
On the Worst-case Complexity of Integer Gaussian Elimination

Xin Gui Fang George Havas*

School of Information Technology

The University of Queensland

Queensland 4072 Australia

havas~it .uq. edu. au

http://wuw.it .uq.edu.au/personal/havas

Abstract

Gaussian elimination is the baais for classical algorithms
for computing canonical forms of integer matrices. Exper-
imental results have shown that integer Gaussian elimina-
tion may lead to rapid growth of intermediate entries. On
the other hand various polynomial time algorithms do exist
for such computations, but these algorithms are relatively
complicated to describe and understand. Gaussian elimina-
tion provides the simplest descriptions of algorithms for this
purpose. These algorithms have a nice polynomial number
of steps, but the steps deaf with long operands. Here we
show that there is an exponential length lower bound onthe
operands for swell-defined variant of Gaussian elimination
when applied to Smith and Hermite normal form calcula-
tion, We present explicit matrices for which this variant
produces exponential length entries. Thus, Gaussian elimi-
nation has worst-case exponential space and time complexity
for such applications. The analysis provides guidance as to
how integer matrix algorithms based on Gaussian elimina-
tion may be further developed for better performance, which
is important since many practical algorithms for computing
canonical forms are so based.

1 Introduction

Integer matrices A and B are row equivalent if there exists
a unimodular matrix P such that A = PB. Matrix P corre-
sponds to a sequence of elementary row operations: negating
a row; adding an integer multiple of one row to another; or
intexchanging two rows.

We use the following notation. For a m x n integer matrix
B, say, we denote the entry in the ith row and jth column by
bi,~. We denote its ith row by bi. and its jth column by b.j.
When we wish to make the dimensions of the matrix clear
we denote it by l?~ ~.. The absolute value of x is denoted
by IzI. We denote by [IBII the maximum absolute value of

‘partially 8upp0rtedby the AustralianResearchCouncil
Permissionto make digital/hard copy of all or part of this workfor
personalor classroomuseis grantedwithout fee providedthat copies
are not made or distributedfor profit or commercialadvantage,the
copyright notice, the title nf the publication and its date appear,
and notice is given that copying is by permission of ACM, Inc. To
copy ntherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/nr a fee. ISSAC’97, Maui,
Hawaii, USA. @1997 ACM 0-89791-875-4/ 97/ 000’I $3.50

any entry in B. Matrix B may be alternatively written as

bl.

()

B=(b.l,. ... m)=)= :

b m*

Itfollows from a result of Hermite [12] that for any inte-
ger matrix B there exists a unique upper triangular matrix
27 which is row equivalent to B and which satisfies the fol-
lowing conditions.

1,

2.

3.

4.

Let r be the rank of B. Then the first r rows of H are
nonzero.

For 1 s i ~ r let hi ,ji be the first nonzero entry in row
i, Then jl<jz<. ..<j~.

hi,j; >0, for 1 ~ i ~ ~.

For 1< k < i < r, ht,ji > hk,j, ~ O.

This matrix is called the row Herrnite normal form
(HNF) of the given matrix B and has many important ap-
plications. There are many algorithms based on Gaussian
elimination for computing the HNF. Unfortunately such al-
gorithms suffer from serious practicaf difficulties. Many of
the problems which we address here are very similar to prob-
lems which arise in the related task of computing another
canonical form of integer matrices, the Smith normal form
(SNF). Computation of that form is studied in detail in [6],
which provides background material also relevant to HNF
calculation.

Over the years different strategies have been proposed,
primarily trying to avoid the major obstacle that occurs in
such computations — explosive growth in size of intermedi-
ate entries. A comprehensive bibliography and a number of
earlier methods are examined in [6]. More recent methods
are described in [7, 5, 19, 18, 10]. In [7, 10] the focus ia on
finding well-performing algorithms and heuristics for Gaus-
sian elimination methods. Here we look at the other side of
the issue: worst case performance for Gaussian elimination.
Understandkg worst case behaviour is an important step in
developing good heuristics to avoid poor performance.

Frumkin [3, 4] has made claims about bounds on the size
of intermediate entries which may arise during such compu-
tations. However the papers include errors (some of which
are typographical) and there are no proofs given.

