
Reasoning about Real-Time Repetitions:

Terminating and Nonterminating

Ian Hayes

School of Computer Science and Electrical Engineering,
The University of Queensland, Brisbane, 4072, Australia.

Email: ianh@csee.uq.edu.au

Abstract

It is common for a real-time system to contain a nonterminating process moni-
toring an input and controlling an output. Hence a real-time program development
method needs to support nonterminating repetitions. In this paper we develop a
general proof rule for reasoning about possibly nonterminating repetitions. The
rule makes use of a Floyd-Hoare-style loop invariant that is maintained by each
iteration of the repetition, a Jones-style relation between the pre- and post-states
on each iteration, and a deadline specifying an upper bound on the starting time
of each iteration. The general rule is proved correct with respect to a predicative
semantics.

In the case of a terminating repetition the rule reduces to the standard rule
extended to handle real time. Other special cases include repetitions whose bodies
are guaranteed to terminate, nonterminating repetitions with the constant true as
a guard, and repetitions whose termination is guaranteed by the inclusion of a fixed
deadline.

1 Introduction

Our overall goal is to provide a method for the formal development of real-time
programs. One problem with real-time programs is that the timing character-
istics of a program are not known until it is compiled for a particular ma-
chine, whereas we would prefer a machine independent program development
method. The approach we have taken is to extend a real-time programming
language with a deadline command [1] that allows timing constraints to be
incorporated into a real-time program. The deadline command has a simple
semantics: it takes no time to execute and guarantees to complete by a given
time. For example, the following code reads the value of the input d1 into the
local variable x , calculates f (x), assigns it to y , and writes y to the output

Preprint submitted to Science of Computer Programming 16 July 2004

d2. The special variable τ stands for the current time. The starting time of
the commands is captured in the auxiliary variable m, and the final command
is a deadline of m + U ; this ensures that the commands complete within U
seconds of them beginning.

m := τ ; -- τ is the current time variable
x : read(d1);
y := f (x);
d2 := y ;
deadlinem + U

(1)

In isolation a deadline command cannot be implemented, but if it can be
shown that all execution paths leading to a deadline command reach it before
its deadline, then it can be removed. We consider such checking to be part of an
extended compilation phase for the program, rather than part of the program
development phase. Unfortunately, there is the possibility that the compiled
code may not meet all the deadlines. In this case the program is not suitable
and either we need to redevelop (parts of) the program, or alternatively find
a faster machine or a compiler that generates better code.

The deadline command allows machine-independent real-time programs to be
expressed. It also allows one to separate out timing constraints to leave compo-
nents that are purely calculations [4]; these components can then be developed
as in the non-real-time calculus. To date we have developed a sequential real-
time refinement calculus [9,11] that can be viewed as an extension [4] of the
standard sequential refinement calculus [20]. In this paper we generalise our
earlier work on rules for nonterminating repetitions [6] so that it makes use of
a relational approach similar to that of Jones [19]. We provide a single general
rule for introducing possibly nonterminating repetitions. The rule subsumes
all our earlier rules, and the relational approach also considerably simplifies
the use of the rule in practice. We give a predicative semantics [7] for the real-
time language in the style of Hehner [13,12] and Hoare and He [15]. Within
this framework we give a simpler relational-style semantics for repetitions, and
prove the general rule correct with respect to this semantics.

1.1 Related Work

Hooman and Van Roosmalen [18] have developed a platform-independent ap-
proach to real-time software development similar to ours. Their approach
makes use of timing annotations that are associated with commands. The
annotations allow the capture in auxiliary timing variables of the time of oc-
currence of significant events that occur with the associated command, and
the expression of timing deadlines on the command relative to such timing

2

variables. They give an example similar to (1) using their notation:

in(d1, x)[m?];
y := f (x);
out(d2, y)[< m + U]

The constructs in square brackets are timing annotations [18, Sect. 2]. On the
input the annotation ‘m?’ indicates that the time at which the input occurs
should be assigned to timing variable m, and on the output the annotation
‘< m +U ’ requires the output to take effect before m +U , i.e., within U time
units of the input time. Hooman and Van Roosmalen keep timing annotations
separate from the rest of the program. They give Hoare-like rules for reasoning
about programs in their notation, but there is no semantics against which to
justify the rules. The rules given in this paper are more general than those
given by Hooman and Van Roosmalen. In addition the use of idle-invariant
properties simplifies the application of the rules in practice, and the semantics
given in this paper could be used to justify their Hoare axioms.

