
Determining the Specification of a Control System
from That of Its Environment

Ian J. Hayes1, Michael A. Jackson2, and Cliff B. Jones3

1 School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane, 4072, Australia.

Ian.Hayes@itee.uq.edu.au
2 101 Hamilton Terrace, London NW8 9QY, England.

jacksonma@acm.org
3 School of Computing Science,

The University of Newcastle-upon-Tyne, England.
cliff.jones@ncl.ac.uk

Abstract. Well understood methods exist for developing programs from given
specifications. A formal method identifies proof obligations at each development
step: if all such proof obligations are discharged, a precisely defined class of
errors can be excluded from the final program. For a class of “closed” systems
such methods offer a gold standard against which less formal approaches can be
measured.
For “open” systems –those which interact with the physical world– the task of
obtaining the program specification can be as challenging as the task of deriving
the program. And, when a system of this class must tolerate certain kinds of
unreliability in the physical world, it is still more challenging to reach confidence
that the specification obtained is adequate. We argue that widening the notion of
software development to include specifying the behaviour of the relevant parts of
the physical world gives a way to derive the specification of a control system and
also to record precisely the assumptions being made about the world outside the
computer.

1 Introduction

A number of methods exist for developing sequential programs from formal specifica-
tions (e.g. [9, 1]). Although such methods are not universally practised, their existence
provides a “gold standard” that encourages developers to believe that program design
errors can be eliminated. A development method that can scale up to deal with realistic
problems must be compositional in the sense that the specification of a sub-system is a
complete statement of its required properties. For sequential programs, various forms
of pre-/post-condition specifications are adequate. For concurrent programs, the task of
finding tractable compositional methods proved more challenging [11]; but even here,
techniques like rely and guarantee specifications (cf. [7, 8, 10, 2]) provide compositional
methods.

If a distinction is made between “closed” and “open” systems –where the former
are essentially algorithms in an understood computational domain– it could be said that

K. Araki, S. Gnesi, and D. Mandrioli (Eds.): FME 2003, LNCS 2805, pp. 154–169, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Determining the Specification of a Control System from That of Its Environment 155

adequate formal methods are available for closed systems. But the class of “open” sys-
tems, which interact with the physical world via sensors and actuators, is both large and
very important. Such open systems are often deployed in safety-critical environments.
For many of these systems, the task of obtaining a program specification is itself a major
challenge. It is to the understanding of this task that the present paper is intended to
contribute.

The approach proposed is first to specify the requirements and environment of the
overall system; then to capture the assumptions on the physical components by recording
rely-conditions; and only then to derive a specification of the computational part of the
control system. The developer should resist the temptation to jump in and start specifying
the control system from the beginning of a project.

Most open (control) systems must also be designed to tolerate failures in the phys-
ical components, both the sensors and actuators and others. Although this need does
not change the problem of deriving a specification in any fundamental way, it poses a
significant challenge: it is difficult to achieve perspicuity in a specification that addresses
the possibility of failures. We address this concern in Section 4. Of course, we make no
claim that such systems can be made perfectly safe; we claim only to offer a method
that will make it easier to identify the assumptions about the physical components of the
system and to ensure that they are formally documented.

Our emphasis on looking first at the external physical environment of a system is
advocated in [6, 4, 5]. The original approach to rely/guarantee specifications was not rich
enough to cope with continuously varying physical quantities like temperatures, and so
we use the notation developed in [12, 13]. Earlier, partial, attacks using some of the ideas
presented here include [14].

This paper presents an attack on a particular illustrative design problem. We do not
claim that what follows is a universal method: indeed, it is not enough for some problems
and too much for others. But the task of designing a control system for some part of
physical reality is a common task, and achieving a dependable system is a challenging
goal.

Essentially the idea is to insist that an initial specification be based on a wide view
of a system, including both the machine and the problem world. The machine is the
computer, executing the control program to be developed. The problem world is that
part of physical reality in which the problem resides and in which the effects of the
system, once installed and set in operation, will be evaluated. Drawing the boundaries
of the problem world demands a judgement based on the responsibilities and the scope
of authority of the customer for the system. The customer’s responsibilities bound the
effects to be evaluated in the problem world, while the scope of authority bounds the
freedom of the developers in aiming to achieve those effects.

