Applications of Angelic Nondeterminism

Nigel Ward lan Hayes

Key Center for Software Technology
Department of Computer Science §
The University of Queensland

Abstract

The refinement calculus [BaW89, MoR87, Mor87] is based on the addition
of specification constructs to Dijkstra’s guarded command language [Dij76].
This paper explores the semantics and uses of a specification construct which
chooses values for its variables angelically rather than in the usual demonic
fashion. Given a number of alternatives angelic choice glways makes the
“correct” choice if one exists.

1 Introduction

Problems in areas such as parsing, game playing and combinatorial searching are
often solved using backtracking algorithms. In [FloG7] Floyd introduces “nondeter-
ministic” language constructs which allow these algorithms to be expressed without
reference to the implementation details required for backtracking. These constructs
are

o choose(S) — A function which arbitrarily returns an element of the set S.
During execution a call to this function is called a choice point.

e fail — Signals an unsuccessful computation.
e succeed — Signals a successful computation.

A call to choose(S§) nondeterministically “guesses” an element of § which makes the
program terminate successfully. For example, suppose we wish to place N queens
on an N by N chess board such that no queen can take any of the others. If we
model a solution as a set of ordered pairs (row, column) where each ordered pair
represents the position of one queen on the chess board then an algorithm can be
expressed in Floyd’s language as follows:

row := 1;

dorow < N —

col := choose(1..N); soln := soln U {(row, col)}; row := row +1

od;

if no_capture(soln) — succeed

) - no_capture(soln) — fail

fi,

391

-

——

where no_capture(soln) is true exactly when no two queens in soln can capture each
other.

This algorithm places the queens one at a time. Each placement is made so that it
is possible to place the rest of the queens on the board. That is, each placement is
made so that the succeed statement rather than the fail statement is executed in
the final if statement.

Operationally, Floyd’s language can be explained as follows. If a program encounters
a fail statement then it backtracks to the last choice point with untried alternatives,
say choose(T'), chooses an element of T which has not already been tried and
continues from this point. If there are no more choice points with untriedglternatives
then the program aborts. Execution of a succeed statement causes the program to
terminate. Support for this type of nondeterministic programming has been added
to procedural languages such as Pascal [Lin79) and C [LiS90] and is fundamental to
logic programming languages such as Prolog.

This paper gives an axiomatic semantics for a “nondeterministic” programming
language similar to Floyd’s by using angelic nondeterminism. Given a number of
alternatives angelic nondeterminism always makes the “correct” choice if one exists.
We examine the semantics of our language and rules for transforming specifications
into programs written in it within the context of the refinement calculus [BaWg9,
{ MoR87, Mor87]. The calculus is based on the addition of specification constructs
to Dijkstra’s guarded command language [Dij76]. The semantics of these constructs
are captured formally by considering statements to be monotonic predicate trans-
formers from postconditions to weakest preconditions. The notion of refinement
between specifications and implenentations is also formalised in terms of weakest
preconditions.

Section 2 presents an overview of the demonic and angelic specification constructs
which extend Dijkstra’s language. Section 3 forms the major part of the paper,
giving an example of some uses of angelic nondeterminismin a refinement of a general
list problem. The next two sections examine modifications to the program developed
in Section 3. Language constructs similar to Floyd’s are added to the program in
Section 4 while Section 5 shows how the program can be made more efficient. The
results of Sections 3, 4 and 5 are then applied to a specific list problem — the N-
queens problem — in Section 6. It is assumed that the reader is familiar with one of
the flavours of the refinement calculus referenced above, although emphasis is given
to Morgan’s style of calculus.

2 Specification Constructs

In this section we give an overview of the demonic and angelic specification con-
structs which extend Dijkstra’s language. We capture the semantics of a construct
by equating the construct with its weakest precondition to achieve a postcondition

R, writing S(R) = P for wp(5, R)=P.