Section 2 outlines the real-time refinement calculus. Section 3 defines a pos-
sibly nonterminating repetition construct. Section 4 develops refinement laws
for introducing possibly nonterminating repetitions. Section 5 gives examples
of the application of the laws, and Section 6 discusses timing constraint anal-
ysis for this example. Section 7 gives a proof of the general law.

2 Real-Time Refinement Calculus

We model time by nonnegative real numbers:

Time == {r : real∞ | 0 ≤ r <∞} ,

where real∞ is the set of real numbers including infinities, and operators on
the reals are extended to allow infinite arguments. The real-time refinement
calculus makes use of a special real-valued variable, τ , for the current time. To
allow for nonterminating programs, we allow τ to take on the value infinity.

Time∞ == Time ∪ {∞}

In real-time programs we distinguish four kinds of variables:

• inputs, which are under the control of the environment of the program;
• outputs, which are under the control of the program;
• local variables, which are under the control of the program, but unlike out-

puts are not externally visible; and

3

• auxiliary variables, which are similar to local variables, but are only used
for reasoning about the program and do not appear in the machine code
generated by a compiler; assignments to auxiliary variables take no time.

Inputs and outputs are modelled as total functions from Time to the declared
type of the variable. Note that it is not meaningful to talk about the value of a
variable at time infinity. Only the (special) current time variable, τ , may take
on the value infinity. Within the semantics of a command, local and auxiliary
variables are modelled by their before and after values. We sometimes need to
refer to the set of all variables in scope. We call this ρ. It is partitioned into
ρ.in, ρ.out , ρ.local and ρ.aux . We use the term state to refer to the combination
of the local and auxiliary variables, the abbreviation ρ.v to stand for the state
variables, and decorations of ρ.v , such as ρ.v0, to stand for decorated state
variables.

The semantics of the real-time language follows an approach similar to that of
Utting and Fidge [21]. In this paper we represent the semantics of a command
by a predicate in a form similar to that of Hehner [13,12] and Hoare and
He [15]. The predicate relates the start time of a command, τ0, and the initial
values of the local and auxiliary variables to its finish time, τ , (which may be
infinity) and the final values of the local and auxiliary variables, as well as
constraining the traces of the outputs over time. All our commands insist that
time does not go backwards: τ0 ≤ τ .

The meaning function,M, takes the variables in scope ρ, and a command C ,
and returns the corresponding predicate Mρ (C). As for Hehner, refinement
of commands is defined as reverse entailment:

C vρ D ==Mρ (C) WMρ (D) ,

where the reverse entailment holds for all possible values of the variables,
including τ0 and τ . When the environment ρ is clear from the context, it is
omitted.

2.1 Real-Time Specification Command

We define a possibly nonterminating real-time specification command with
syntax, ∞x :

[
P , Q

]
, where x is a vector of variables called the frame, P

is the assumption made by the specification, and Q is its effect. The syntax
is similar to that of Morgan [20] except that there is an ‘∞’ symbol at the
beginning to indicate that the command might not terminate.

P is assumed to hold at the start time of the command. P is a single-state
predicate, that is, it contains no references to τ0 or zero-subscripted state

4

(i.e., local and auxiliary) variables. P may contain references to the input and
output variable traces. The effect Q is a relation that constrains the output
traces and relates the start time τ0 as well as the initial (zero-subscripted)
state variables, and the finish time τ as well as the final state variables.

The frame, x , of a specification command lists those outputs and state vari-
ables that may be modified by the command. All other outputs in scope, i.e.,
in ρ.out but not x , are defined to be stable for the duration of the command.
The predicate stable(z , S) states that the variable z has the same value over
all the times in the set S :

stable(z , S) == S 6= {} ⇒ (∃ y • z (| S |) = {y}) ,

where z (| S |) is the image of the set S through the function z . We allow the
first argument of stable to be a vector of variables, in which case all variables
in the vector are stable. The notation [s ... t] stands for the closed interval
of times from s to t , and (s ... t) stands for the open interval. We also allow
half-open, half-closed intervals. The notation ρ.out \ x stands for the set of
output variables (ρ.out) minus the set of variables in x .

