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Groups of deficiency zero

GEORGE HAVAS, M.F. NEWMAN AND E.A. O’BRIEN

Abstract. We make a systematic study of groups of deficiency zero, con-

centrating on groups of prime-power order. We prove that a number of

p-groups have deficiency zero and give explicit balanced presentations for

them. This significantly increases the number of such groups known. We

describe a reasonably general computational approach which leads to these

results. We also list some other finite groups of deficiency zero.

1. Introduction

In this paper we show how the use of symbolic computation changes the way

in which one can attack previously intractable problems on group presentations.

The group defined by a finite presentation {X : R} is well-known to be infinite

if |X| > |R|. A group is said to have deficiency zero if it has a finite presentation

{X : R} with |X| = |R| and |Y | ≤ |S| for all other finite presentations {Y : S}

of it. A presentation with the same number of generators and relators is called

balanced. The generator number of a group G is the cardinality of a smallest

generating set for G.

It was recognised quite early that groups of deficiency zero could be interesting

– see, for example, Miller (1909). A recent account can be found in the lecture

notes of Johnson (1990, Chapter 7). All known examples of finite groups of defi-

ciency zero can be generated by at most 3 elements. All finite cyclic groups have

deficiency zero. It is known precisely which metacyclic groups have deficiency

zero. The first examples which cannot be generated by 2 elements were found by

Mennicke (1959); others have been found by Wamsley (1970), Post (1978) and

Johnson (1979). Only a very few of these examples are known to have prime-

power order. There are two in Mennicke’s list and eight in Wamsley’s (of which

two pairs are isomorphic). The theorem of Golod-Shafarevich (Johnson, 1990,

Chapter 15) shows that a p-group with deficiency zero can be generated by at

most 3 elements.
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We will highlight several problems; some of these are well-known.

Problem 1. Are all groups of deficiency zero which cannot be generated by

three elements infinite?

In this paper we focus attention mainly on p-groups and we exhibit more

examples of p-groups with deficiency zero which have generator number 3. We do

this by systematic and substantial use of implementations of algorithms. Access

to these is provided via the computer algebra systems Cayley (Cannon, 1984),

GAP (Schönert et al., 1993) and Magma (Bosma & Cannon, 1993); the packages

Quotpic (Holt & Rees, 1993) and the ANU p-Quotient Program (Newman &

O’Brien, 1995); and various stand-alone programs. Our methods also yield some

interesting information about 2-generator 2-relator presentations.

The Schur multiplicator provides a useful criterion in the search for finite

groups of deficiency zero. It follows already from one of Schur’s observations

(see Johnson, 1990, p. 87) that a finite group of deficiency zero has trivial mul-

tiplicator. It is one of the outstanding questions about p-groups whether the

converse holds; see, for example, Wamsley (1973, Question 12) and Johnson

(1990).

Problem 2. Exhibit a p-group with trivial multiplicator which does not have

deficiency zero.

The ANU p-Quotient Program can determine whether the multiplicator of a

p-group is trivial. Thus we can search for groups of deficiency zero among the

groups with trivial multiplicator. For a particular prime, we can find all such

groups up to any (realistic) prescribed bound on the order. We prove that a

p-group with generator number 3 and trivial multiplicator has order at least p8.

There are none of order 28 and 14 isomorphism types of order 38.

Knowing the groups turns out to be of little direct help in searching for bal-

anced presentations. Instead we systematically generate appropriate balanced

presentations and study these in some detail.

How can we decide whether such a presentation presents a group of interest?

As is well-known there is no algorithm for deciding whether a finite presentation

defines a finite group. However, if the presentation defines a finite group then

there are procedures which will, in principle, prove this fact. Of these coset

enumeration is generally the best in practice. Current implementations of coset

enumeration can enumerate millions of cosets with reasonable resources; we use a

derivative of that described by Havas (1991). However, it takes about 10 minutes

on a Sparc Station 10/51 to enumerate 10 million cosets for the sorts of presen-

tations we consider. In the light of this, we precede use of coset enumeration by

faster tests which filter out presentations which have larger finite quotients than

the ones being sought.