The simplest specification construct is the assumption, written {pre}. It aS.Sert:S
that the predicate pre is true. If it is, then the construct does nothing, otherwise 1t
aborts. Its definition in terms of weakest preconditions is

392

_ o

Definition 1 (Assumption) For any predicate R
{pre}(R)Spre AR O

A demonic specification, written w : [post], nondeterministically chooses values for
the variables w so that post is established. Its weakest precondition is

Definition 2 (Demonic Specification) For any predicate R
w : [post](R) & (Yw e post = R)]

Demonic specifications choose values for their variables nondeterminigtically. That
is, they do not determine unique values for their variables. As an example, consider
the problem of taking a sequence of records, in, and sorting them by key value into
a sequence, out. If the records are of type REC:

REC

I_—key :N

this problem can be specified as

\
out : [is_perm(in, out) A is_ordered(out)] ,

where is_perm(in, out) is a predicate which is true precisely when in and out are
permutations of each other and is_ordered(out) is true if and only if the sequence
of records out is ordered by the < relation on keys. As it stands this specification
is deterministic — for any given input it always gives the same output, even if the
input contains records with duplicate keys. In this case these records will appear
consecutively in the output and their ordering with respect to each other is not de-
termined. However, since we have no way of telling them apart the output sequence
always appears the same. If we give records an extra field so that we can tell them
apart, for example a data field:

REC
key: N
data : Data

then the specification is nondeterministic. Records in the input with the same keys
but different data fields still appear consecutively in the output in any order, but
since we can tell which order they appear in, the specification does not determine a
unique value for out. That is, the specification is nondeterministic.

We now move on to a definition for an angelic specification, written w : [post]. Like
its demonic counterpart this nondeterministically chooses values for w so that post
holds. Its weakest precondition definition is, however, somewhat different.

Definition 3 (Angelic Specification) For any predicate R

w:H;o_st_](R)é(Ewopost/\R) 0

393

To explain the difference between demonic and angelic specifications we examine
the following specification:

out : [is_perm(in, out) A is_ordered(out)] .

This is similar to the demonic specification for the sorting problem and, as before,
if the records only contain a key field then the specification is deterministic. In this
case the specification is equivalent to the demonic specification.

If records also contain a data field then the sequence out is assigned a value non-
deterministically as follows: the angelic specification “looks ahead” to see how its
choice for the value of out affects the execution of the rest of the progrém. It then
assigns out a value so that the program terminates with a “correct” answer. For
example, the specification

out : [is_perm(in, out)] {is_ordered(out)}

makes an angelic choice for out so that it is a permutation of in and then asserts
that out is sorted. When the angelic specification makes its choice for out as a
permutation of in it “looks ahead” and secs that for the program to terminate out
must be sorted also. That is, it chooses out so that both "is_perm(in, out) and
is_ordered(out) hold. Thus it is equivalent to the previous angelic specification:

out : [is_perm(in, out) A is_ordered(out)] .

To explain what is meant by “correct” answer above we use the interpretation of
the weakest precondition of a program, Prog, with respect to a predicate R given in
[Dij76]. That is, if Prog is executed in a state satisfying Prog(R) then it is guaranteed
to terminate in a state satisfying R.

Examining the definition of a demonic specification we see that (Y w o post = R)
characterises states such that for any assignment to w, if post holds then R also
holds. That is, these are the states from which if we achieve post we are guaranteed
to achieve R.

Interpreting the definition for angelic specifications, (3 w e post A R) characterises
states in which there exists an assignment to w such that both post and R hold.
This means that there must at least exist an assignment to w such that post holds.
That is, these are the states from which it is possible for the corresponding demonic
specification to achieve R. But if w : [post] is executed in such a state, then the
interpretation of weakest preconditions given above tells us that we are guaranteed
to achieve R. Thisis why w : W is said to be angelic: it is guaranteed to achieve R
if executed in any state from which it is only possible for the corresponding demonic
specification to achieve R. Angelic choice always makes the “correct” choice so that

we are guaranteed to achieve the desired R (whenever this is possible).

Operationally, angelic nondeterminism can be explained in terms of parallelism. We
can think of the angelic specification as running a separate process for each possible
choice. Each of these processes continues to run the rest of the program based upon
this choice. Any of the processes which find a solution based upon their choice may
be selected as an acceptable execution of the program.

394

—

In certain cases angelic nondeterminism can also be explained in terms of back-
tracking. When the angelic specification is “executed” one of the alternatives is
chosen. The rest of the program tries to find a solution based upon this choice. If it
can then the program terminates successfully, otherwise it backtracks to the choice
point and another alternative is selected. The similarities between this operational
interpretation and the operational interpretation of Floyd’s language are obvious.
The differences will be discussed in Section 7.