Any state variables which are not in the frame of a specification command are
unchanged. We introduce the predicate eq(out , t0, t , z0, z) to capture the fact
that the outputs out are stable from t0 until t and that the pre-state, z0, equals
the post-state, z . In the case of the states, if the final time t is infinity, then
the state variables do not have any counterpart in reality. Hence the equality
between z0 and z is not required if t is infinity.

eq(out , t0, t , z0, z) == stable(out , [t0 ... t]) ∧ (t 6=∞⇒ z0 = z)

Definition 1 (real-time specification) Given variables, ρ, a frame, x , con-
tained in ρ.out ∪ρ.local ∪ρ.aux , a single-state predicate, P, and a relation, Q,
the meaning of a possibly nonterminating real-time specification command is
defined by the following. (Recall that ρ.v stands for the state variables.)

Mρ

(
∞x :

[
P , Q

])
== τ0 ≤ τ ∧

(τ0 <∞ ∧ P
[

τ0,ρ.v0

τ,ρ.v

]
⇒ Q ∧ eq(ρ.out \ x , τ0, τ, ρ.v0 \ x0, ρ.v \ x))

As abbreviations, if the assumption, P , is omitted, then it is taken to be true,
and if the frame is empty the ‘:’ is omitted. Note that if assumption P does not
hold initially the command still guarantees that time does not go backwards.

Because the time variable may take on the value infinity, the above specifi-
cation command allows nontermination. If the command does not terminate
then the final value of the state has no counterpart in reality. Hence it does not
make sense to write specifications that require for example the final value of a

5

local variable z to be zero and the command to not terminate: z = 0 ∧ τ =∞.
There is no program code that can implement such a specification, so it is of
little use. The following property states the condition under which the mean-
ing of a command is independent of the final values of the state variables if
the command does not terminate.

Definition 2 (nontermination state independent) For a command, C ,
that is well-formed in an environment, ρ, C is nontermination state indepen-
dent provided, τ =∞V (Mρ (C)⇔ (∃ ρ.v • Mρ (C))).

All the primitive real-time commands defined in Section 2.2 satisfy this prop-
erty, and compound commands preserve it. Hence the only commands that
may not satisfy it are specification commands, because the effect relation Q
may constrain the final state at time infinity. We require all specifications to
satisfy this healthiness property as well.

All of the executable commands (Sect. 2.2) in our language only constrain
the values of the outputs over the time interval over which they execute.
Typically the effect of a specification command only constrains the values of
outputs over the execution interval of the command: (τ0 ... τ]. However, we
do not put any such restriction in the definition of a specification command
because, although the effect may constrain the value of outputs before τ0 or
after τ , the assumption of the specification may be strong enough to allow the
effect to be replaced by one that only constrains the outputs over the execution
interval of the command. Such ‘replacement’ steps are part of the refinement
process. For example, if the effect constrains the value of the outputs before
τ0, then in order for the specification to be implementable, the assumption
should have at least as strong a constraint on the outputs before τ0, in which
case the effect can be replaced by one that does not constrain the outputs
before τ0. It is also possible for the effect to constrain the value of the outputs
after τ . For example, for a central heater controller, the effect of a specification
may require the temperature to be above some lower limit mintemp for some
time interval after τ . This is implementable provided the assumption of the
specification implies that the rate of change of the temperature over time is
limited. The specification can be implemented by ensuring the temperature is
above mintemp by a large enough margin to ensure the temperature remains
over mintemp over the required interval assuming the maximum rate of fall of
the temperature.

2.2 Real-Time Commands

Other real-time commands can be defined in terms of equivalent specification
commands. We define: a terminating (no ‘∞’ prefix) specification command,

6

x :
[
P , Q

]
; the null command, skip, that does nothing and takes no time; a

command, idle, that does nothing but may take time; a multiple assignment;
an assignment for auxiliary variables that takes no time; a command, read, to
sample a value from an external input; a command, gettime, to determine the
current time; and the deadline command. External outputs may be modified
using assignments.

Definition 3 (real-time commands) Given a vector of noninput variables,
x ; a single-state predicate P; a relation Q; a vector of idle-stable expressions,
E, of the same length as x and assignment compatible with x ; a vector of
auxiliary variables, y; a vector of expressions, F , of the same length as y
and assignment compatible with y; a noninput variable, z ; an input i that
is assignment compatible with z ; a noninput variable t of type time; and a
time-valued expression D; the real-time commands are defined as follows.

x :
[
P , Q

]
==∞x :

[
P , Q ∧ τ <∞

]
skip ==

[
τ0 = τ

]
idle ==

[
τ0 ≤ τ

]
x := E == x :

[
x @ τ = E

[
ρ.v0

ρ.v

]
@ τ0

]
y := F == y :

[
y = F

[
ρ.v0

ρ.v

]
@ τ0 ∧ τ = τ0

]
z : read(i) == z :

[
z @ τ ∈ i(| [τ0 ... τ] |)

]
t : gettime == t :

[
τ0 ≤ t @ τ ≤ τ

]
deadlineD ==

[
τ0 = τ ≤ D @ τ

]

In the definition of skip and idle we make use of a terminating specification
(no ‘∞’) with an empty frame and a default assumption of true. Note that
τ is implicitly in the frame of such a specification, and hence in the case of
idle it may take time. Below we use the same mechanism to represent guards,
which may take time to evaluate.

