
USING MATHEMATICS TO SPECIFY
SOFTWARE

Ian Hayes
Department of Computer Science,

University of Queensland,
St. Lucia, Queensland,

AUSTRALIA 4067

May 1986

1 Introduction

When we try to understand computing systems we tend to build a mental
model of the system. We use this model to predict the behaviour of the sys-
tem in untested circumstances. Such mental models are useful but are usually
limited because we cannot communicate them directly to other people, and
more often than not the model is imprecise. The approach to specification
described in this paper is to build a mathematical model of the system be-
ing specified. Mathematics provides a mechanism for writing down a precise
model that can be communicated to others. Perhaps it should be noted that
the main use of a specification is for communication between people, between
users and implementors, between managers and programmers. Often com-
munication problems occur because the language in use cannot express the
desired information. To be able to write down and make precise the model
of a system in a designer’s head will go a long way to communicating to both
the users and the implementors what the designer intended.

The mathematical model of a system should be abstract and not encum-
bered with algorithmic details that should be considered part of an implemen-
tation. This has the dual advantages that the specification is independent
of its implementation(s), and because the designer is describing his system
in abstract terms, the system is likely to be simpler; by simpler we mean
simpler to understand and to use and not necessarily simpler to implement

1

although that may well be the case. If compared at the level of code two sys-
tems may be equally complex (however we manage to measure such things)
but the system that is capable of a simpler abstract specification is going to
be easier to learn (to transfer the model to the user’s mind) and to use.

The specification also has an important role in the preparation of docu-
mentation. Unfortunately the number of users that are familiar with math-
ematical specification notations is quite small and hence the specification
will probably not appear directly in the documentation. However, the doc-
umenter can make a conscious effort to recreate the model of the system
in the user’s mind; the mathematical model can be of great assistance in
achieving this aim. For more technical audiences the inclusion of the math-
ematics along with natural language description will allow them access to a
more precise model that will allow them to reason about the system more
accurately.

2 Logic and set theory

Logic and set theory (including relations, functions, bags and sequences)
are extremely useful mathematical tools for the specifier. To demonstrate
their utility let us consider the problem of specifying time periods. These
appear in many applications, e.g., timetables, diaries, project scheduling,
hours worked etc. Let us look at a specific example first and then try to
generalise. A typical example is the time period 10:00..11:30 today. Such a
range can be represented by the start and finish times of the period with the
constraint that the start time must be less than or equal to the finish time.

Range
Start ,Finish : Time

Start ≤ Finish

It is common in applications such as timetabling to want to represent more
than one range. For example, we may want the period 10:00..11:30 every
Monday. To represent this we could add a repetition interval to the above
representation. But this is rather specific and more the sort of representation
one would be looking at for an implementation rather than a specification.
We need to be able to allow for other constraints like: “only in November,”
“except on public holidays,” “subtract one hour during daylight saving time,”
“except in Queensland.” We can model these and in fact any collection of
ranges by using a set of ranges.

Period = set of Range

2

This model is more general than one using repetition intervals; it allows quite
arbitrary periods to be represented. This is typical of what is desired at the
specification level as opposed to implementation. At the specification level
the simplest model is to be preferred. At the implementation level we would
like to take advantage of any regular structures or common cases that appear
in practice in order to provide a more efficient implementation.

If we look again at Ranges then we can observe that a Range could also
be represented as a contiguous set of times in which case a period would be
a set of sets of times. Typically, however, the ranges within such a set are
disjoint. This allows us without any loss of information to use just a simple
set of (not necessarily contiguous) times to represent the time periods; this
set is just the union of all the times in the ranges. This provides us with an
even simpler model of a time period. (Note that if we want to distinguish the
ranges 10:00..11:00 and 11:00..12:00, which in the simple set model would be
indistinguishable from the single range 10:00..12:00, then this model is not
appropriate.)