In practice, we calculate the p-quotient determined by each presentation to an

appropriate class; if this quotient has the required order, we calculate the largest
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metabelian quotient; if this is also correct, we try to prove that the group is

finite. This method has led to balanced presentations for 10 of the 14 groups of

order 38. For the remaining groups we have balanced presentations which define

them as pro-3-groups and as metabelian groups, but we have not been able to

prove that they define the group.

Knowing the number of groups with trivial multiplicator of a given order

provides us with a termination condition for our search. Another important

feature of our approach is that it allows us to consider presentations which look

unmanageable in more conventional approaches.

Problem 3. Prove the four remaining 3-generator groups with order 38 and

trivial multiplicator have deficiency zero.

Problem 4. Is there a 3-generator p-group of deficiency zero for any prime

p other than 2 or 3? (Wamsley, 1973, Question 21)

Problem 5. Are there infinitely many 3-generator p-groups of deficiency zero?

We have applied the same techniques to 3-generator 2-groups and 5-groups,

and 2-generator 5-groups and 7-groups. We give balanced presentations for the

two 3-generator 2-groups of order 29 with trivial multiplicator. We also give bal-

anced presentations for the six non-metacyclic 2-generator 5-groups with triv-

ial multiplicator which have the minimal possible order, 55, and for the eight

non-metacyclic 2-generator 7-groups with trivial multiplicator which have the

minimal possible order, 75.

Problem 6. Are all groups of order p5 with trivial multiplicator groups of

deficiency zero?

In Section 2 we investigate 3-generator p-groups with trivial multiplicator and

describe a method which can be used to find all such groups of a given order. The

resulting list contains all such groups of this order which have deficiency zero.

In Section 3 we consider the general form that “short” presentations for such

groups must take, discuss strategies to enumerate systematically lists of such

presentations, and present new examples of deficiency zero groups. In Section 4

we present results for 2-generator groups.

We are indebted to Wei Ming Yan for help with some of the computations. All

three authors were supported by the NSF to attend a workshop on “Computa-

tional Aspects of Geometric Group Theory” at the Geometry Center, University

of Minnesota, where part of this work was carried out. The first author was par-

tially supported by the Australian Research Council and the Australian National

University.
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2. 3-generator groups with trivial multiplicator

Let G be a p-group. The lower exponent-p central series of G is the descending

sequence of subgroups

G = P0(G) ≥ . . . ≥ Pi−1(G) ≥ Pi(G) ≥ . . .

where Pi(G) = [Pi−1(G), G]Pi−1(G)p for i ≥ 1. If Pc(G) = 1 and c is the smallest

such integer, then G has class c.

Theorem 1. A group which has a 3-generator 3-relator presentation and has

a quotient which is elementary abelian of order p3 for a prime p has a class 3

quotient of order p8. If the group has order p8, then its lower central quotients

have orders p3, p3 and p2.

Proof. Let F be a free group of rank 3. Then it is straightforward to see

that H := F/P3(F ) has order p23. Let K be the Frattini subgroup of H. It is

easy to see that K lies in the second centre of H, is abelian and has exponent

p2. Moreover for h ∈ H and k ∈ K the commutator [k, h] has order dividing p.

Hence the normal closure of k in H has order at most p5. Thus, for k1, k2, k3 ∈ K

the normal closure in H of {k1, k2, k3} has order at most p15. Let G be a group of

the kind given in the statement. Then G/P3(G) is a quotient of H by a normal

subgroup generated by at most three elements of K. Hence G/P3(G) has order

at least p8.