We allow expressions used in assignments and guards to refer to the value
of an output. Such references are to the current value of the output. Hence
for an expression, E , we use the notation E @ s to stand for E with all free
occurrences of τ replaced by s , and all occurrences of any input or output, y ,
replaced by y(s). The expressions used in assignments and guards are assumed
to be idle-stable, that is, their value does not change over time provided all
outputs are stable and the state does not change. In practice this usually
means that an idle-stable expression cannot refer to the special time variable,
τ , or to the value of external inputs. In the definition, the ‘@’ operator does
not affect state variables, and hence the same state variables appear in E @ τ0

and E @ τ .

Definition 4 (idle-stable) Given variables, ρ, an expression E is idle-stable

7

provided, τ0 ≤ τ <∞ ∧ stable(ρ.out , [τ0 ... τ]) V E @ τ0 = E @ τ.

The deadline command is novel. It takes no time and guarantees to complete
by the given deadline. It is not possible to implement a deadline command
by generating code. Instead we need to check that the code generated for a
program that contains a deadline command will always reach the deadline
command by its deadline [3].

The (demonic) nondeterministic choice between two commands may behave
as either of the two commands.

Definition 5 (choice) Given commands C1 and C2, the nondeterministic
choice between C1 and C2, written C1 [] C2, is defined by

Mρ (C1 [] C2) ==Mρ (C1) ∨Mρ (C2) .

A command is refined by a choice between two commands if and only if it
is refined by each of the commands, and a choice is refined by either of its
alternatives.

Law 6 (choice) For any commands C , C1 and C2,

(C v C1 [] C2) ≡ (C v C1) ∧ (C v C2) ,
C1 [] C2 v C1 and C1 [] C2 v C2 .

Nondeterministic choice may be generalised to a choice over a set of commands.

Definition 7 (general choice) Given a nonempty set of commands SC , the
generalised nondeterministic choice over the set of commands, written [] SC ,
is defined by

Mρ ([] SC) == (∃C : SC • Mρ (C)) .

A command is refined by a generalised choice over a set of commands SC
if and only if it is refined by every command in SC , and a general choice is
refined by each of its alternatives.

Law 8 (general choice) Given a command C , and a nonempty set of com-
mands SC ,

(C v [] SC) ≡ (∀C ′ : SC • C v C ′)
(∀C : SC • [] SC v C) .

Because we allow nonterminating commands, we need to be careful with our
definition of sequential composition. If the first command of the sequential

8

composition does not terminate, then we want the effect of the sequential
composition on the values of the outputs over time to be the same as the effect
of the first command. This is achieved by ensuring that for any command in
our language, if it is ‘executed’ at τ0 =∞, it has no effect. For the specification
command this is achieved by the assumption τ0 <∞ in Definition 1 (real-time
specification).

Law 9 (nontermination preserved) Given an environment ρ, and a well-
formed command C , the following holds: τ0 =∞V (Mρ (C)⇔ τ =∞).

The definition of sequential composition combines the effects of the two com-
mands via a hidden intermediate state. First we introduce a forward relational
composition operator, ‘o9’.

Definition 10 (relational composition) Given variables ρ and two rela-
tions R1 and R2 the (forward) relational composition of R1 and R2 is defined
as follows

R1
o
9 R2 == ∃ τ ′ : Time∞; ρ.v ′ : Tv • R1

[
τ ′,ρ.v ′

τ,ρ.v

]
∧ R2

[
τ ′,ρ.v ′

τ0,ρ.v0

]
,

where Tv is the type of the state variables ρ.v.

Definition 11 (sequential composition) Given variables ρ, and real-time
commands C1 and C2, their sequential composition is defined as the relational
composition of their meaning predicates.

Mρ (C1; C2) ==Mρ (C1) o
9Mρ (C2)

The following law is a generalisation of the standard law for refining a specifi-
cation to a sequential composition of specifications. For the termination case
both commands must terminate. The first establishes the intermediate single-
state predicate I as well as the relation R1 between the start and finish states
of the first command. The second command assumes I initially and estab-
lishes the single-state predicate S as well as the relation R2 between its initial
and final states. Hence the sequential composition establishes S as well as the
relational composition of R1 and R2 between its initial and final states.