In general, execution of the control program can not bring about the desired effects
directly. They must be brought about indirectly, relying on causal properties of the
problem world. We therefore use rely conditions on the problem world in specifying
the control system; with corresponding (or stronger) guarantee conditions one can then
prove that the parallel composition of the machine with the problem world satisfies the

156 Ian J. Hayes, Michael A. Jackson, and Cliff B. Jones

specification of the whole system. The rely conditions remain in the specification as a
reminder and a warning: they must be checked for safe deployment.1

A very simple illustration is a room heating system [12]. We should not jump at once
into a specification of the control program, stating what corrective action should follow
when the temperature sensor indicates that some limit value has been exceeded. Instead
we should first specify the desired relationship between the actual room temperature and
the target temperature set on the control knob: this is the requirement. Then we should
record, in rely conditions, the properties of the environment: that is, the assumptions we
make about the accuracy of the sensors and about the causal chain from activation of the
heating equipment to changes in the actual room temperature. Only then are we ready
to develop the specification of the control program.

Our ideas are presented using the example of a controller for an irrigation sluice gate.
Section 2 begins with the overall requirement for an ideally reliable sluice gate. Section 3
introduces the sensors and motor used to control an ideal sluice gate and develops a
specification for a controller for this ideal sluice gate. In Section 4 we consider faults in
the problem world, and extend the controller to cope with those faults that it can detect.

2 The Sluice Gate Problem

The example considered below concerns a sluice gate [5] which controls the flow of
water for irrigation purposes. The customer’s requirement is that the time when the gate
is fully open should be in a certain ratio to time when it is fully closed. This will lead
us to a set of assumptions (expressed as rely-conditions) about the behaviour of the
motor, sensors etc with which the gate is equipped. To clarify the earlier point about
the customer’s responsibility and authority, we mention some systems of wider scope
that could be tackled. If the requirement were to deliver a certain flow of water, we
would have to make assumptions about the available water flow. A yet wider system
might be concerned with the growth of crops, leading to assumptions about the weather,
plant physiology and the effects of irrigation. A requirement to maximise farm profits
would lead to assumptions about a wide range of factors including prices and (in Europe)
the Common Agricultural Policy. The example to be addressed here is a system with a
far more restricted requirement. Our customer’s responsibilities and authority are both
bounded by the sluice gate itself and its stipulated operation. The effects of the irrigation
schedule on the crops and and the farm profits are firmly outside our scope.

The requirement for our simple problem is that the sluice gate should be open for at
least min open in every hour and closed for at least min closed; open and closed are
phenomena of the physical gate. To formalise the requirement we introduce a variable
denoting the position of the gate. The requirement is concerned only with whether
the sluice gate is open or closed; however, we recognise that inevitably the gate will
sometimes be in neither position:

Height =̂ open|closed|neither
pos : Height

1 There are strong reasons for thinking even more widely. The “Dependability IRC” project (see
www.dirc.org.uk) considers computer-based systems whose dependability depends critically
on the human (as well as the mechanical) components.

Determining the Specification of a Control System from That of Its Environment 157

We are interested in the trace of pos values over time. Hence, in predicates, it will be
treated as a function of time and it may be indexed by a time. An alternative representation
for pos is as a real value giving the height of the sluice gate (for example, in metres). We
reject this alternative because at this stage it complicates the development unnecessarily:
the customer is interested only in whether the gate is open or closed, not in the different
intermediate points in its vertical travel.2

The overall requirement can now be formalised, using two constants:

min open =̂ 8 min
min closed =̂ 48 min

the requirement will be that in every hour the sluice gate be fully open for at least
min open, and fully closed for at least min closed. The remaining time in each hour
allows for the travel times between the open and closed positions.

In the definition of SluiceGateRequirement below, the notation intervalT stands
for the set of all contiguous finite intervals that are subsets of the time interval T . The
operator ‘#’ gives the size of an interval. The integral of a predicate over an interval I ,
such as ∫I(pos = open), treats the predicate, pos = open, as a function of time because
pos is a function of time; it treats a true value as 1 and a false value as 0, as in the
Duration Calculus [3]. In short, the two integrals in the formalisation give the total time
in the interval I for which the variable pos is equal to open and closed respectively.

SluiceGateRequirement =̂
∀I : intervalT@

#I ≥ 1 hr ⇒
∫I(pos = open) ≥ min open ∧ ∫I(pos = closed) ≥ min closed

It might be that the customer prefers a looser constraint over each single hour and
a constraint closer to “one sixth” over some longer period such as a week: this would
allow the pattern of opening to be varied. Similarly, a further requirement might be added
specifying that the gate should not be opened or closed more often than three times an
hour. Since these possibilities add length to the specification without affecting the basic
principles, we do not pursue them here.