3 Angelic Refinement

In this section we illustrate some applications of angelic speciﬁcatigns by using
them in the formal refinement of a general list problem. Each step of the refinement
appeals to a refinement law. These laws show how one piece of code can be replaced
by another, while still guaranteeing correctness. They can be proved using the
weakest precondition formalism as follows: program P is refined by program Q,
written P C Q if P(R) = Q(R) (for more details see [MoR87]).

3.1 Specification

¢
We wish to assign a value to a sequence, a : seq T, such that a predicate P a holds
and the length of a is N, for N > 0. We assume that T is finite and that P holds
for the empty sequence. We also place the restriction on P that if P a holds then,
for all prefixes a’ of a, P a’ must also hold. That is,

Pa=(Vad':seqTea'Ca= Pd'). (1)

Assuming that this problem does have a solution our initial (demonic) specification
is just

{SaePaA#a=N}a:[PaA#a=N].

3.2 Refinement

During the development we introduce refinement laws pertaining to angelic nonde-
terminism as they are needed. For the sake of brevity, when more common refine-
ment laws are used we simply give a reference to similar laws in Morgan’s book
[Mor90]. The first new law allows us to introduce an angelic specification.

Law 1 (Introduce Angelic Specification)
{3w e post} w: [post] = w: [post]; {post} w: [post] O

Since our initial specificationis {Jae Pa A #a =N} a: [P a A #a = NJ, this law
is directly applicable and gives

a:[PaAf#a=NJ {PaA#a=N}a:[PaA#a=N].

Our development starts with a as the empty sequence and extends a one element
at a time (making use of property (1)) until it is of length N. Concentrating on the

395

-

angelic specification, we initialise a as follows.

a:[PaA#a=N]
=
a:= ();

{a=()APa}a:[Panfa=N] (i)

This refinement is achieved via a sequential composition law similar to Law 4.2 in
[Mor90] and relies on our assumption that P() holds.

Focusing on line (i) above we introduce a logical constant, 4, to represqut the initial
value of a (Law 6.2 in {Mor90}).

[conA:seqTe{a=A=()APa}a:[PaAFa=N]]

Before continuing we introduce a law which enables us to refine angelic specifications.
An angelic specification is refined if its angelic nondeterminism is increased [BaW89].
That is, it is refined if any of the sets of values it can choose for its variables is

increased.
¥

Law 2 (Weaken Angelic Postcondition)

{pre} w: [post] T {pre} w: [post’]
if pre = (Vw e post = post’)]

Although this law can be used to weaken an angelic specification it is more commonly
used to refine an angelic specification to an equivalent angelic specification. It is
interesting to note that the corresponding refinement law for demonic specifications
decreases rather than increases the demonic nondeterminism. This is a consequence
of a duality between demonic and angelic nondeterminism which is investigated in

[BaW90).

Using Law 2 we can refine the text within the block to

ACa |
PaA#a=N |’

{a=A=()/\Pa}a:[

Next we weaken the assumption to {Pa A a = A} (Law 1.2 in [Mor90}) so the
specification is more general and collect the program fragments developed since the
introduction of the constant block.

ACa -
[conA:seqTO{PG/\a=A}a'[Pa/\#a=N]}

Informally this specification says “assuming P a holds, angelically choose values for
elements (#a+1) to N so that Pa holds.” This suggests a recursive solution which
chooses a value for one element at a time. Let Prog be the above program, then
using a recursive block introduction rule similar to Law 14.1 in [Mor90], we have

Prog C reR={V<#a< N}o
{V = #a} Prog

396

Here #ta is the variant of the recursion which is bounded above by N and V is a
logical constant representing its initial value. The program to be refined is {V =
#a} Prog. During the development we can replace any program fragments of the
form {V < #a < N}Prog with a recursive call to R. Note that to call B we are
forced to push the variant toward its bound.

To continue we move {V = #a} inside the constant block and concentrate on the
text within that block, namely

V =+#a) ACa |
Para=A [* | Pan#ta=N |~

We proceed by realising that if #a = N we have finished. Thus, using Law 5.1 in
[Mor90] we introduce an if statement.

if a=N —
V=#e=N] . ACa |)
PaNha=A L PaAN#a=N _ (ii)
J#a< N —
V=gae<N]|_| ACa | ’ "
Paha=A "| PaA#a=N (iff)
fi

The first alternative can be refined to {a = A}a : [a = A] by applying Law 2 and
then weakening the assumption. This can then be refined to skip with the aid of
the following law.