For the nontermination case either the first command does not terminate and
establishes Q1, or the first command terminates establishing I and R1 and the
second command does not terminate and establishes Q2. The overall effect is
thus either Q1 or the composition of R1 and Q2.

Law 12 (sequential composition with relation) Given single-state pred-
icates P, I and S, and relations R1, R2, Q1 and Q2,

∞x :
[
P , (τ <∞ ∧ S ∧ (R1

o
9 R2)) ∨ (τ =∞ ∧ (Q1 ∨ (R1

o
9 Q2)))

]

9

v ∞x :
[
P , (τ <∞ ∧ I ∧ R1) ∨ (τ =∞ ∧ Q1)

]
;

∞x :
[
I , (τ <∞ ∧ S ∧ R2) ∨ (τ =∞ ∧ Q2)

]

Taking Q1 and Q2 as false reduces the rule back to the standard law of
Jones [19] for terminating commands.

3 Definition of a Real-Time Repetition Command

A real-time repetition is similar to a conventional repetition, except that we
take into account timing properties. To give the reader an idea of the differ-
ences between a real-time repetition and a standard repetition, we give the
characteristic recurrences of both. A standard repetition,

SDO == doB → C od ,

satisfies the recurrence

SDO = ifB → C ; SDO [] ¬ B → skipfi .

In the standard calculus, this can be rewritten in the following form,

SDO = (
[
B
]
; C ; SDO []

[
¬ B

]
) ,

where ‘;’ has higher priority than ‘[]’; guarded commands of the form ‘B → S ’
are rewritten in the equivalent form of a guard followed by the command
(
[
B
]
; S); the if-fi is replaced by a demonic choice ([]) because the guards are

complementary; and (
[
¬ B

]
; skip) is replaced by its equivalent,

[
¬ B

]
.

For the real-time repetition,

DO == doB → C od ,

there must exist a strictly positive time d , such that the following recurrence
holds.

DO = |[aux u : Time • u := τ ;
[
B @ τ

]
; C ;

[
u + d ≤ τ

]
]|; DO

[]
[
¬ B @ τ

]
The auxiliary variable u captures the start time of a single iteration. The guard[
B @ τ

]
allows the first alternative to be executed if the guard evaluates to

true. Note that in the real-time case the guard evaluation may take time but
must terminate. The delay until (absolute) time u+d at the end of an iteration
ensures that each iteration takes a minimum time, d . This rules out Zeno-like

10

behaviour in which, for example, each iteration takes half the time of the
previous iteration. The value of d can be arbitrarily small (e.g., 1 attosecond),
but it must be greater than zero. A repetition of the form do true → ... od
typically has the minimum overhead; its implementation may take no time to
evaluate the guard, but there will be a minimum time overhead for the branch
back to the start of the repetition.

The boolean expression B is assumed to be idle-stable. That is, its value does
not change with just the passage of time if the variables under the control of the
program are stable. In practice this means B cannot refer to the current time
variable, τ , or to external inputs (which may change over time). We assume
the guard evaluation terminates, but we place no explicit upper bound on the
time taken for guard evaluation, because guard expressions may be arbitrarily
complex. For a particular application there may be a time bound on guard
evaluation, but this is catered for by using explicit deadline commands within
the body of the repetition. There is no need for a separate upper bound on
the guard evaluation time in the definition of the repetition.

After completing the command, C , in the body of the repetition, it repeats
the guard evaluation. The delay until u +d at the end of the iteration ensures
the minimum execution time for each iteration; if the rest of the iteration
has already taken at least d time units then the delay need take no time.
Because there is no explicit upper limit on the termination time of the delay,
it also allows for the time taken for the repetition to branch back to the guard
evaluation.

The exit alternative of the repetition,
[
¬ B @ τ

]
, allows for the time taken

to evaluate the guard (to false) and exit the repetition, including the case if
the guard of the repetition is false initially. We place no explicit time bounds
on this command in the definition, but for a particular application the code
following the repetition may include deadline commands, which explicitly in-
troduce a time constraint. There is no lower time bound on the exit alternative
because the repetition do false → ... od can be implemented by skip, which
takes no time.

In order to define the behaviour of a repetition, we introduce an abbreviation
to stand for the effect of one iteration of the repetition.