The specification of the whole system is to achieve satisfaction of this requirement:

SluiceGateSystem =̂
system
output pos : Height
guaranteeSluiceGateRequirement

2 It may also be argued that the alternative representation as a real value is pointless because (as
we shall see) the gate sensors allow the control system to detect directly only the presence of
the gate at the top or bottom of its travel. Although the conclusion may be correct, the argument
is misconceived. In many systems the state of the problem world must be inferred from what
can be sensed directly. The control system for the sluice gate, for example, might infer the
gate’s vertical position from assumptions about its rate of travel when the motor is on. Such
assumptions would then appear in rely conditions in the development.

158 Ian J. Hayes, Michael A. Jackson, and Cliff B. Jones

A system3 specification explicitly lists the observed inputs and outputs of the system,
any assumptions about its environment on which it relies, and the condition it guarantees
to establish. In this case there are no assumptions and there are no inputs: the overall
specification is concerned only with the gate position, which is an output.

3 Introducing the Controller

There is, of course, a question –even within the agreed boundaries– of which system is
being designed here. In some applications the designer might have the luxury of starting
from scratch and choosing the equipment, including the placing of sensors etc. Here we
assume that all the equipment is already in place in the problem world, and must be treated
as given. Figure 1 shows the machine (the computer executing the control program that
we are developing), the problem world (the gate with its sensors and drive motor), and
the requirement. The observable phenomena of the requirement are represented by the
arrow marked a, and the interface of shared phenomena by which the Control machine
monitors and controls the Gate-Sensor-Motor (GSM) problem world is represented by
the line marked b.

Control RequirementGSM
ab

Fig. 1. The Machine, the Problem World and the Requirement

The requirement (which in the preceding section was called SluiceGateRequirement)
is concerned only with pos

a : {pos : Height}
which is determined by the behaviour of GSM. At interface b, GSM also sets the sensors
top and bot, but the Control machine can set the direction control dir = up or dir =
down, and switch the motor by setting motor = on or motor = off :

b : Control ! {dir : up|down, motor : on|off}
GSM ! {top, bot : boolean}

We might have decomposed GSM into separate gate, sensor and motor components.
We have not done so here because it is simpler, and adequate for our purposes, to describe
the GSM subsystem as a whole.

3 We will regard the subject of each specification of this kind as a system. Later we will write
such a specification for the control machine, another for the sluice gate mechanism, and so on.

Determining the Specification of a Control System from That of Its Environment 159

3.1 Specifying the Controller

The immediate objective is to arrive at a specification of the control system. It would
obviously be possible to observe that Control||GSM must satisfy the specification of
the Sluice Gate System and jump straight to an outline algorithm which indicated that the
control system should open the sluice gate; pause 8 minutes; then move the gate down;
pause for about 48 minutes; etc. Any temptation to specify the control system in this
way should be resisted. The aim here is to derive an implicit specification of the control
system from an understanding of the components. This identifies the assumptions clearly
but the full payoff of this approach is apparent when faults are considered in Section 4.

The Control machine’s inputs are the states of the sensors; its outputs are the motor
controls. It relies on the sensors and the motor working correctly, and must guarantee
that the required behaviour of the sluice gate is achieved, while not invalidating any
assumptions about how the GSM subsystem must be operated.

The states of the two sensors, top and bot, can be formalised as boolean functions
of time

top, bot : boolean

When functioning properly, they detect when the gate is fully open (top) or fully closed
(bot). We formalise this notion in the following definition. A timed predicate of the form
P over I states that the predicate P holds for every instant of time in the interval I . In
the definition, T is the complete time interval over which the system operates.

SensorProp =̂ (((pos = open) ⇔ top) ∧ ((pos = closed) ⇔ bot)) over T

This is equivalent to

∀t : T@((pos(t) = open) ⇔ top(t)) ∧ ((pos(t) = closed) ⇔ bot(t)).