With the set of times model we have a simple model of a time period; this
allows us to represent almost any conceivable time period we care to. Further
because the time period is simply a set, we can make use of set operators on
sets of times within specifications. For example, we can take the union of
the periods representing November and December:

NovDec = November ∪ December .

We can take the intersection of November with the set of all Saturdays be-
tween 19:00 and 22:00:

ConcertTimes = November ∩ Saturday19to22.

We can take the period November and subtract the holidays to give the
working days in November:

NovWorking = November − Holidays .

At a more primitive level a period may be specified by giving a predicate
satisfied by all (and only) the times in the period. For example, the period
containing the range between 19:00 and 22:00 on every Saturday could be
defined by

Saturday19to22 = {t : Time | DayofWeek(t) = Saturday ∧
TimeofDay(t) ∈ 19:00 . . 22:00}

where DayofWeek and TimeofDay are functions which extract the day of the
week time and the time of day, respectively, from a time.

3

3 Functions (Maps)

Another common specification tool is the function (or map). Here we use
a mathematical function to represent a data structure rather than the more
common notion of a function being a recipe to calculate some value. For
example, a Pascal array

A : array[1 . . 10] of char

corresponds to the function

A : (1 . . 10) → char

with domain the set of integers between 1 and 10 and range the set of charac-
ters. In specifications, however, we make full use of the concept of a function
and allow any sets for the domain and the range. For example, a symbol
table can be modelled as

symtab : Sym 7→ Value

where Sym is the set of all symbols and Value the set of all values. The arrow
with a cross through it (7→) stands for a partial function: a partial function
is not necessarily defined for all arguments. We can use function application
to retrieve the value associated with a symbol s as symtab(s). The set of
symbols in the table is given by the domain of the function: dom(symtab).
We can represent the empty symbol table by

{ }

and a table mapping s1 to v1 and s2 to v2 by

{s1 7→ v1, s2 7→ v2}.

As another example a function can be used to model a keyed file.

F : Key 7→ Record

where Key is the set of keys and Record is the set of records. For every key
k in the domain, F (k) is the corresponding record.

Functions are one of the most common and most useful tools for use
in specifying computing systems. A number of powerful operators can be
defined on functions which can be used in writing specifications. The most
common of these are overriding one function with another, and restricting

4

the domain of a function. If f and g are functions of the same type then f
overridden by g is a function of the same type which we denote by

f ⊕ g .

If x is in the domain of g then the value of (f ⊕ g) at x is g(x):

x ∈ dom g ⇒ (f ⊕ g)(x) = g(x),

and if x is not in the domain of g but is in the domain of f then the value of
(f ⊕ g) at x is f (x):

x 6∈ dom g ∧ x ∈ dom f ⇒ (f ⊕ g)(x) = f (x).

If x is neither in the domain of g nor the domain of f then (f ⊕ g)(x) is not
defined:

dom(f ⊕ g) = dom(f) ∪ dom(g).

As an example, if

f = {s1 7→ v1, s2 7→ v2}

and

g = {s2 7→ v5, s3 7→ v4}

then

f ⊕ g = {s1 7→ v1, s2 7→ v5, s3 7→ v4}.

Updating the symbol table symtab so that symbol s is associated with
value v regardless of the previous value or whether there was a previous value
can be specified by

symtab ′ = symtab ⊕ {s 7→ v}

where symtab stands for the symbol table before updating and symtab ′ stands
for the symbol table after. Here we use the simple case of a function {s 7→ v}
with domain consisting of the singleton set {s}. We prefer to use the general
overriding operator rather than invent some specific notation for updating
a single element of a function in order to economise on notation. The “⊕”
operator is more powerful than this simple case illustrates.

5

The other common operator on functions that we will discuss here is
domain restriction. If f is a function and S is a set of the same type as the
domain of f , then

S C f

is the function f with its domain restricted to elements in the set S :

x ∈ S ∧ x ∈ dom f ⇒ (S C f)(x) = f (x).