Law 3 (Skip Introduction)
{w= W} w:{w= W] C skip a

We make progress on the if statement’s second alternative by angelically choosing
a value for the next element of the sequence, a(#A + 1) and then calling R again.
We store the value of a(#A + 1) in a new variable, z. The following law allows us
to introduce this variable and angelically initialise it.

Law 4 (Angelic Local Block)
{pre} w:[post] E |[varz:T e {pre} z:[z € T}; w:[post]]|
if z is a fresh name and pre = (post = (3z : T o post’)) o

Using this law we refine (iii) to

[var:r:TO{ ‘}f,:fz:ﬁr }:c:[:re T}; a:[PAa’;\(;)ai‘;\’]} (iv)

To append z to a we move the assumption through the choice for z.

397

_—;‘

Law 5 (Independent Assumption)

{pre} w : [post] = w : [post] {pre}
provided w does not occur free in pre. o

Since the assumption makes no reference to r we can use Law 5 to move it through
the choice for z.

TP RN T Ty

Next we use

Law 6 (Angelic Sequential Composition)

{pre} w:[Q] T {pre} v: [P} w:[Q]
if pre > (Qwe Q)= (Jw e P)) |

to refine the assumption and the angelic choice for a to ’
V=#a<N T azAﬁ(z) . (\’)
Paha=A "| PaAV<#agN|

a'[AT (z)Ca]
"| PaA#a=N|"~

The side condition for this refinement follows from assumption (1) about P.

The above program fragment appends z to a and then angelically chooses values
for the rest of a. We want to make this choice for the rest of a a recursive call to R.
To do this we need an assumption preceding it. The following law facilitates this.

Law 7 (Trailing Assumption)

w : [post A post'| = w : [post] {post'} o

We apply a specialisation of this law where post = post’ to line (v) above. The
result is

V=#a<N - a=A"(z) .
PaNa=A "| PaAV<#ag< N/

{ a=A"(z) }a:[AT (z)Ca .|
PaANV <#a< N PaAN#a=N

The last line is now similar R. We refine it by introducing another constant block,

' a=A'=AA(z) .- A"(:)ga
[conA 'SeqT.{Pal\ V<#a<N}a'[Pa/\#a=N

398

We remove all references to 4 and z from this block by applying Law 2 and then
weakening the assumption. The result is

r, V<#a<s N . A'Ca |
[conA 'seqT.{Pa/\#a=A’}a'[Pa/\#a=N]:I

If we call this text R’ then the program developed since the introduction of the
recursive block is

[conA:seqT e
if #a = N — skip f
[#a< N —

[varz : T e

‘/=#G<N V<#0<N
T); ; . R
zilze]’{ PG/\0=A} [a=AA(z)APa yi i
]
fi
Il - *
This is easily refined to
if #a = N — skip
[#a< N —
[conA:seqT o
[varz:Tez:[z€T); {a=A}a:[la=4"(z;}]| (vi)
I's
RI
fi.

Since R' is now outside the constant block for A we can rename A’ to 4 in R/,
making it equal to R.

The choice for a on line (vi) can be refined to an assignment statement using the
following definition.

Definition 4 (Simple Angelic Specification)
wi=E = |[con We{w= W} w:[w=E]]
where Fy is E{w\ W]. m]

Using this {a = A} a: [a = A" (z)] on line (vi) becomes a := a ~(z).

399

3.3 Program

Collecting all of the program fragments and making the recursive block a procedure
gives

proc R =
if #a = N — skip
[#a< N —
[varz:Tez:[z€ T a:=a"(z)]; R
fie
a:=(); R; {Pa/\#a:N}a:[PaA#a:N]

Since procedure R is tail recursive it can be refined to a do loop (Law B.4 in [Mor90]).
The result is

a:=()
do#Fa< N —

[varz: Tez:[z€ T} a:=a"(z)]| v
od;

{Pa/\#a:N}a:[Pa/\#a:N].