The sluice gate is driven by a motor that turns a screw thread that raises or lowers
the gate. At the interface b the Control machine can switch the motor on or off, and can
set the direction in which it drives the gate. If the motor has been on in the direction up
for at least some constant uptime, the gate will have reached the open position and will
remain there after the motor is turned off. A similar condition applies for the downward
travel. First, we formalise the motor control and direction states, and define the constants
uptime and downtime

motor : on|off
direction : up|down
uptime =̂ 1 min
downtime =̂ 1 min

Next, we formalise the definition of the motor’s effect on the gate. In the definition, an
interval I adjoins an interval J , written I adjoins J , if the supremum of I is equal to
the infimum of J , i.e., sup I = inf J :

160 Ian J. Hayes, Michael A. Jackson, and Cliff B. Jones

MotorOperation =̂
∀I, J : intervalT@I adjoins J ⇒
#I ≥ uptime∧

((motor = on ∧ dir = up) over I)∧
((motor = off) over J)

 ⇒ ((pos = open) over J)∧

#I ≥ downtime∧

((motor = on ∧ dir = down) over I)∧
((motor = off) over J)

 ⇒ ((pos = closed) over J)

The task of the controller is to achieve the SluiceGateRequirement on the assump-
tion that it can rely on the properties of the sensor and the motor. Although pos is not a
direct input or output of the controller (see Figure 1 and the accompanying descriptions
of a and b), we allow the controller specification below to reference pos as an ‘external’
variable. This allows the specification to incorporate the original requirement directly.4

Controller0 =̂
system
external pos : Height
input top, bot : boolean
outputmotor : on|off
output direction : up|down
rely SensorProp ∧ MotorOperation
guaranteeSluiceGateRequirement

3.2 The Breakage Concern

At first sight it seems that our specification, though unrefined, is complete so far as it
goes. But it is not: we must first address several standard concerns. Here we will address
only the breakage concern of [5]. In a control problem such as we are discussing here,
it is necessary to ensure that the machine itself does not cause failure of any component
of the problem domain by ignoring known restrictions on its use. For example, checking
the motor equipment manual we learn that the motor will be damaged if it is switched
between directions without being brought to rest in between. Between any two periods
in which the motor is on and running in opposite directions there must therefore be a
period in which it is switched off; and this period must not be less than the motor’s shut
down time, motor shutdown.

A second restriction applies when the motor has driven the gate to the open or shut
position. It must then be switched off soon enough to avoid straining the motor and
mechanism when the gate reaches the end of its vertical travel and further movement is
impossible. motor limit is the time within which the motor must be switched off once
the gate has reached the open or closed position.

4 Because pos is not in the interface b of phenomena shared by the Control machine and the GSM
problem world, a program implementing the controller may not refer to it. Any reference to
pos must be eliminated from the program text by a form of refinement in the problem domain.
We discuss the removal of such external references in Section 3.3.

Determining the Specification of a Control System from That of Its Environment 161

We formalise both restrictions in the definition MotorRestrictions. In this defini-
tion, an interval I precedes an interval J , written I precedes J , if the supremum of I
is less than or equal to the infimum of J .

MotorRestrictions =̂
∀I, J : intervalT@

 I precedes J ∧ (motor = on) over I ∧ (motor = on) over J∧(∃dir : up|down@
(direction = dir) over I ∧ (direction �= dir) over J

)
 ⇒

(∃K : Interval@#K ≥ motor shutdown∧
I precedes K precedes J ∧ (motor = off) over K

)
∧
∀I : intervalT@(

motor = on ∧
(

(pos = open ∧ direction = up)∨
(pos = closed ∧ direction = down)

))
over I ⇒

#I ≤ motor limit

Only if it respects the MotorRestrictions can the Control machine rely on the
behaviour described in MotorOperation. Thus, the specification for the controller
(still assuming fault-free sensors) is now

Controller1 =̂
system
external pos : Height
input top, bot : boolean
outputmotor : on|off
output direction : up|down
rely SensorProp ∧ MotorOperation
guaranteeSluiceGateRequirement ∧ MotorRestrictions

3.3 Removing the External Reference

References to the external variable pos must be eliminated from the controller specifica-
tion before deriving an implementation. For our simple example this is straightforward
because the assumption SensorProp gives a way to rewrite the references to pos in
terms of top and bot. For example, the revised sluice gate requirement becomes

SluiceGateRequirement2 =̂
∀I : intervalT@#I ≥ 1 hr ⇒ ∫I top ≥ min open ∧ ∫I bot ≥ min closed

MotorRestrictions and MotorOperation can be revised in the same manner to
give MotorRestrictions2 and MotorOperation2 respectively. Because the controller
specification can rely on SensorProp, rewriting it to use the revised predicates gives a
specification that is formally equivalent5.

5 The equivalence is, of course, only formal: eliminating SensorProp from the formulae can
not eliminate our reliance on it in the physical problem world. We address this concern in the
next section.