28

2 A specific algorithm

Pseudocode for Hermite normal calculation due to Sims [17,
p. 323] forn:s the basis of our specific variant. Figure 1
~]ves that algorithm rewritten using our notation, with line
numbers for easy reference.

1 procedure ROWHNF (B, .4);
2 integer B,,, ~,, { input } ..4,” ~,, { output } ;
3 begin
4 .4:= B:7’=l; j:=l;
:, while i < rn AND J < n do

3.1 Construction .4

Let z >1 be even. Set .4(1, x) =
(:21) ‘heninduc-

tively define A(i + 1, z) by adding a 2-row, l-column border
(which substantially duplicates the previous last row and
column but with four new entries):

[

.4(i, x)
A(z+ 1,x) =

I a21,1,a2.,, , (-l)’6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
’21

{ chrc~ if rest of _coTumnj is zero }
ifak.,, =0 for i s k ~m thenj := j+l
else do

while 3 ? ~ k # / < n~ such that O < la~.,jl ~ Ial,,l do
q ‘= (1/,, div m,,];
al. =ai. —qxa~.

endwhile
{ 3! k, i < k < m such that ak,, # O }
interchange a,, and ak.
if s,,, < 0 then a,. := —a,.
forl:=ltoi–ldo

q ‘= (f{,, dlv a,,, ;
al. = al. —qx a,.

endfor
endif
i:=?+ l,l:=l+l:

\ azt,l, . az,, o
(1)

(2)

Thus

.4(71,z) =

–?
–1

1
1

–1
–1

1

–T
–1

1
1

–1
–1

1

–:
–1

1
1

–;
–1

1
1

–1
–1

1
1

–1
–1

1

z 01
x (1 –1
x o 0 –1
x 001
z 000 1
x 00 0–11
x 000 0 –1
x 00001
z 0000022 endwhile “ “

23 end

3.2 Construction A’Figure 1: Pseudocode for Hermtte normal calculation

()Let z >1 be odd. Set A’(l, x) = ~ :2 Then define

A’ (i + 1, z) (again bordered, this time with five new entries)
by

During execution of the algorithm there is enormous
choice in selecting k and 1 in the while loop on lines 9 to
12. There is au exponential number of different execution
sequences possible for a given input matrix depending on
the choices made. Furthermore, the size of the intermediate
entries depends critically on the choices. Finding optimum
choices is NP-hard in a well-defined sense, as reported in [7].

We define one step of the algorithm to comprise the work
clone in putting one column into final form. (This entails one
execution of the code from lines 6 to 21.) Thus the first step
creates an equivalent matrix to the input, with fist column
in HNF form

To complete the specification of our variant of the algo-
rithm it suffices to indicate how k and 1 in the key loop, lines
9 to 12, are to be chosen. We do this in the next section,
which includes our examples. (The loop in lines 16 to 19
does not affect the analysis.)

al,t+l

.4’(i, x)
~zt–l, t+l
(-1) ’-1

az,, l,. ... az,,l, o (-~)1-l

A’(i+l, z) ==

Thus

(-1)’2azt,],... ,a2t,
(3)

(4)

--J‘1
x –; –?
x –1
x –1 2
x –1 o

–;
–1

1
1

–2

–;
–1

1
1

–1
–1

–;
–1

1
1

–1
–1

1
1

3 Analysis

Theorem 1 Gtvcn zntegers n >0 and z >1 there ezists a
2TIx (7L+ 1) tntfyp-rmatriz .A, wtth IIJ411= z such that the
maramal magnztudf> anterrncdaatc mtr~ tn the working ma-
trtz’ %,5gT’fu/f7 than .r-““ during the nth step of our algorithm.

For a given integer .c > 1 we first give the following two
constructions, denoted by A(n, z) and A’ (n, z), respectively.
Matrix A handles the case of even x, while matrix A’ han-
dles odd .r. We then show that such matrices satisfy all
conditions of the theorem

x –1 1A’(n, X) =
x –1 1 0
x –1 1–12
x –1 1 –1 o
x –1 1 –1 1 –2

We now prove the theorem via the following two lemmas.

Lemma 2 Let x > 1 be an even integer. Then Theorem 1
holds for the matrices A(n, z) given as m Equation J.

