 1, 6).
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The two families above are special cases of the more general family of groups

with extra relator unvk.

Here the element un = v−k is central, so the group is a central extension of

(2, 3 | n, k) = 〈 r, s | r2, s3, (rs)n, (r−1s)k 〉, which is a member of the family of

groups (ℓ, m | n, k) studied by Coxeter (1939).

Indeed, (2, 3 | n, k) ∼= 〈 r, s | r2, s3, (rs)d 〉,

which is the (2, 3, d) triangle group, for d = gcd(n, k).

For d = 1 (when the triangle group is trivial), the central extension is perfect

and so defines the trivial group if and only if gcd(n + k, 6) = 1.

For other d ≤ 5, it defines a finite nontrivial group;

and for d > 5 it defines an infinite group.

Instances of other infinite families of presentations which define the trivial

group can be observed.
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One-relator quotients of the modular group that are trivial give rise to

balanced presentations of the trivial group, and infinite families give rise to

infinite families of balanced presentations.

By taking any presentation from one of these families, we can construct

central extensions by amalgamating the relators x2 and y3.

In the case arising from Theorem 1, we may take

{x, y | x2y3, (xy)n(xy−1)n+1}, change any selection of n + 1 instances of x in

the second relator into x−1.

Then the central extension is perfect, and hence trivial.

Each such presentation thus gives
(2n+1

n+1

)

‘different’ presentations of the

trivial group.

In the case of Theorem 2, the group is trivial when n ≡ 0 or 2 mod 6, and so

we consider {x, y | x2y3, (xy)nxy−1}.
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Here, if n ≡ 0 mod 6 then we may change any n/3 instances of y to y−2 and

any n/2 + 1 instances of x into x−1, and obtain
(n+1

n/3

)( n+1
n/2+1

)

presentations of

the trivial group.

On the other hand, if n ≡ 2 mod 6, we may change any (n − 2)/3 instances

of y to y−2 and any n/2 instances of x to x−1, and obtain
( n+1
(n−2)/3

)(n+1
n/2

)

presentations.

Similar results hold for other one-relator quotients defining the trivial group.

Such one-relator quotients of the modular group can provide balanced

presentations of the trivial group in numbers that are exponential in the

presentation length.

These presentations (and variants based on presentations explicitly in terms

of u and v instead of x and y) provide interesting candidates for

counterexamples to the Andrews-Curtis conjecture.
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Indeed, the examples from Theorem 1 correspond to variants of a family

introduced by Akbulut and Kirby (1985).

Other examples, coming from trivial groups with extra relator of the form

unvk, seem to be new.

Harder presentations

Only 48 presentations remain, Qi.

A quick perusal reveals that 12 presentations are for generalised triangle

groups.

The order question has been resolved for all generalised triangle groups.

Nevertheless, we continue with our computational investigation of all these 48

presentations.
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In our first attack on this collection of presentations, we applied our programs

to the presentation of the group G on the initial generators x and y.

This is good for the Low Index Subgroups algorithm, as the presentation

includes the order of the generators, but is not so good for standard coset

enumeration; the presentation on generators u and v is better for Todd

Coxeter enumerations because it is shorter.

We first attempted to prove infiniteness (as our methods of proving finiteness

can waste resources if applied to infinite groups), by investigating subgroups

and quotients more carefully.

Specifically, we looked at subgroups with index up to 42, the permutation

representations afforded by their coset tables, and the abelian quotient

invariants of both the subgroups and their cores (in cases where the core has

index less than 216).

We found 11 more quotients that are infinite because they have subgroups

with infinite cores.
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In some other cases, we found very large abelianised cores and quotients

which suggested that the groups may well be infinite.

Also some groups (11, only 2 covered above) clearly have quotients L2(p) for

multiple values of p.

Work by Plesken and Fabianska (2009) has culminated in an algorithm for

finding all quotients of a finitely presented group that are isomorphic to L2(q).

We have used an implementation of this algorithm due to Fabianska, and

applied it to the groups listed above that have multiple L2(p) quotients.

This reveals that all 11 of those groups have L2-quotients for infinitely many

primes, and leaves 28 presentations to consider.

Initially we used coset enumerations over the trivial subgroup to prove

finiteness, which had the benefit of giving us the group order directly and also

giving us a regular representation for the group.
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In some cases, however, we can do better by using a theorem of Schur on

centre-by-finite groups which leads to the following known result.

Proposition 3. A group is finite if its largest metabelian quotient is finite and

it has a cyclic subgroup with finite index.

This enables us to consider using larger cyclic subgroups in coset

enumerations to reduce the hypothetical index, which leads to easier coset

enumerations.

For each of our remaining 28 groups, the largest metabelian quotient is finite

(since we know that all subgroups with index up to 6 have finite

abelianisations).

We do not know a priori the orders of u and v (which are equal since

ux = v−1), but we can perform coset enumerations over the subgroup

generated by either of them.