162 Ian J. Hayes, Michael A. Jackson, and Cliff B. Jones

The assumption SensorProp has now fulfilled its purpose, and can be removed to
give a refined specification. Further, because pos is no longer referenced in the specifi-
cation, its declaration can be removed. This gives the following refined specification.

Controller2 =̂
system
input top, bot : boolean
outputmotor : on|off
output direction : up|down
rely MotorOperation2
guaranteeSluiceGateRequirement2 ∧ MotorRestrictions2

4 Detecting Domain Faults

The specification Controller2 is idealised in the sense that all of the components in the
problem world are assumed to function faultlessly. In a critical system –or any system
in which it is important to limit the possible damage to the equipment– this assumption
must be questioned. Potential faults must be identified and the software must deal with
them appropriately. In [5] this obligation is called the reliability concern. If a faulty
component is detected, the Control machine must switch off the motor and turn on an
alarm to indicate that the system needs attention from the maintenance engineer and that
the irrigation requirement is no longer being satisfied.

4.1 Domain Faults

In the present section we are concerned only with the analysis of domain faults and
with formalising their detection. We address the composition of this requirement with
the SluiceGateRequirement in the next section. We start in the problem domain, and
identify observable faults that can arise in the domain. Our analysis uncovers potential
faults like these (but not only these):

– A log becomes jammed under the gate.
– A sensor develops an open circuit fault (fails false).
– A sensor develops a short circuit fault (fails true).
– The screw mechanism becomes rusty and the gate jams.
– The screw mechanism breaks, allowing the gate to slide freely.
– The direction control cable is cut.
– The motor efficiency is reduced by deterioration of the bearings.
– The motor overheats.

We then consider how these faults in the problem domain can be detected by the
Control machine at its interface b with the domain (see Figure 1). Because this interface
is very simple, and consists only of the states of the top and bot sensors and the motor
settings, it is clear that the Control machine can not distinguish between different faults
in the domain. For example, it can not distinguish between a log jammed under the gate
and an open-circuit bot sensor: both manifest themselves by failure of the bot sensor

Determining the Specification of a Control System from That of Its Environment 163

to indicate arrival of the gate at the closed position in spite of the motor having been
set on and down for at least downtime. In a safety-critical system we would consider
improving the interface by adding new sensors. For example, we might add a sensor to
detect motor temperature or motor speed; or we might provide a finer grain of sensing of
the vertical position of the gate. For the purposes of this example, we add an additional
Boolean sensor, motor too hot, that indicates the motor temperature is excessive. An
interesting aspect of this fault is that the phenomena used to describe the fault are not
part of the description of the ideal behaviour of the sluice gate.

The faulty state, Faulty GSM , can be detected by the occurrence of any of these
(informally expressed) conditions:

– The top sensor does not become true when it should.
– The bot sensor does not become true when it should.
– The bot sensor does not become false when it should (when the motor has been set

on and up for a duration of at least rise start time).
– The top sensor does not become false when it should (when the motor has been

set on and down for a duration of at least fall start time).
– The top sensor becomes true earlier than it should (when the motor has been set

on and up).
– The bot sensor becomes true earlier than it should (when the motor has been set on

and down).
– The top sensor changes value while the motor is set off.
– The bot sensor changes value while the motor is set off.
– top and bot are simultaneously true at any time.
– The motor too hot sensor becomes true.

For brevity we will not present the full formalisation of Faulty GSM . Given suit-
able declarations of duration constants for the criteria of fault-free operation in the
domain we obtain a definition of the faulty state. Recognition of the state is triggered by
an interval J in which a fault condition is detected.

Faulty GSM =̂ λJ : intervalTime@
∃I : intervalT@I adjoins J∧(

(motor = on) over I ∧ (direction = up) over (I ∪ J)∧
#I ≥ healthy rise time ∧ (¬top) over J

)
∨(

(motor = on) over I ∧ (direction = down) over (I ∪ J)∧
#I > healthy fall time ∧ (¬bot) over J

)
∨(

(motor = on) over I ∧ (direction = up) over (I ∪ J)∧
#I > rise start time ∧ bot over J

)
∨

...
((top ∧ bot) over J)∨
((motor too hot) over J)

We must now discharge the obligation to show that Faulty GSM holds whenever a
fault is present in the domain for which we require the Control machine to switch off the
motor and turn on the alarm. We leave this as an exercise for the energetic reader who
has completed the definition of Faulty GSM .