29

Proof. The proof is by induction. Assume that after the
nth step of the algorithm the working matrix has the fol-
lowing form

[In *]

We make this true for n = 1 by defining part of our
selection method for k and 1 in the key loop. Thus, if there
exists j such that \an,j I = 1 choose k = j. (In our matrices
there will be at most one such j at any time.) Choose 1 in
an arbitrary fashion till the loop is completed. Thus, for the
first column, the al, 1 entry is used to set all other entries in
that column to zero.

Let rrznbe the maximal magnitude entry of A(”). It can
be shown by induction on n that m. = a~!n+l is odd and

is also the unique maximal magnitude entry of a$~ +1~(part

of the (n + l)st column of the working matrix). In fact A(n)
has the form”

[

~(n)
(n–l)X2

*m. *mn .
*(m. – 2) *mn . ,
*(mn – 1) +(m. – 2) ~

where all entries of B[~~1)x2 are even.
Now we can specify k and 1 for the first time in the

key loop of the (n + l)st step of our algorithm. Choose
k = 2n + 1 (corresponding to the entry *(m. – 2)) and
1 = 2n (corresponding to the entry +mn). Thki gives us
a row, a(zn)., with leading entry 2. NOW choose k = 2n
(corresponding to the entry 2) and 1 = 2n+ 1 (corresponding
to the entry +(m. – 2)). This gives us a row, a(a~+l)., with
leading entry 1. Now choose k = 2n + 1 (corresponding
to the entry 1, as in the first step) for the remainder of this
loop to eliminate (in any order) all remaining nonzero entries
in this column. Note, in particular, what happens when
1 = 2n + 2: the entry in the next column, a~~2~n+2, attains
the maximal magnitude, m.+l = +(m. (mn – 1)– (mn -2)).
Thus

m.+1 > (mn - 1)2.

It follows that

m.+1 > (m. – 1)2 > (m”-l – 1)22 >. ..> (ml – 1)2”.

Since ml = X2+1, m~+l > (X2)2” = Z2”+1. So the theorem
is true for A(n, z).

Lemma 3 Let x > 1 be an odd integer. Then Theorem 1
holds for the matrices A’ (n, x) given as in Equation 3.

Proof. A similar argument to the proof for Lemma 2 ap-
plies. Again we obtain three entries mn, mn -2 and mn – 1
in analogous positions in the corresponding matrix and the
same kind of explosion occurs.

An explanation of the bad performance we see here comes
from consideration of the extended gcd computation which
comprises the first pazt of the calculation for the key loop.
Extended gcd calculation is studied in detail in [14, 11, 15,8,
9, 2, 16]. Here we are computing the gcd of three numbers:
2r + 1, 2T – 1 and 2r. We implicitly construct a solution
vector plus a basis for the null-space. It is easy to see that

our variant of Gaussian elimination gives as a solution to
this problem

(

-;::;)

2r(r – 1) -(i:l) !)(:::)=(!)

while an optimal solution is provided by

(~r!+)(;’:;)=(i)

The quadratic entries in the last row of the poor solution
are propagated through the working matrix.

Corollary 4 Gaussian elimination has worst-case exponen-
tial space and time complexity for Hermite normal form cal-
culation.

Proof. The size of A(n, z) is fl(n2 + n log z). Gaussian
elimination as described will generate entries in the work-
ing matrix with magnitude Z2” during the nth step of the
algorithm. These require exponential space to store and ex-
ponential time to compute, in terms of the size of the input.

4 Concluding Remarks

We have shown that the worst case behaviour of Gaussian
elimination for computing the Hermite normal form of an
integer matrix haa exponential space and time complexity.
This result also applies to general row echelon form com-
putation since we ignored the steps of our algorithm (lines
16 to 19) which normalize the above-diagonal entries of the
matrix. Likewise it applies to Smith normal form calcula-
tion. (In fact for n >1 the Hermite and Smith normal forms
of A(n, z) and A’(n, z) are the same, an (n + 1) x (n + 1)
identity matrix above (n - 1)rows of zeros.)