If G has order p8, then P3(G) is trivial and thus G is a quotient of H. Let N

be the kernel of a map from F to G. Then N ≥ V := P3(F ). Since G has trivial

multiplicator [N,F ] = N ∩ F ′ and so V [N,F ] = V (N ∩ F ′) = N ∩ V F ′. Hence

N/V ∩H ′ = [N/V,H]. Since H can be generated by 3 elements and N/V can

be generated by 3 elements modulo the centre of H, it follows that N/V ∩H ′ is

an elementary abelian group with at most 9 generators. Therefore G′ has order

p5 and G/G′ has order p3; it follows that G′/γ3(G) has order p3 and γ3(G) has

order p2. ut

Recall that a necessary condition for a p-group to have deficiency zero is that

it have trivial multiplicator. We say that a group is a candidate if it has trivial

multiplicator. We can get a list of candidates, since, for a given order, we have

the practical tools available to construct one representative for each isomorphism

type of group with trivial multiplicator. We now summarise the algorithm used

to obtain these.

Let G be a finite p-group with generator number d and exponent-p class c.

Given a finite presentation forG, we can compute a power-conjugate presentation

for G using the p-quotient algorithm, which is described in Havas & Newman

(1980) and implemented as part of the ANU p-Quotient Program. A group H

is a descendant of G if H has generator number d and the quotient H/Pc(H) is

isomorphic to G. A group is an immediate descendant of G if it is a descendant of

G and has class c+1. Given as input a power-conjugate presentation for the group



GROUPS OF DEFICIENCY ZERO 5

G, defined as a quotient, F/R, of the free group F on d generators, the p-group

generation algorithm, described in Newman (1977) and O’Brien (1990), produces

as output power-conjugate presentations for a complete and irredundant list of

the immediate descendants of G. The p-covering group, G∗, of G is defined to

be F/[R,F ]Rp. Given a power-conjugate presentation for G, a power-conjugate

presentation for G∗ can be computed using the ANU p-Quotient Program. The

nucleus of G is Pc(G
∗); if the nucleus is trivial, then G is terminal, otherwise G

is capable. If G has order p8 and trivial multiplicator, then its p-covering group

has order p11 – this provides an easy criterion for recognising that the group has

trivial multiplicator. Since these groups of necessity have trivial nucleus, they

are terminal. Thus, we can use the p-group generation algorithm to generate

a complete and irredundant list of presentations for the relevant p-groups and

select those which have trivial multiplicator.

In the 3-generator p-group context, Theorem 1 gives that all groups of defi-

ciency zero have order at least p8; in addition, they have a class 2 quotient of

order p6, which has commutator subgroup of order p3, and this quotient must

have a nucleus of order at most p2. We first use the p-group generation algorithm

to generate descriptions of the relevant class 2 quotients and then reapply the

algorithm to each class 2 quotient; the terminal groups obtained are our can-

didates. We used the p-group generation algorithm in the manner described to

determine the smallest 3-generator p-groups with trivial multiplicator for p = 2,

3 and 5.

There are 10 3-generator groups of order 26 with commutator subgroup of

order 23. Three have a nucleus of order 22 and all of the 15 immediate descen-

dants of order 28 are capable. One of these has a nucleus of order 2, and has

two terminal immediate descendants of order 29 which have trivial multiplicator.

Four of the 10 have a nucleus of order 23, and all 60 immediate descendants of

order 29 are capable. Hence there are no 3-generator groups of order 28 with

trivial multiplicator and exactly two such groups of order 29.

Among the 16 groups of order 36 with commutator subgroup of order 33,

five have a nucleus of order 32. Three of these each have 3 terminal immediate

descendants of order 38; the fourth has 5 terminal immediate descendants; all

immediate descendants of the fifth are capable. Hence there are 14 3-generator

groups of order 38 with trivial multiplicator.

Among the 20 groups of order 56 with commutator subgroup of order 53,

seven have a nucleus of order 52. Five of these each have 5 terminal immediate

descendants of order 58; a sixth has 7 terminal immediate descendants; all im-

mediate descendants of the seventh are capable. Hence there are 32 3-generator

groups of order 58 with trivial multiplicator.
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3. 3-generator groups of deficiency zero

3.1. Known examples. Mennicke (1959) lists the following presentations

M(α, β, γ) = {a, b, c : ab = aα, bc = bβ , ca = cγ}

where we have rewritten the conjugate relators in their more usual form. He

proved that the groups so presented are finite for most values of the parameters.

