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Even after 25 years the article [30] by Joachim Neubüser remains the first source
to which all three of us refer those who want to find out about the use of coset
tables for studying groups. Our view is confirmed by the 14 Reference Citations
from 1998 to 2005 which MathSciNet [1] reveals for this article. Here we loosely
follow the structure of the original article and provide some updates on the area
(oriented towards our own interests).

First we point out that two newer books [35, 22] include comprehensive details
on coset enumeration and related topics in works which are much broader studies.
They give excellent coverage of the areas addressed in this article and, further,
provide much additional material. They also provide some alternative points of
view and many references (as do the other materials cited here).

One of Neubüser’s aims in writing his survey was to provide a unified view on
coset table methods in computational group theory. He addressed the way coset
table concepts were developed, implemented and used. In [22] Derek Holt follows
the same kind of approach, including a long chapter “Coset Enumeration” and a
shorter one “Presentations for Given Groups”. Charles Sims in [35] focuses on
finitely presented groups and he takes a perspective significantly based on some
fundamental methods from theoretical computer science, namely automata theory
and formal languages. He includes three chapters specifically relevant to coset
table methods: “Coset enumeration”; “The Reidemeister-Schreier procedure”; and
“Generalized automata”; with some extra implementation issues covered in an
Appendix. He concludes his coset enumeration chapter with a section which points
out that the Knuth-Bendix procedure can sometimes be used more effectively to
enumerate cosets than Todd-Coxeter methods.

Among the available computer implementations of coset enumeration procedures
are those in the computer algebra systems GAP [14] and Magma [5] and a stand-
alone program, the ACE coset enumerator [18]. An implementation is also available
via quotpic [23], a software package with a nice graphical interface. A particularly
useful tool for small-scale experiments with coset enumerations is the Interactive
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Todd-Coxeter package, ITC [12]. Many aspects of implementation and performance
issues are addressed in [16, 17], including some comparisons with Knuth-Bendix-
based methods. Much work has been done on practical strategies for successful
coset enumeration. Accessible introductions to readily-available strategies can be
found in the documentation for the GAP package ACE [13] and in the Magma

manual [29].
Neubüser describes several kinds of information available from coset tables. Such

information can be readily extracted from the various implementations. A more
recent program, PEACE (Proof Extraction After Coset Enumeration), gives users the
opportunity to uncover proofs from the workings involved in coset enumerations. It
is based on much earlier work of John Leech [24, 25]. Details appear in the Groups
St Andrews 2005 proceedings [19] with a significant application in [21].

Reidemeister-Schreier-based methods for finding presentations of subgroups are
described in [35, 22, 3]. The systems GAP, Magma and quotpic all incorporate
efficient implementations. Applications of such methods continue to be widely used
to address problems in finitely presented groups; see for example [11, 4]. They
have also been extended to work in other structures, such as semigroups (see for
example [33]) and Lie algebras. Initial implementations computed presentations
on a set of Schreier generators for the subgroup and followed by simplification
techniques. Subsequent, more complicated, algorithms utilise an augmented coset
table which enables the construction of presentations on user-given sets of subgroup
generators. Ideas which allow such a modified algorithm to be implemented more
efficiently are described in [2] and such ideas are incorporated in GAP and Magma

implementations.
Neubüser already gives some information about computing presentations for a

concrete group and methods based on [7] are included in GAP and Magma. A
newer method for finding short sets of defining relations is given by [15], which
utilises ideas from double coset enumeration. Double coset enumeration is covered
independently in [26]. Search-based methods for finding presentations with nice
properties are used in [20, 6].

In his survey, Neubüser describes a method for computing all subgroups of low
index by systematically forcing coincidences in larger coset tables. Now, more
recent implementations of low index subgroup algorithms are available in GAP,
Magma and quotpic. They use another method, due to Sims, which does a
backtrack search through incomplete coset tables. Recent adaptations of the low
index subgroup algorithm are described in [9].

The Schreier-Sims algorithm is now well covered in material on permutation
groups, including chapters in [34, 22]. It is used extensively in GAP and Magma.
Its application to matrix groups is outlined in a recent survey [32, §7.5].

Neubüser wrote that applications of coset table methods to group theoretical
questions are too numerous to be listed in his article and are often hidden. This is
even more valid now, 25 years later. Thus, most applications of GAP or Magma

to finitely presented groups are likely to implicitly invoke coset enumeration and
many other applications also do so. Recall there are no algorithms for answering
quite simple questions about finitely presented groups, as Neubüser [31] reminds
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us: there are “proofs of the non-existence of algorithms that could decide if a
finitely presented group is trivial, finite, abelian, etc.”, referring to [3] “for a vivid
description”. Often an appropriate way to start addressing a problem about a
finitely presented group is to find some kind of permutation representation for the
group, which is just what coset enumeration attempts to do. Thus, ask GAP or
Magma for the order of a finitely presented group; unless the group is obviously
infinite they both embark upon a coset enumeration (attempting to find the index
of a cyclic subgroup whose order they also try to determine).

One way for finding further information about applications is to try looking on
MathSciNet. For example, a MathSciNet search “Anywhere” for “coset table OR
coset enumeration OR Todd Coxeter” gave 172 matches in July 2006. Another way
is to follow citations provided by papers in our admittedly limited bibliography.

Neubüser also wrote “we may also hope that we have not yet seen the last
variation” on coset table methods. We finish by citing some other work which we
have not mentioned above. This includes vector enumeration, Kan extensions, and
parallel coset enumeration; see, for example, [27], [28], [8], and [10].

Additional note. Joachim Neubüser has informed us that on page 16 of the
original article it says: “(i) A coset Ug is contained in the normalizer NG(U) iff
g−1Ug = U , i.e. iff g−1Ug ≤ U and gUg−1 ≤ U . These two conditions are satisfied
iff Ug−1si = Ug−1 and Ugsi = Ug, . . . ” He points out that the first condition
is always enough, see page 114, exercise 17 (quoting a theorem of Takahasi) of
Magnus, Karrass & Solitar (reference [41] of the original article).
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