The immediate cause of the entry explosion comes from
an inefficient solution to the extended gcd problem being
constructed for triples 2r + 1, 2r – 1 and 2r. It is worth
noting that the polynomial-time algorithms of Kannan and
Bachem [13] and of Chou and Collins [1], when applied to a
column vector with those numbers in that order, afso pro-
duce the same bad transforming matrix, as does the natural
recursive extended gcd algorithm. (The algorithms of Kan-
nan and Bachem and of Chou and Collins then remedy this
by reducing off-diagonal entries to attain their polynomial
complexity bounds.) However, the improved sorting gcd al-
gorithm [11, 8] produces the optimal transforming matrix.
This goes some way to explaining the better performance
of integer matrix algorithms based on Gaussian elimination
which uses sorting gcd principles. It also provides guidance
as to how such algorithms may be further developed for
better performance. This is important since many practical
algorithms for computing canonical forms are so baaed, see
[6, 7, 10].

References

[1] T-W.J. Chou and G.E. Collins. Algorithms for the solu-
tion of systems of linear Diophantine equations. SIAM
J. Cornput .11 (1982) 687-708.

30

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

D. Ford anti G. Havas. A new algorithm and re-
fined bounds for extended gcd computation. Algorith-
7n?cNumber Theory, Lecture Notes Comput. Sci. 1122
(1996) 145-150.

M .A. Fkumkin. An application of modular arithmetic
to the construction of algorithms for solving systems of
linear equations. Somet Math. Dokl. 17 (1976) 1165-
1168.

M .A. Frumkin. Complexity questions in number the-
ory. (Russian) Zap. Nauchrs. Sem. Leningrad. Otdel.
Mat, Inst. Steklov. 118 (1982) 188-210, 216 (English
translation J. SOwd Math. 29 (1985) 1502-1517).

ill. Giesbrecht. Fast computation of the Smith normal
form of an integer matrix. 1SS.4C ’95 (Proceedings of
the 19!)5 International Symposium on Symbolic and Al-
gebraic Computation), .4CM Press (1995) 110-118.

G. Havas, D.F. Holt and S. Rees. Recognizing badly
presented Z-modules. Linear Algebra and its Applica-
tions 192 (1993) 137-163.

G. Havas and B.S. Majewski. Hermite normal form
computation for integer matrices. Congresses Numer-
anttunr 105 (1994) 87–96.

G. Havas and B.S. Majewski. Extended gcd calculation.
Congressm Nvmerantiurn 111 (1995) 104-114.

G. Havas and B.S. Majewski. A hard problem that is
almost always easy. Algorithms and Computation, Lec-
ture Notes Comput Sci. 1004 (1995) 216-223.

G. Havas and B.S. Majewski. Integer matrix diagonal-
ization. J. Symbokc Computation (to appear).

G. Hams, B.S. Majewski and K.R. Matthews. Ex-
tended gcd algorithms. Technical Report 302, Depart-
ment of Computer Science, The University of Queens-
land (1994).

[12]

[13]

[14]

[15]

[16]

C. Hermite. Sur l’introduction des variables continues
clans la thdorie des nombres. J. Reine Angew. Math. 41
(1851) 191-216.

R. Kannan and A. Bachem. Polynomial algorithms for
computing Smith and Hermite normal forms of an in-
teger matrix. SZAM J. Comput. 8 (1979) 499-507.

B.S. Majewski and G. Havas. The complexity of great-
est common divisor computations, Algorithmic Number
Theory, Lecture Notes Comput. Sci. 877 (1994) 184-
193.

B.S. Majewski and G. Havas. A solution to the ex-
tended gcd problem. ISSA C’95 (Proceedings of the
1995 International Symposium on Symbolic and Alge-
braic Computation), .ACM Press (1995) 248-253.

C. Rossner and J.-P. Seifert. The complexity of ap-
proximate optima for greatest common divisor com-
putations. Algorithmic Number Theory, Lecture Notes
Comput. Sci. 1122 (1996) 307-322.

[17] CC. Sims. Computation with finitely presented groups.
Cambridge University Press (1994).

[18] A. Storjohann. Near optimal algorithms for comput-
ing Smith normal forms of integer matrices. ZSSAC’96
(Proceedings of the 1996 International Symposium on
Symbolic and Algebraic Computation), ACM Press
(1996) 267-274.

[19] A. Storjohann and G. Labahn. Asymptotically fast
computation of Hermite normal forms of integer matri-
ces, ISSA C’96 (Proceedings of the 1996 International
Symposium on Symbolic and Algebraic Computation),
ACM Press (1996) 259-266.

31