Somewhat arbitrarily, we may choose v and try to enumerate the cosets of

〈v〉 in G, with the same maximum coset limit, namely 107.
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We thus discovered 13 more finite groups, in which v has index: 292032;

78624; 110592; 3 538 944; 4; 172032; 1; 13; 367416; 1 572 864; 403368;

87500; and 5 308 416.

These groups are all finite, and given this knowledge, it is not too hard to

determine their orders.

The index 3 538 944 one is a generalised triangle group, identified by LRS

(1995) as a group with order 220345 = 424 673 280.

The larger indexes here are for groups which are clearly out of range of our

previous finiteness proof attempts.

By modifying our program to allow the definition of 108 cosets we found

three more finite groups: indexes 746928; 31; and 712500.

This leaves 12 presentations (including just one generalised triangle group) to

be resolved.
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The standalone coset enumerator ACE3 allows the definition of more than

2 × 109 cosets (avoiding current limits in the Magma implementation).

Using ACE3 we found that two more indexes: 63 824 112 and 36.

The best enumerations we have found use: a maximum of 309 366 526 and a

total of 311 338 810 cosets; and a maximum of 948 327 123 and a total of

953 684 712.

These are very difficult enumerations.

When the index of 〈v〉 is moderate we can determine the structure of the

group reasonably easy.

Q18 with index 63 824 112 is more challenging, but we can determine its order

(3 829 446 720) and structure using Magma (next slide):

We find that Q18 has U3(11) as a section which enables us to construct nice

presentations for U3(11) in various ways.
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For the 10 remaining presentations, perusal of the subgroup, quotient and

section structure reveals that two of these are certainly very large.

One, (u3vuv2)2, has sections (indeed cores with abelian quotient invariants)

with orders 27 × 6, 56 × 15 and 37 × 9.

So far, our computational approach has not succeeded in proving it to be

infinite; LRS (1995) use a cleverly constructed 3 × 3 matrix representation for

its derived group.
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The other, Q14 with extra relator u8vuvuv2u2v2, has sections with orders

26 × 82, 39 and 2 × 48.

Our computational approach has not succeeded in proving it to be infinite,

but we can give an alternative proof.

In 1990 Conder studied a group related to trivalent symmetric graphs, which

led to a two-relator quotient of the modular group and proved:

Proposition 4. 〈x, y | x2 = y3 = (xy)12 = (xy−1xy−1xyxyxy−1xy)2 = 1〉

is infinite and insoluble.

It is easy to see that it is a quotient of Q14, and hence Q14 is infinite.

(Alternatively, information in Conder’s paper enables us to build an 8 × 8

matrix representation for it, which directly demonstrates that it is infinite.)

That leaves 8 presentations — the status of the problem up to June 2009.
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The last eight

The group Q12 with additional relator u10v2uvuv2 is the only one with extra

relator having less than 18 syllables that was not resolved above.

We see that the group has quotients L2(25) and C2
12.L3(3).

Holt and Rees (1999) revealed these quotients (inter alia) in the group

(2, 3, 13; 4), which is a member of another family of groups defined by Coxeter

(1939): (ℓ, m, n; q) = {r, s | rℓ, sm, (rs)n, [r, s]q}.

This observation leads us to note that Q12 is isomorphic to

H = 〈 c, d | c2, d3, (cd)13[c, d]−4 〉 which is a central extension of (2, 3, 13; 4).

So, to determine the structure of Q12, we need to understand G = (2, 3, 13; 4).

Coxeter’s families of groups have been much studied since his paper was

published.
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A recent paper by Edjvet and Juhàsz (2008) provides a good overview of the

history of investigations into them.

Suffice it to say, the order problem for G was unresolved as at the middle of

2009.

Motivated by our investigation here, Derek Holt and I decided to look at G

again, and succeeded in proving that it is finite with order 358 848 921 600.

The proof relies on coset enumeration, like our finiteness proofs here, but

with careful cyclic subgroup selection to take advantage of a generator with

as large order as possible.

We comprehensively described the structure of G, went on to show that Q12

has order 2|G| = 2213452132, and described its structure.

G = Q22 with extra relator u4vu3v3uv4uv has simplest visible structure of the

now seven remaining groups.
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What we see is consistent with the hypothesis that this group is isomorphic

to C6, and for good reason: it is.

It was quite difficult, however, to prove this.

We tried many coset enumerations without success, each defining up to 2

billion cosets, in Q22 and in its index 2, 3 and 6 subgroups.

Another method for proving finiteness for finitely presented groups is

Knuth-Bendix rewriting.

As a general rule, coset enumeration is much faster than Knuth-Bendix.

Sims (in his book, 1994) points out that Knuth-Bendix was able to find the

order of a group defined by a presentation proposed by Bernhard Neumann as

a challenge for computers, which at that stage no existing Todd-Coxeter

implementation had handled.
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Some other examples appear in HHKR (1999).

Neumann’s example is resolved by coset enumeration in HR (2000), where

there are further performance comparisons of coset enumeration and

Knuth-Bendix rewriting.