4 New Constructs

In this section we introduce two new constructs into our language. These are sim-
ilar to the language constructs used to implement backtracking nondeterminism in
[Flo67, Lin79, LiS90]. They allow us to further refine the program presented at the
end of the last section.

The first construct, w : guess(S), angelically chooses values for w from the set S,
provided that S is finite.

Definition 5 (Guess) If T is the type of w, then
w:guess(S)={S€]FT}w:[w€S] o
It can be introduced via the following law.

Law 8 (Introduce Guess) Let S = {w: T | post}, where T is the type of w,
then

w : [post] C w : guess(S)
ifSeFT. o

The second construct, w : succeed(cond), restricts the choices that any angelic
specifications preceding it can make for w. All of the choices preceding it must
choose w so that cond holds at this point.

400

—Ad

Definition 6 (Succeed)

{cond} w : [cond] = w : succeed(cond) o

Using these abbreviations and Law 8 we can refine our program to

a:=();
do#a< N —
| varz : T o z : guess(T); a:=a" (z)]|
od;
a : succeed(P a A #a = N), §

since we originally assumed T was finite.

5 Pruning

Currently our choice for the next element of the sequence (i.e. z) uses no information
from the context in which the choice is made; it just chooses a value so that z € T.
If we can make a more educated guess for z then the resulting program will be more
efficient. Restricting the choices for z prunes the search tree which the program
traverses.

Toward the end of the refinement in Section 3 the angelic choice for z was in the
following context.

[conA:seqT e

[varz:T.{‘;:f::iV}z:[Ie-T];a:[V<#a<N }]
1l

We concentrate on refining the text within the inner block with aim of restricting
the choice for z. This requires use of the following law.

Law 9 (Implicit Angelic Precondition)
w : [post] = {Fw e post} w: [post] o

If we apply this to the angelic choice for a we have.

V= < N —_—
{ Pa/#;l:A }z:[a:ET];

q V<#a<s N _ V<#as N
% ¢=A4"(z)APa “*la=A"(z)APa

The assumption on the second line can be weakened to P(A ™ (z)) and absorbed
into the choice for z using Law 7. The result is

(vopesh L [PAE] e[L3050

401

The angelic choice for z can then be refined using Law 8 to
z:guess({y: T|P(A™(y)}) .

This is exactly what we wanted. The choice for z has now been restricted. Previously
any choice for z (such that z € T) was satisfactory, now = must be chosen so that
its addition to a does not violate P.

6 N-queens Problem

In this section we apply the results of sections 3, 4 and 5 to a speciﬁcjﬁst problem.
We wish to place N queens on an N by N chess board such that no queen can take
any of the others. We assume that N is greater than 3.

6.1 Specification

A solution to the problem can be modelled as a set of ordered pairs (row, column)
where each ordered pair represents the position of one queen. Since no two queens
can take each other, no two queens can be on the same row. Thus the set of ordered
pairs is actually a function from rows to columns:

g:1.N+1.N.

Assuming that our problem does have a solution, the initial specification is just

{3qenc(q) A#g=N} q:[nc(q) A#q=N],

where nc(q) is true if and only if, in the placement ¢, no two queens can capture
each other.

6.2 Refinement

For the results from the previous three sections to be applicable to this problem we
must data refine ¢ so that it is a sequence rather than a partial function. This data
refinement is trivial and leaves us with the declaration

q : seq(1..N)
and the specification
{3genc(g) Aftg=N} q:[nc(g) A#g=N]

We must also prove that nc(q) satisfies condition (1). That is,

nc(q) = (Vg :seq(l..N) e ¢’ C ¢ = nc(q')) -

Suppose this were not true. Then, for any placement of queens in which no two
queens can capture each other, there could exist a subset of queens in which a pair
of queens do capture each other — obviously a contradiction.

402

Having massaged the N-queens problem into the correct form we can now apply the
results of Sections 3, 4 and 5 to it. The specification,

{3qenc(g) A#qg= N} q:[nc(g) A#g=N],

can be refined to the nondeterministic program

g:=();
do#g< N —

[varz : (1..N) o z : guess({y : 1..N | ne(qg " (¥))}); ¢:=¢" (2) |l
f

od;
g : succeed(nc(q) A #g=N).