If x 6∈ S or x 6∈ dom f then (S C f)(x) is not defined:

dom(S C f) = S ∩ dom(f).

The complementary operator to domain restriction (C) is domain sub-
traction (−C); (S −C f) is the function f domain restricted to those elements
not in the set S :

(S −C f) = (dom f − S) C f

For example, to delete a symbol s from the symbol table symtab returning
its corresponding value in v we can specify

s ∈ dom symtab ∧
v = symtab(s) ∧
symtab ′ = {s} −C symtab

Let us now consider a more realistic example that makes use of the op-
erators that we have introduced. The problem is to update a file of keyed
records with new records for some keys and to delete some of the old records.
Each record in the file is indexed by a key. We can model such a file as a
(partial) function from keys to records

F : Key 7→ Record

The file is to be updated by deleting those records in the file whose keys are
in a given set D , and by adding new records under given keys; a new record
may replace an old record for a key or it may be for a key not originally in
the file. We add a further restriction that we cannot both delete a record
with a given key and provide a new record for that key. As an example, if
the file originally contained

F = {k1 7→ r1, k2 7→ r2, k3 7→ r3, k4 7→ r4}

6

and the set of keys to be deleted is

D = {k2, k4}

and the new records to be added or updated are

U = {k3 7→ r5, k5 7→ r6}

then the resultant file F ′ will be

F ′ = {k1 7→ r1, k3 7→ r5, k5 7→ r6}.

The file update operation can be specified as

File Update
F ,F ′ : Key 7→ Record
D : set of Key
U : Key 7→ Record

D ⊆ dom(F) ∧
D ∩ dom(U) = { } ∧
F ′ = (D −C F)⊕ U

The keys to be deleted (D) must be contained in the keys in the original file
(F). There must be no key which is both to be deleted and updated. The
keys in the set D are removed and the updates in U are added.

4 Sequences

Sequences are useful for specifying objects where the order and multiplicity of
components is important. This should be compared with sets where within
a set the elements are not ordered and there is no concept of multiplicity
of occurrence of an element: either an element is in a set or it is not. For
example, the following identities hold for sets

{a, b} = {b, a} = {a, a, b}.

whereas for sequences both the order of the elements and multiple occurrences
are significant, e.g.,

[a, b] 6= [b, a] 6= [a, a, b].

7

As a simple example of the use of sequences let us consider modelling a queue
of Values:

q : seqValue.

The operation to add a Value v to the end of a queue is

q ′ = q a [v]

where q is the value of the queue before the operation, q ′ is the value of the

queue after the operation, “a” is the concatenation operator on sequences,
and [v] is the unit sequence containing v .

The operation to remove and return the head v ′ from a queue can be
specified by

q = [v ′] a q ′

Note that we make full use of the power of predicates to specify the rela-
tionship between the inputs and outputs in a simple form which shows the
symmetry of the enqueue and dequeue operations more clearly than the more
operational specification:

v ′ = head(q) ∧ q ′ = tail(q)

This simple example gives a hint of the simplifications that can be attained
by giving a specification in the form of a predicate relating inputs and outputs
rather than a procedure to calculate the outputs from the inputs.

As another example let us consider specifying a simple spelling checker.
It takes a document, which we will model as a sequence of words, and returns
an ordered sequence of those words in the document which are not in a given
dictionary of words.

Spelling Checker
Doc : seqWord
Dict : set of Word
Unknown : seqWord

rng(Unknown) = rng(Doc)− Dict ∧
(∀ i , j : dom(Unknown) •

i < j ⇒ Unknown(i) < Unknown(j))

where the range (rng) of a sequence is the set of words contained as values
in the sequence. The unknown words are those that are in the document but

8

not in the dictionary. The sequence of unknown words is in strictly ascending
order.

The above specification determines the value of the sequence Unknown
by giving its properties: it is strictly ordered and its range is the set of
words in the document that are not in the dictionary. This implicit style
of specification allows the specifier to express the properties of the desired
result rather than giving an algorithm to calculate the result; this allows
the specification to be phrased in terms closer to those of the domain of
application of the system.