Exactly two are p-groups: M(3, 3, 3) and M(−2,−2,−2) determine groups of

order 211 and 39, respectively.

Wamsley (1970) lists the following presentations:

G1(α, β, γ) = {a, b, c : ac = aα, bc
−1

= bβ , cγ = [a, b]},

G2(α, β, γ) = {a, b, c : ac = aα, bc = bβ , cγ = [a, b]}.

In his list, there are four presentations for 2-groups: Gi(3, 3, 2) and Gi(3, 3,−2)

for i = 1, 2. All four groups have order 213. How many different isomorphism

types occur among these presentations?

O’Brien (1994) describes a practical algorithm which provides an answer to

the problem for finite p-groups. He defines a standard presentation for each

p-group and provides an algorithm which allows its construction. Hence given

two p-groups presented by arbitrary finite presentations, the determination of

their isomorphism is essentially the same problem as the construction of their

standard presentations and the (trivial) comparison of these presentations. His

implementation of this algorithm is available as part of GAP and Magma.

We used the standard presentation algorithm on the four Wamsley presenta-

tions to establish that there are just three isomorphism types, with G2(3, 3, 2)

and G2(3, 3,−2) presenting isomorphic groups.

The presentations G2(−2,−2, 3) and G2(−2,−2,−3) determine groups of or-

der 38. Each is isomorphic to the group presented by #5 in the list given in

Section 3.4. The presentations G1(−2,−2, 3) and G1(−2,−2,−3) are for dis-

tinct groups of order 311.

3.2. Direct approaches. Use of the p-group generation algorithm provides

us with power-conjugate presentations for candidate groups. If a candidate has

a 3-relator presentation, then a sequence of Tietze transformations exists which

will convert its power-conjugate presentation to a 3-relator presentation. While

the determination of a suitable sequence runs into unsolvability problems in

general, some practical approaches exist which may succeed. Tietze transforma-

tion programs exist both in stand-alone versions (Havas, Kenne, Richardson &

Robertson, 1984; Havas & Lian, 1994) and in Cayley, GAP, and Magma. The

simplest idea is to take the power-conjugate presentation for a group, and to

attempt to use such programs to find balanced presentations. In practice, this

approach did not succeed for these groups.

An alternative is to try the (coset enumeration based) relation finding algo-

rithm of Cannon (1973), which is available in Cayley. It is also conceivable that
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further “massaging” of these presentations – such as investigating 3-element sub-

sets of the known relator sets – would lead to a positive outcome. This type of

investigation has yielded efficient presentations in other contexts; see, for exam-

ple, Kenne (1983). Neither of these approaches was successful here.

Since these direct methods do not give us balanced presentations, we instead

search through a list of potentially suitable presentations.

3.3. What sort of presentations? The exponent sum matrix E of the

presentation {a, b, c : u, v, w} is the 3 × 3 matrix with columns labelled by the

generators and rows by the relators and with E(u, a) the exponent sum of a in

u.

Theorem 2. If a group of order p8 has a 3-generator 3-relator presentation,

then it has a presentation {a, b, c : u, v, w} where the length of each relator is at

least p+ 2 and the exponent sum matrix is diagonal with entries p, p, p.

Proof. We use the notation of Theorem 1. To get a presentation of the

required form an appropriate sequence of Tietze transformations is applied to

the given presentation. These are found by mirroring the steps of reducing the

exponent sum matrix to diagonal form in such a way that the matrices are the

exponent sum matrices of the corresponding presentations. Clearly permutations

of rows and columns pose no problem and each row operation can be mirrored

by elementary Tietze transformations. The operation of multiplying a column

by −1 corresponds to the sequence of Tietze transformations which replaces the

corresponding generator by its inverse; and the operation of adding the column

labelled b to the column labelled a corresponds to the sequence which replaces

the generator b by a−1b. Since F ′/NF ′ is elementary abelian of order p3 the

presentation can be transformed into a presentation whose exponent sum matrix

is diagonal with entries p, p, p. Note that, in the proof of Theorem 1, if k is a