164 Ian J. Hayes, Michael A. Jackson, and Cliff B. Jones

4.2 Composing the Requirements

Our intention is to compose both requirements (irrigation and fault tolerance) in the
one Control machine. We must therefore elaborate the interface b of Figure 1 to include
the setting of the alarm and the temperature sensor. Modifying the annotation given in
Section 3 we have:

b : Control ! {dir : up|down, motor : on|off, alarm : on|off}
GSM ! {top, bot : boolean, motor too hot : boolean}

First we must elaborate our existing Control machine, specifying that during its
execution the alarm is off. The elaborated machine is Controller3:

AlarmOff =̂
system
output alarm : on|off
guarantee(alarm = off) over T

Controller3 =̂ Controller2 ∧ AlarmOff.

Two systems may be conjoined: the inputs and outputs of the conjoined system are
the unions of the inputs and outputs respectively of the two systems (common inputs
and outputs must have the same type), and the rely and guarantee conditions are the
conjunctions of their rely and guarantee conditions respectively. So the specification

Controller2 ∧ AlarmOff

specifies a system that is the same as Controller2 but has an additional output alarm
that is always off.

The behaviour required when a domain fault has been detected is to switch the motor
off and the alarm on within some permitted response time fault response:

AlarmSet =̂
∃J, K : intervalT@J adjoins K∧

J ∪ K = T ∧ #J ≤ fault response∧
(alarm = on ∧ motor = off) over K

The required behaviour for raising the alarm can be simply defined. Note that it requires
the restrictions on controlling the motor to be maintained.

Raise Alarm =̂
system
input top, bot : boolean
inputmotor too hot : boolean
outputmotor : on|off
output direction : up|down
output alarm : on|off
guaranteeMotorRestrictions2 ∧ AlarmSet

Finally, we must specify the combination of Controller3 and Raise Alarm in
response to faults. For this we need to consider two modes of fault detection:

Determining the Specification of a Control System from That of Its Environment 165

– faults that persist over a long enough interval of time that we insist they are detected;
and

– faults that exist for only a short period of time that may or may not be detected.

We introduce two separate (but similar) operators to allow these two different modes of
fault detection to be specified. For systems S1 and S2 and a predicate C that takes a
time interval as a parameter (like Faulty GSM)

– a hard fault obliges the system to take notice

S1 until C requires S2

and
– a “transient” fault allows the system to take notice

S1 until C allows S2

For example,

Controller4=̃Controller3 until Faulty GSM allows Raise Alarm

describes a system that operates as an ideal controller, but may raise the alarm if there
is a fault, and

Controller5=̃Controller4 until Hard Fault GSM requires Raise Alarm

describes a system that must raise the alarm as soon as a hard fault appears, where

Hard Fault GSM=̃
(λJ : intervalTime@Faulty GSM(J) ∧ #J ≥ reaction time)

We describe the semantics of these two combinators, starting with the more liberal
second combinator because it is slightly simpler. S1 until C allows S2 either behaves
like S1, or if there exists an interval J over which C(J) holds, it may (is allowed to)
behave like S1 until the start of the interval J , and then behave like S2 from that time
on. To describe the combinator more formally, we use the term behaviour to refer to a
trace of the values of the variables over time, and the function behaviours(S, T) gives
the set of all possible behaviours of system S over the time interval T . The boolean term
C(J)(b) states that the predicate C(J) holds for the behaviour b.

b ∈ behaviours(S1 until C allows S2, T) ≡
b ∈ behaviours(S1, T)∨
(∃I, J, K : intervalT@I adjoins J adjoins K ∧ T = I ∪ J ∪ K ∧ C(J)(b)∧

(∃b1 : behaviours(S1, T); b2 : behaviours(S2, J ∪ K)@
b = (I � b1) � b2))

The operator “I � b1” takes a timed trace behaviour b1 and restricts it to a trace whose
domain is contained in the interval I . The catenation of two traces, b � c assumes that
the domain of b has an end time equal to the start time of the domain of c and that the
values of the variables at the end of trace b are equal to the values of the variables at the
beginning of trace c; the resultant trace is then the union of the two traces.