5 Non-deterministic specifications

In all of the above specifications the results of the operations have been
uniquely determined by the inputs. With the style of specification we are
using this does not have to be the case: by specifying the properties of the
operations we specify conditions that the results must satisfy but there may
be many possible results that satisfy the given conditions.

Let us look at a memory allocator as an example which requires a non-
deterministic specification. We will model blocks of memory by contiguous
sets of addresses:

Block = {b : set of Adr | ∃ start , finish : Adr • b = start . . finish}

The operation to allocate a block of memory of size s can be specified by

Alloc
allocated , allocated ′ : set of Block
s : N
newblock : Block

#newblock = s ∧
newblock ∩ (

⋃
allocated) = { } ∧

allocated ′ = allocated ∪ {newblock}

allocated and allocated ′ represent the set of allocated blocks of memory before
and after the operation, respectively. The new block must be of size s (the
operator “#” returns the size of a set) and must not overlap with any of the
previously allocated blocks (the unary operator “

⋃
” takes a set of sets as its

parameter and forms the union of all these sets). The newly allocated block
is added to the set of all allocated blocks.

The above specification is non-deterministic in that the value chosen for
newblock can be any contiguous set of addresses of size s that does not

9

overlap the previously allocated blocks. It is clear that this is a desirable
level of specification; it guarantees the user of the allocator certain properties
but does not constrain the implementor to use a particular form of memory
allocation strategy (e.g., first fit).

6 Building specifications

So far we have looked at using mathematics to specify small units of software.
The notation we have used has been a subset of Z: a specification notation
introduced to the Programming Research Group of Oxford University by
J.-R. Abrial [Abr82] and further developed by that group [MS84, SSMH85].

Z also contains facilities for constructing larger specifications from smaller
ones using building blocks known as schemas; the definition of Alloc above
was given in the form of a Z schema: it contains declarations of inputs,
outputs, before state and after state, above the centre line and a predicate
relating these variables below the line. Specifications of larger operations
can be built up using operators to combine schemas which may contain some
variables in common. For example, if we have the operations given by the
schemas:

STRemove
symtab, symtab ′ : Sym 7→ Value
s : Sym
v : Value

s ∈ dom symtab ∧
v = symtab(s) ∧
symtab ′ = {s} −C symtab

and

QAdd
q , q ′ : seqValue
v : Value

q ′ = q a [v]

then the operation to remove the symbol s from the symbol table and add
its corresponding value to the queue can be specified by

STRemove ∧ QAdd

10

where “∧” is the schema and operator. The above schema conjunction is
equivalent to

STRemove ∧ QAdd
symtab, symtab ′ : Sym 7→ Value
s : Sym
v : Value
q , q ′ : seqValue

s ∈ dom symtab ∧
v = symtab(s) ∧
symtab ′ = {s} −C symtab ∧
q ′ = q a [v]

Note that the variables v in STRemove and in QAdd merge to give a single
variable v in the conjunction. Schema conjunction allows us to build up a
specification by specifying operations on parts of the overall state and then
put these together to give the specification of the whole operation.

There are a number of schema combinators. The most common are con-
junction (above) and disjunction. Disjunction is useful for specifying different
alternatives of an operation (usually on the same state); a common use of this
is for specifying error alternatives. For example, if the symbol is not in the
symbol table we may want the symbol table and queue to remain unchanged:

SymbolNotFound
s : Sym
symtab, symtab ′ : Sym 7→ Value
q , q ′ : seqValue

s 6∈ dom symtab ∧
symtab ′ = symtab ∧ q ′ = q

The operation with error handling is given by

(STRemove ∧ QAdd) ∨ SymbolNotFound

The schema disjunction operator provides a useful mechanism for factoring
out different cases of an operation, specifying them separately, and then
bringing them together for the specification of the whole operation.