p-th power then its normal closure has order at most p4. So, finally, since the

order of N/V must be p15, no relator can be a p-th power and each relator must

have length at least p+ 2. ut

We say that the length of a presentation is the sum of the lengths of the relators

occurring in it. Thus Theorem 2 states that the shortest possible presentations

for a group of deficiency zero have length 3p+6. We begin by considering these

shortest presentations. Naturally we can reduce the search by eliminating pre-

sentations which are obviously equivalent to ones already considered. A relator

of length p + 2 with exponent sum p in a is essentially of the form b−1aibap−i

with i ∈ {1, . . . , p − 1}. Moreover if two such relators both involve only two of

the generators, and therefore the third involves the third generator and one of

the original two, the group is infinite (factor out the generator which occurs in

all three relators). Thus it suffices to consider the presentations:

{a, b, c : b−1aibap−i, c−1bjcbp−j , a−1ckacp−k}.
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For p = 2 there is just one such presentation: M(−1,−1,−1) which (as is well-

known) defines an infinite group. For p ≥ 5 factoring out one generator gives a

metacyclic group which is not a p-group. For p = 3 all these presentations can

be Tietze transformed into the one with i = j = k = 1 which is M(−2,−2,−2).

We now use Theorem 2 to create a list of “short” presentations in length order

for some specific primes. Since the list soon becomes very large, we first eliminate

presentations which are obviously equivalent to ones already considered. We

next “filter” from the list presentations which we can decide do not present the

required groups. In practice, we want to use fast and cheap filters.

We can compute p-quotients of small class for a finitely presented group very

rapidly. Since each of our candidate groups has class 3 and order p8, the group

given by a candidate presentation must have a largest p-quotient of order p8.

Hence we filter out all presentations which have a class 4 p-quotient with order

larger than p8. The ANU p-Quotient Program takes about 2 seconds to compute

this information for 100 of the presentations considered for the prime 3 on a Sparc

Station 10/51.

Moreover each of our candidate groups is metabelian; so we may further

check that candidate presentations which pass the p-quotient test also have

largest metabelian quotient of order p8. This is readily done by computing

the abelian quotient invariants of the commutator subgroup; here, we use coset

enumeration (Havas, 1991), Reidemeister-Schreier subgroup presentation algo-

rithms (Neubüser, 1982), and integer matrix diagonalization (Havas, Holt &

Rees, 1993). This test is more expensive, taking about 10 seconds for 100 of the

presentations considered for the prime 3 on a Sparc Station 10/51.

We next use the standard presentation algorithm to organise the candidate

presentations into families according to the isomorphism type of the relevant

p-quotient.

Only now do we apply coset enumeration to members of each family in order

to attempt to establish that a surviving presentation does present a group of the

correct order.

Recall that coset enumeration takes as input a group given by a finite pre-

sentation and a finitely generated subgroup of it, and, if the subgroup has finite

index, gives as output the index. For our purposes we need to be able to find a

finitely generated subgroup where the coset enumeration completes and where

we can prove the subgroup finite. The simplest case is to take the trivial sub-

group. The next best case is to take cyclic subgroups. If one can be found

with finite index, then the Reidemeister-Schreier algorithm can be used to find

a presentation for it. Its order can then be calculated using integer matrix diag-

onalization since the subgroup, being cyclic, is abelian. We have also been able

to use 2-generator subgroups of finite index to complete finiteness proofs.

An alternative method for proving finiteness is based on the Knuth-Bendix

procedure – see Sims (1994). We have not made a systematic attempt to use this

tool for these problems. In private communication, Charles Sims reported that
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the Rutgers Knuth-Bendix package was able to prove the finiteness of M(3, 3, 3)

after a substantial computation.