166 Ian J. Hayes, Michael A. Jackson, and Cliff B. Jones

The semantics of the obligatory exception mechanism is similar but it requires that
there is no earlier occurrence of the condition C. The first alternative allows for the case
where there is no interval over which C holds.

b ∈ behaviours(S1 until C requires S2, T) ≡
b ∈ behaviours(S1, T) ∧ ¬(∃L : intervalT@C(L)(b))∨
(∃I, J, K : intervalT@I adjoins J adjoins K ∧ T = I ∪ J ∪ K ∧ C(J)(b)∧

(¬∃L : intervalT@ inf L < inf J ∧ C(L)(b)))∧
(∃b1 : behaviours(S1, T); b2 : behaviours(S2, J ∪ K)@

b = (I � b1) � b2))

5 Further Work

This paper illustrates what the authors hope will become a method for handling a class of
developments. However, much remains to be done to establish the scope of this method
and to refine its details. In this section we consider some avenues for further work.

5.1 On the Sluice Gate Application

The Sluice Gate problem has proved very stimulating and we have tried to expose the
issues it has thrown up rather than modify the problem to fit our evolving method. For
example, the second author has on occasions played the role of our customer and has
consistently refused requests to acquire new sensors to simplify formulations.

There are, of course, a variety of other (dependability) issues which could be con-
sidered; examples include:

– the power supply to the motor;
– the hardware signals levels used for motor and dir;
– the maximum load of the motor;
– the maximum start up time under any load less than the maximum;
– the running state revolutions per minute.

While we believe that such points do not bring in fundamentally different technical
requirements, they should be categorised as an indication that nothing has been hidden.

5.2 More General Points

The aim to separate the treatment of errors from the behaviour required in an (unrealis-
tically) ideal environment has caused us considerable difficulty. We have experimented
with an asymmetric otherwise operator, ways of combining traces of descriptions
which permit non-determinism, and only late on accepted the allows/requires dis-
tinction. The need to say that the presence of one condition overrides others appears to
force an asymmetric operator and the (Deontic) distinction is at least plausible. Whether
there is a smaller set of primitive concepts in terms of which these ideas can be expressed
is the subject of further work.

Many open (real-time) systems appear to operate cyclicly. Indeed, even the sluice
gate could be viewed as operating on an hourly cycle (possibly embedded in a larger

Determining the Specification of a Control System from That of Its Environment 167

cycle between, say, maintenance periods). The authors are not aware of any (temporal)
notations that offer clear ways of indicating such cyclic behaviour.

It would be useful to have more systematic ways of looking for fault situations. If
one followed [5] and constructed a model of the gate within the Control system, this
would –for example– offer a notion within the Controller of the expected height of the
gate. This, in turn, would facilitate expression of a rely condition to show the degree of
expected drift/conformance. We have only made tentative experiments with this idea so
far.

One of the refrees raised the interesting point of the “evolvability” of a system.
The authors agree that this is an important issue; evolution is in fact a major strand of
work within the Dependability IRC. A study of the contribution of other research on
“evolvability” to the issues of this paper will be undertaken in the future.

6 Conclusions

The starting point for the specification of a control system is a specification of the desired
behaviour of the controlled system, e.g., the sluice gate position, given independently
of the (physical) mechanisms used to implement the (physical) control. As indicated
earlier, there are different possible models of the system that allow different aspects of
the system to be specified. Choice of an appropriate model comes down to the customer’s
choice of requirements. The model must be rich enough to allow the requirements to be
specified, but not so rich that the specification is unnecessarily complex.

Having specified the overall requirements, we must detail the properties of the given
(physical) components (e.g., the sensors and motor). These are the properties the con-
troller can rely on to achieve the desired goal. In addition, the components may have
restrictions on the way in which they may be operated without risk of breakage. The
controller must ensure that it conforms to these requirements too.

In specifying the requirements and the properties of the components it is in general
necessary to make use of models of parts of the system that are not directly interfaced to
the machine (for example, the external variable pos in the controller specification does
not appear in the interface between the machine and the problem world). This necessity
springs from two sources. First, the customer’s interest is not, in general, restricted to
phenomena at the interface: the Sluice Gate customer cares whether the gate is open
or closed, not about the sensor states. Second, if we fail to distinguish phenomena at
the interface from those that lie deeper in the problem world, we can not address the
reliability concern: it arises precisely from that distinction. It is then a central goal of the
process of refining the controller specification to rephrase its required behaviour solely
in terms of its interface to the problem world.