It is easy using Reidemeister-Schreier rewriting to obtain a presentation for

the derived group of G = Q22, namely

G′ = 〈a, b | bbABAbbaBBa, baaBAAABaab, babaBABABababA〉

(where A = a−1 and B = b−1 for ease of notation).

This was one of the presentations in which we attempted unsuccessful coset

enumerations.

Experiments with Alun Williams’ Monoid Automata Factory told us that G′ is

trivial.

Hence Q22 is isomorphic to C6.
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This proof is perhaps not entirely satisfactory, since one likely consequence of

a bug in a Knuth-Bendix program is an incorrect total collapse.

So for additional reassurance, we have repeated the calculation using two

independently written Knuth-Bendix implementations, Sims’ RKBP and Holt’s

KBMAG (which is available via both GAP and Magma).

Both confirm the result.

This leaves six one-relator quotients of the modular group with extra relator

of length 36 for which we are unable to determine finiteness or otherwise:

Q27, u4vuvu2v2uvuv4; Q31, u4vuv4u3vuv3; Q33, u4v2u2v4u2vuv2;

Q37, u3vu2vu2v2uv2uv3; Q40, u3vu2v2uv3u2vuv2; and

Q43, u3vuvuv3u2vuvuv2.

We already have much information about all subgroups with index up to 42 in

these groups, and about their cores.
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There is enough to reveal that no two of these groups are isomorphic.

For example, the counts of the (conjugacy classes of) subgroups with index

up to 42 are all different: 18, 23, 14, 12, 27 and 9, respectively.

We know that each of the groups has at least one L2-section:

Q27 – L2(19); Q31 – L2(7); Q33 – L2(13); Q37 – L2(13); and Q40 – L2(11).

Looking more deeply at the subgroups with index up to six in these groups,

we see that the index 3 subgroup of Q43 maps onto L2(64) (as does its index

6 subgroup).

We know of only one other nonabelian simple section that occurs: the index 2

subgroup of Q37 maps onto J2 (as does its index 6 subgroup).

An easy computation enables us to show that each of the six groups has a

largest soluble quotient and to compute its order.
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We can also compute all normal subgroups with index up to 100000 and their

abelian quotient invariants.

By multiplying the index of thus known normal subgroups by the orders of

their abelianisations, we can compute lower bounds on the group orders.

We can also increase two of those bounds by multiplying them by the orders

of independent sections, namely L2(64) for Q43 and J2 for Q37.

We obtain |Q27| ≥ 430920, |Q31| ≥ 220 814 937 504, |Q33| ≥ 124488,

|Q37| ≥ 75 290 342 400, |Q40| ≥ 5 544 000, and |Q43| ≥ 67 616 640.

Concluding remarks

We have studied one-relator quotients of the modular group ‘in the small’,

that is, with a short extra relator. It is interesting to compare and contrast

our results with generic results.
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Kapovich and Schupp (2009) have produced detailed information on random

m-relator quotients of the modular group for all m ≥ 1.

Their paper includes many interesting results, including: these quotients are

generically essentially incompressible — that is, the smallest size of any

possible finite presentation of such a group is bounded below by a function

which is almost linear in terms of the length of a random presentation for it.

They also compute precise asymptotics of the number of isomorphism types

of m-relator quotients where all the defining relators are cyclically reduced

words of length n; and they obtain other algebraic results and show that such

quotients are complete, Hopfian, co-Hopfian, one-ended, word-hyperbolic

groups.

Earlier, Schupp (1976) proved that the triviality problem restricted to such

presentations is undecidable.

The isomorphism problem for such presentations is thus certainly undecidable.
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Indeed, Schupp’s proof shows that the isomorphism problem restricted to

certain fixed classes of such groups is undecidable.

On the other hand, rigidity shows that the isomorphism problem is generically

easy.

We have shown that, in the small, most presentations of one-relator quotients

of the modular group define finite groups.

We know that 220 out of 8596 with up to 18 syllables define infinite groups.

The finiteness question remains unresolved for six groups, and the rest are

finite.

We can solve the isomorphism problem among these finite quotients, and

expect that we can do the same for the infinite ones.
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One consequence of the Kapovich and Schupp results is that as the relator

length tends to infinity, almost all inequivalent presentations of one-relator

quotients of the modular group define infinite groups.

This is very different to our results in the small.

Their Theorem C (Counting isomorphism types) specialises to give us a

formula for I(s), the number of isomorphism types of one-relator quotients of

the modular group with s syllables.

Thus lim
s→∞

I(s) = 2s−2/s, which is the dominant term in our count of

inequivalent s-syllable presentations.

This (possibly surprising) result is consistent with one of Kapovich and

Schupp’s observations: “the first basic result is that a long random word over

a finite alphabet is essentially its own shortest description.”

We have six presentations out of 8596 for which we have not resolved the

finiteness question.
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One clear issue is that current computational methods for proving very large

finitely presented groups to be finite are reaching their limits.

In particular, our lower bounds on the orders of Q31 and Q37 lead us to

expect that a finiteness proof for either of them would be hard to find.
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