3.4. 3-groups. Since M(−2,−2,−2) is the only presentation of length 15,

we go on to consider the presentations of length 17, where two relators have

length 5 and one has length 7. Without loss of generality, we can consider the

two relators of length 5 to be one of the following pairs:

a2b−1ab, b2c−1bc

a2c−1ac, b2c−1bc

a2c−1ac, b2cbc−1 .

We now describe an algorithm which can be used to generate the set consisting

of all relevant candidates for the relator of length 7. We may assume without

loss of generality that the final relator of length 7 is freely and cyclically reduced.

We consider each of the following sequences in turn:

a, a−1, a, a−1, c, c, c

a, a−1, b, b−1, c, c, c

a, a−1, c, c−1, c, c, c

b, b−1, b, b−1, c, c, c

b, b−1, c, c−1, c, c, c .

For each sequence, we construct those permutations which (when treated as a

group word in the natural way) give words which freely and cyclically reduce to

a word of length 7. From this set of words we take as a candidate relator one

representative of each subset of cyclic permutations of the same word.

We use the natural generalisation of this technique to generate sets of relators

of given length, where each of two generators occurs with exponent sum zero

and the other occurs with exponent sum 3. Using this construction, we obtain

204 presentations of length 17.

To write down presentations of length 19, we first consider the case where one

relator has length 5 and the other two have length 7. Here we can choose the

relator of length 5 to be a2b−1ab. We now use the algorithm described above to

write down first the set of relators of length 7 where c occurs with exponent sum

3, and then the set of relators of length 7 where b occurs with exponent sum 3. We

also consider the case where two relators have length 5 and the third has length

9. We use the natural generalisation of the algorithm described above to write

down the set of possible relators of length 9, where we first extend each of the

five sequences of length 7 listed above to contain an additional generator-inverse

pair. Using these constructions, we write down a total of 9 304 presentations.

Finally, we consider presentations of length 21 where all three relators have

length 7. Here we use our algorithm to generate the three sets of relators of
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length 7 obtained by allowing each of a, b, c to occur with exponent sum 3. We

obtain 82 688 presentations.

A total of 77 179 of the 92 196 presentations fail one of the filter tests. We

classify the surviving candidates by the isomorphism type of their 3-quotient.

Thirteen of the 14 isomorphism types of groups with trivial multiplicator occur

among presentations of length at most 21. Nine of the 13 have presentations of

length at most 19.

Do any of the remaining presentations determine groups of order 38? Coset

enumeration over the trivial subgroup is sufficient to establish that the first five

of the presentations listed below present groups of order 38. For the remaining

presentations, coset enumerations do not complete over the trivial subgroup with

a 10 million coset limit. However, coset enumeration over the subgroup generated

by b allows us to conclude that presentations #6 to #9 describe groups of order

38. In each case, coset enumeration establishes that the cyclic subgroup has

index 35 and integer matrix diagonalization shows that the subgroup has order

33.

For presentation #10 we have to work harder. Coset enumerations over the

cyclic subgroups generated by the group generators do not complete, with a

10 million coset limit. Since a and b satisfy the relator a2b−1ab, the sub-

group 〈a, b〉 is metabelian. We show that the subgroup has index 33, use the

Reidemeister-Schreier algorithm to obtain a presentation for it, and then show

that its metabelian quotient has order 35.

#1. {a, b, c : b2c−1bc, a2b−1ab, ca−1b−1cabc},

#2. {a, b, c : b2c−1bc, a2b−1ab, b−1abc2a−1c},

#3. {a, b, c : b2c−1bc, a2b−1ab, ca−1c2b−1ab},

#4. {a, b, c : b2c−1bc, a2b−1ab, cab−1cbca−1},

#5. {a, b, c : b2c−1bc, a2c−1ac, a−1b−1abc3},

#6. {a, b, c : a2c−1ac, bcac−1b2a−1, cbac2b−1a−1},

#7. {a, b, c : a2b−1ab, ab2cba−1c−1, cb−1acbca−1},

#8. {a, b, c : a2c−1ac, acb2a−1c−1b, a−1b−1abc3},

#9. {a, b, c : b−1abca2c−1, acb2c−1a−1b, cb−1acbca−1},

#10. {a, b, c : a2b−1ab, a−1b3c−1ac, a−1bc2ab−1c}.