A further technique we used to structure the controller specification is to separate
the Control requirement when the problem domain is behaving faultlessly from the
requirement in the presence of faults. It is first worthwhile to examine possible faults
in the overall system. These may involve phenoma that are not part of the description
of the idealised machine. Next one must consider the class of faults that can be phrased
purely in terms of the system’s interface to the environment. The utility of the machine’s
response to problem world failures is limited by the richness of the interface between

168 Ian J. Hayes, Michael A. Jackson, and Cliff B. Jones

them. A richer interface allows better diagnosis of faults and more specific responses.
However, introducing richer interfaces has two consequences: first, they may be more
prone to failure than the simple interface; and second, they make the control software
itself more complicated and hence more prone to software error.

Our building blocks for specifications are systems specified in terms of their inputs,
outputs and external variables as well as the assumptions about the inputs that they rely
upon and the goals that they guarantee to achieve. To build more complex specifications
one could continue to use systems specified in the same way, but with more complex
rely and guarantee conditions. Alternatively, as we have done here, one can provide
operators such as conjunction and until-requires to combine system specifications.
Logically both approaches are equivalent; the choice between them is more one of ease
of presentation and understandability of the resulting specification. A structured speci-
fication built from component systems can be flattened to a simple system specification
with rely and guarantee conditions.

Acknowledgements

The first author acknowledges the support of Australian Research Council (ARC) Dis-
covery Grant DP0345355, Building dependability into complex, computer-based sys-
tems. All three authors receive support from the (UK) EPSRC funding of the “De-
pendability IRC” (Interdisciplinary Research Collaboration): the third author is directly
involved and the first two authors are Senior Visiting Fellows to DIRC. In addition,
the third author’s research has been partially supported by European IST DSoS Project
(IST-1999-11585). The authors acknowledge the input from three anonymous referees.

References

[1] J.-R. Abrial. The B-Book: Assigning programs to meanings. Cambridge University Press,
1996.

[2] Manfred Broy and Ketil Stølen. Specification and Development of Interactive Systems.
Springer-Verlag, 2001.

[3] Zhou Chaochen, C.A.R. Hoare, and A.P. Ravn. A calculus of durations. Information
Processing Letters, 40:269–271, December 1991.

[4] M. A. Jackson. Problem analysis and structure. In Tony Hoare, Manfred Broy, and Ralf
Steinbruggen, editors, Engineering Theories of Software Construction (Proceedings of the
NATO Summer School, Marktoberdorf, August 2000). IOS Press, 2000.

[5] M. A. Jackson. Problem Frames: Analyzing and structuring software development problems.
Addison-Wesley, 2001.

[6] Michael Jackson. Software Requirements & Specifications: a lexicon of practice, principles
and prejudices. Addison-Wesley, 1995.

[7] C. B. Jones. Development Methods for Computer Programs including a Notion of Interfer-
ence. PhD thesis, Oxford University, June 1981. Printed as: Programming Research Group,
Technical Monograph 25.

[8] C. B. Jones. Specification and design of (parallel) programs. In Proceedings of IFIP’83,
pages 321–332. North-Holland, 1983.

[9] C. B. Jones. Systematic Software Development using VDM. Prentice Hall International,
second edition, 1990. ISBN 0-13-880733-7.

Determining the Specification of a Control System from That of Its Environment 169

[10] C. B. Jones. Accommodating interference in the formal design of concurrent object-based
programs. Formal Methods in System Design, 8(2):105–122, March 1996.

[11] C. B. Jones. Compositionality, interference and concurrency. In Jim Davies, Bill Roscoe,
and Jim Woodcock, editors, Milennial Perspectives in Computer Science, pages 175–186.
Macmillian Press, 2000.

[12] B. P. Mahony and I. J. Hayes. A case study in timed refinement: A central heater. In
Proc. BCS/FACS Fourth Refinement Workshop, Workshops in Computing, pages 138–149.
Springer, January 1991.

[13] B. P. Mahony and I. J. Hayes. Using continuous real functions to model timed histories.
In P. A. Bailes, editor, Proc. 6th Australian Software Engineering Conf. (ASWEC91), pages
257–270. Australian Comp. Soc., 1991.

[14] B. P. Mahony and I. J. Hayes. A case-study in timed refinement: A mine pump. IEEE Trans.
on Software Engineering, 18(9):817–826, 1992.

	1 Introduction
	2 The Sluice Gate Problem
	3 Introducing the Controller
	3.1 Specifying the Controller
	3.2 The Breakage Concern
	3.3 Removing the External Reference

	4 Detecting Domain Faults
	4.1 Domain Faults

	5 Further Work
	5.1 On the Sluice Gate Application
	5.2 More General Points

	6 Conclusions
	Acknowledgements
	References