In [Dij72] Dijkstra’s development of the N-queens problem includes the introduc-
tion of variables to keep track of which columns, upward diagonals and downward
diagonals are in check from any of the queens currently placed. These variables
could be introduced into our solution at this stage via a data refinement. Using
these variables we could then further restrict the choice for z using the techniques

of Section 5.
v

7 Conclusions

We have investigated using angelic nondeterminism in the systematic refinement of
specification to code containing “nondeterministic” constructs. We successfully ap-
plied our techniques to the refinement of a general list problem and then to a specific
instance of this: the N-queens problem. During this development “nondeterministic”
language constructs were introduced and general refinement laws involving angelic
nondeterminism were developed. Ways to make the resulting program more efficient
were also examined.

Although not presented here, another refinement of the N-queens problem which did
not use angelic nondeterminism was undertaken. This alternative refinement was
more complex. The development was longer and the nature of the solution obtained
was obscured by the conventional recursive implementation of backtracking.

The nondeterministic language we have presented is similar to Floyd’s original lan-
guage but not identical. Our language is defined in terms of angelic nondeterminism
which can achieve more than Floyd’s “backtracking” nondeterminism. The ability of
an angelic specification to “look ahead” and choose execution paths which give the
“correct” answer means that it can avoid divergence. Floyd’s backtracking nonde-
terminism cannot do this. If it chooses an alternative which diverges then no more
alternatives are investigated and the whole program diverges. It is interesting to
note that an implementation based on the parallel interpretation of angelic nonde-
terminism does not suffer from this problem: even if some of the parallel processes
diverge at least one is guaranteed to terminate.

In summary, angelic nondeterminism is useful for introducing nondeterministic con-
structs into procedural programs using the refinement paradigm. Related work by
Joost Kok has used angelic nondeterminism to characterise refinement to logic pro-
grams [Kok90].

403

Both Morgan [MoR87] and Nelson [Nel89] mention a relationship between (demonic)
miracles and backtracking algorithms. Further research could involve an investiga-
tion of this relationship and a comparison with the nondeterminism developed here.

Acknowledgements

Acknowledgement is due to Ken Robinson who first introduced us to the notion
of conjugate weakest preconditions in 1986 and to Ralph Back’s work on angelic
nondeterminism. The authors wish to thank Carroll Morgan and Ralph Back for
their thoughts on an earlier draft of this paper.

f

References

[BaW89] R. J. R. Back & J. von Wright, “Refinement Calculus, Part I: Sequen-
tial Nondeterministic Programs,” in Stepwise Refinement of Distributed
Systems, Lecture Notes in Computer Science #430, 1989, 42-66.

[BaW90] R. J. R. Back & J. von Wright, “Duality in Specification Languages: A
Lattice-theoretical Approach,” Acta Informatica27(}990), 583-625.

[Dij72] E. W. Dijkstra, “Notes on Structured Programming,” in Structured Pro-
gramming, O. -J. Dahl, E. W. Dijkstra & C. A. R. Hoare, eds., Academic
Press, London, 1972.

[Dij76] E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, Englewood
Cliffs, NJ, 1976.

[Flo67] R. W. Floyd, “Nondeterministic Algorithms,” Journal of the ACM 14
(1967), 636-644.

[Kok90] J. N. Kok, “On Logic Programming and the Refinement Calculus: Seman-
tics Based Program Transformations,” Department of Computer Science,

Utrecht University, Technical Report RUU-CS-90-39, 1990.

[Lin79] G. Lindstrom, “Backtracking in a Generalised Control Setting,” ACM
Transactions on Programming Languages and Systems1 (1979), 8-26.

[LiS90] Yaowei Liu & John Staples, “btC: a Backtracking Procedural Language,”
working paper, Department of Computer Science, University of Queens-
land, 1990.

[Mor90] Carroll Morgan, Programming from Specifications, Prentice-Hall, Engle-
wood Cliffs, NJ, 1990.

[MoR87] Carroll Morgan & Ken Robinson, “Specification Statements and Refine-
ment,” IBM Journal of Research and Development 31 (1987).

[Mor87] J. M. Morris, “A Theoretical Basis for Stepwise Refinement and the Pro-
gramming Calculus,” Science of Computer Programming 9 (1987), 287-

306.

[Nel89) Greg Nelson, “A Generalization of Dijkstra’s Calculus,” ACM Transac-
tions on Programming Languages and Systems 11 (1989).

404