We have not been able to decide whether any of the remaining four candidate

groups of order 38 has a 3-relator presentation. We have various candidate

presentations and we list one for each group. These have passed all of the filters.

#11. {a, b, c : cac−1b−1aba, bacba−1c−1b, cb−1acbca−1},

#12. {a, b, c : acab−1c−1ab, b2a−1c−1acb, ca−1b−1cabc},

#13. {a, b, c : acab−1c−1ab, acbc−1ba−1b, b−1abc2a−1c},

#14. {a, b, c : a3 = [c−1, b], b3 = a−1cabc−1b−1, c3 = [a−1, b−1][a−1, c][b, c].

The first three of these were obtained as described above. The last group has

no candidate presentations of the kind we have investigated of length up to 21. Its
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candidate presentation was obtained by considering various presentations whose

relators specify that the cube of each generator is a product of commutators.

It is conceivable that finiteness might be proved for some modifications of

these presentations or by choosing another enumeration strategy. The variability

of coset enumeration performance means that different presentations for the

same group may have substantially different behaviour with respect to coset

enumeration procedures, as demonstrated in Havas (1991). Further, different

enumeration strategies also behave differently.

We also conducted a less-constrained search, where we neither eliminated

presentations obviously equivalent to ones already considered nor filtered using

p-quotient order. Sometimes we found presentations which performed better

under coset enumeration. Further, we found balanced presentations for some

groups of order 39 and 312.

The following presentations are for nonisomorphic groups of order 39, which

are distinct from M(−2,−2,−2). The order of each is readily found by coset

enumeration over the trivial subgroup.

#1. {a, b, c : bcb−1ac−1a2, c−1aba−1bcb, b−1cbc2},

#2. {a, b, c : bcb−1ac−1a2, ca−1babc−1b, b−1cbc2}.

The following is a presentation for a group of order 312. It is most readily

handled by coset enumeration over the metabelian subgroup 〈a, c〉 followed by

the metabelian quotient calculation for that subgroup.

#1. {a, b, c : b−1c−1ba2ca, c−1abca−1b2, a−1cac2}.

3.5. 5-groups. We investigated presentations of length up to 27 using the

techniques described in Section 3.4 and found a number of presentations which

passed all filters.

However, in no case could we decide whether these presentations present finite

groups. Here we primarily carried out large coset enumerations over particular

subgroups.

At least 20 of the 32 isomorphism types of groups of order 58 with trivial

multiplicator occur among the 5-quotients of the groups presented by these can-

didate presentations. Here is one example:

{a, b, c : a2ca3b−1c−1b, a−1babcb3c−1, cbc2a−1b−1cac}.

3.6. 2-groups. Recall that the smallest 3-generator 2-groups with trivial

multiplicator have order 29 and there are just two such groups.

We investigated short presentations and found that both isomorphism types

occurred among the 2-quotients of the presentations of length 18 (but not among

shorter presentations). It is straightforward using coset enumeration over the

trivial subgroup to verify that the following presentations are for groups of order

29:

#1. {a, b, c : b−1c−1bca2, c−1bacba−1, b−1abc2a−1},

#2. {a, b, c : ac−1bcab−1, acb2a−1c−1, ca−1cb−1ab}.
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3.7. Non-p-groups. In our less-constrained investigations of presentations,

we found various balanced presentations for groups of deficiency zero with order

2338. Here is one example:

{a, b, c : bcb−1ac−1a2, abcbc−1a−1b, b−1abc2a−1c}.

4. 2-generator groups of deficiency zero

We now apply the methods of the last section to find some p-groups with

generator number 2 and deficiency zero.