7 Specification style

Specifications produced using Z consist of a mixture of formal material in-
terleaved with natural language descriptions. The natural language is used

11

both for explanation of the formal material and as the link between the for-
malism and the real world. The specifications are presented in a bottom-up
manner. A specification proceeds from primitive data types and operations
and builds on these to produce the final specification.

A common use of Z is for specifying interfaces to modules. For a module
interface we must define the abstract state on which the module operates
(including any data type invariant), any constraints on the initial value of
this state, and the operations on the state; the latter are defined in terms of
the relationship between the inputs, outputs, before state and after state.

8 Experience

The formal specification techniques outlined above have been applied in a
number of collaborative projects between industry in the UK and the Pro-
gramming Research Group of Oxford University as well as to projects within
the Programming Research Group. The projects include a conference data
base done in collaboration with STL [FS85], a specification of the UNIX filing
system [MS84], a specification of the ICL Data Dictionary done in collab-
oration with ICL [Suf84], a simple assembler [SS85], a distributed comput-
ing system [GM84], and specification of parts of the IBM CICS application
programmer’s interface done in collaboration with IBM (UK) Laboratories
[Hay85].

Of the above the UNIX filing system, ICL Data Dictionary, and the IBM
CICS work were retrospective specifications of existing systems. For this
work the specification techniques were being used in the role of analysing
and documenting tools; the latter two projects uncovered inconsistencies in
the current systems and indicated ways in which both the user interfaces and
the documentation of the systems could be improved.

The remainder of the projects involved using the specification techniques
as a tool for designing new systems and for communicating the new designs
between the participants in the projects. It was generally agreed that the
designs so created were better thought out, more consistent, and simpler
than designs done without the aid of such tools.

The Programming Research Group has expanded its role in industrial
collaboration recently: it has given six courses for UK industry in 1984–85
and is starting collaborative projects with RACAL ITD, Plessey and BP
Research as well as continuing its close ties with IBM (UK) Laboratories
and ICL.

12

9 Acknowledgements

The evolution of specification techniques outlined in this paper has been the
work of many; of special mention are the originator Jean-Raymond Abrial
and my colleagues from the Programming Research Group of Oxford Univer-
sity including Tony Hoare, Carroll Morgan, Ib Holm Sorensen and Bernard
Sufrin. The work of Cliff Jones of Manchester on VDM [Jon80] has also had
an influence on the development of Z.

References

[Abr82] J. R. Abrial. The specification language Z: Basic library. Internal
report, Programming Research Group, Oxford University, 1982.

[FS85] L.W. Flinn and I.H. Sorensen. CAVIAR: A case study in speci-
fication. Technical Monograph PRG-48, Programming Research
Group, Oxford University, July 1985.

[GM84] Roger Gimson and C. Carroll Morgan. Ease of use through proper
specification. In David A. Duce, editor, Distributed Computing
Systems Programme. Peter Peregrinus, 1984.

[Hay85] Ian J. Hayes. Applying formal specification to software develop-
ment in industry. IEEE Transactions on Software Engineering,
SE-11(2):169–178, February 1985.

[Jon80] Cliff B. Jones. Software Development: A Rigorous Approach.
Prentice-Hall International Series in Computer Science, 1980.

[MS84] C. Carroll Morgan and Bernard A. Sufrin. Specification of the
Unix filing system. IEEE Trans. on Software Engineering, SE-
10(2):128–142, March 1984.

[SS85] Ib Holm Sorensen and Bernard A. Sufrin. Formal specification
and design of a simple assembler. Internal report, Programming
research Group, Oxford University, 1985.

[SSMH85] Bernard A. Sufrin, Ib Holm Sorensen, C. Carroll Morgan, and
Ian J. Hayes. Notes for a Z handbook. Internal report, Program-
ming Research Group, Oxford University, July 1985.

[Suf84] Bernard A. Sufrin. Towards a formal specification of the ICL data
dictionary. ICL Technical Journal, August 1984.

13