4.1. Some known examples. There are quite a number of examples of 2-

generator p-groups of deficiency zero – see, for example, Johnson (1990, Chapter

7) and Wiegold (1989). We draw attention to just two cases. The presentation

{a, b : bp
r+s+t

= ap
r+s

, ab = a1+pr

}

with r ≥ 1, s, t ≥ 0 defines a metacyclic group of order p3r+2s+t. For p odd

it is routine to see every metacyclic p-group with trivial multiplicator has a

presentation as above and the isomorphism type is determined by r, s and t. For

the prime 2 there are further examples. Macdonald (1962) showed that, for odd

p, the presentations

{a, b : a[a,b] = a1+p, b[b,a] = b1−p}

define p-groups and Wamsley (1973) showed the order of these groups is p5. We

will exhibit some other groups of order p5 with deficiency zero.

4.2. Groups of order p5 with trivial multiplicator. There are two meta-

cyclic groups of order p5 with trivial multiplicator. One can deduce using our

methods or from the tables of Hall & Senior (1964) that there are no other groups

of order 32 with trivial multiplicator.

One can deduce from James (1980) that for the prime 3 there are two non-

metacyclic groups of order 35 with trivial multiplicator, and for p ≥ 5 there are

p+ 1.

4.3. Method. We use essentially the same method as that described in Sec-

tion 3.4 to make a list of presentations, then filter it, divide it into classes accord-

ing to the isomorphism type of the largest p-quotient and then test for finiteness.

4.4. 3-groups. Keane (1976) showed that the two non-metacyclic 3-groups

with trivial multiplicator have deficiency zero. For the record we list presenta-

tions obtained with our methods:

#1. {a, b : b−2ababa, a−2b2ab−1ab2},

#2. {a, b : b−2ababa, a−1ba−1ba2b}.

The second defines the Macdonald group.
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4.5. 5-groups. We concentrated on obtaining presentations for the six non-

metacyclic 2-generator groups of order 55. We considered the presentations of

length 18 and found four isomorphism types among the 5-quotients of these. We

found one additional isomorphism type among the presentations of length 20

and a presentation of length 22 for the sixth group (the Macdonald group).

It is easy to show that the four presentations of length 18 present groups of

order 55 using coset enumerations over the trivial subgroup. In the two remaining

cases, we used coset enumeration over the cyclic subgroup generated by b to

obtain the order.

#1. {a, b : b−2aba3ba, a−2b2abab2},

#2. {a, b : b−1ab−1aba2ba, a−2b2abab2},

#3. {a, b : b−2aba3ba, a−1ba−1bab2ab},

#4. {a, b : b−2aba3ba, a−1b3a−1ba2b},

#5. {a, b : b−2a2baba2, a−1b−1a−1b2ab2ab2},

#6. {a, b : b−1aba−1b−1a4ba, a−1b4ab−1a−1bab}.

4.6. 7-groups. Again, we focussed on finding presentations for the eight

non-metacyclic 2-generator groups of order 75. We used coset enumerations

over the trivial subgroup or the subgroup generated by b to determine that

presentations #1 to #7 present groups of order 75. The last is the presentation

given by Macdonald – no shorter presentation was found for this group.

#1. {a, b : b−2aba5ba, a−1ba−1b2ab2ab2},

#2. {a, b : b−2aba5ba, a−1b3a−1b2a2b2},

#3. {a, b : b−1a2b−1aba3ba, a−2b2ab3ab2},

#4. {a, b : b−1a3b−1a2b2a2, a−1ba−1b3a2b3},

#5. {a, b : b−2a2ba3ba2, a−1ba−1b2ab2ab2},

#6. {a, b : b−2aba5ba, a−1b−1a−1b3ab2ab3},

#7. {a, b : b2a3b−1ab−1a3, a2ba−3b2ab4},

#8. {a, b : a[a,b] = a8, b[b,a] = b−6}.

4.7. Non-p-groups. We have also found groups of deficiency zero with order

2935. Here is one example:

{a, b : b−1a−1b−1aba2ba, a−2b2ab−1ab2}.
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