ITER == |[aux u : Time • u := τ ;
[
B @ τ

]
; C ;

[
u + d ≤ τ

]
]|

The repetition may either complete a finite number of iterations or iterate
forever. In the finite case the last iteration either terminates and establishes
¬ B @ τ or it does not terminate because C does not terminate. We introduce
the notation C ∗ to stand for any finite number of repetitions of a command
C . It is defined as the nondeterministic choice over the natural numbers of
each finite number of iterations (including zero) of C .

11

Definition 13 (finite iterations) For a command C ,

C ∗ == []{i : N • C i} ,

where C 0 == skip, and for n : N, C n+1 == C n ; C .

The finite number of iterations case for a repetition can then be defined as

ITER∗;
[
¬ B @ τ

]
.

This takes care of both the case in which the last iteration terminates, in
which case it establishes ¬ B @τ , and the case in which the last iteration does
not terminate, in which case by Law 9 (nontermination preserved) ¬ B @ τ
has no effect. If the repetition guard is initially false, then the only possibility
is zero executions of ITER, which corresponds to skip.

The other possibility is that the repetition executes an infinite number of
iterations. We introduce the notation C∞ to stand for this. To define C∞ we
introduce an infinite sequence of times, ~t , and an infinite sequence of states
(local and auxiliary variables), ~v . Each adjacent pair of time and state in the
sequences are related by C . The first time (~t0) and state (~v0) correspond to
the overall initial time (τ0) and state (ρ.v0). Because an infinite number of
iterations of a command that takes no time has no counterpart in reality, we
require that each execution of the iterated command takes some minimum
time d . This also avoids unrealistic Zeno-like behaviour.

Definition 14 (infinite iterations) For a command C , such that for some
strictly positive time d any execution of C guarantees to take at least d time
units, i.e., τ0 <∞ ∧Mρ (C) V τ0 + d ≤ τ ,

Mρ (C∞) == τ =∞ ∧ (τ0 <∞⇒
(∃~t : N→ Time; ~v : N→ Tv • ~t0 = τ0 ∧ ~v0 = ρ.v0 ∧

(∀ i : N • Mρ (Ci+1))))

where ρ.v is the vector of state variables in the environment and Tv is the
corresponding type of ρ.v, and

Ci+1 == C
[
~ti ,~ti+1,~vi ,~vi+1

τ0,τ,ρ.v0,ρ.v

]
.

Note that none of the times in the sequence ~t may be infinity (as constrained
by the type of the sequence) because in order to have an infinite number of
iterations each iteration must terminate. Also note that C∞ does not define
any final value of the state ρ.v , because there is no such final state. We are
now in a position to define a real-time repetition.

12

Definition 15 (repetition) Given variables ρ, a boolean-valued, idle-stable
expression B, a command C , and fresh names d and u,

Mρ (doB → C od) ==
[]{d : Time | 0 < d • (ITER∗;

[
¬ B @ τ

]
[] ITER∞)},

where ITER == |[aux u : Time; u := τ ;
[
B @ τ

]
; C ;

[
u + d ≤ τ

]
]|.

Note that there is just one choice made for d , and that value is used for all it-
erations of the repetition. That rules out, for example, successive iterations of
a repetition choosing progressively smaller values of d , and hence it rules out
Zeno-like behaviour. A particular implementation of a repetition will deter-
mine a suitable value of d . Our implementation-independent approach allows
any value.

4 General Repetition Introduction Law

In this section we develop laws that make use of loop invariant approach of
Floyd [2] and Hoare [14] and the relational approach of Jones [19] for real-
time, possibly nonterminating repetitions. A loop invariant is assumed to hold
initially and must be maintained by every iteration of a repetition. If the
repetition terminates, the invariant holds in the final state and in addition the
guard is false.

If we assume that an invariant, I , holds immediately before a repetition starts,
we would like to assume that both its guard B and I hold at the start of the
execution of the command, C , within the body of the repetition. However,
there is a period of time corresponding to the guard evaluation between the
two points in the program. Because B is assumed to be idle-stable, it will
still hold at the start of the execution of C . For the invariant, I , we need
the condition that, if I holds before evaluation of the guard, it will still hold
after the evaluation. This is equivalent to I being invariant over the execution
of an idle command, and we refer to this property as I being idle-invariant.
All outputs are stable for the duration of an idle command, and the state
variables do not change.

Definition 16 (idle-invariant) Given variables ρ, a single-state predicate P
is idle-invariant provided

τ0 ≤ τ <∞ ∧ stable(ρ.out , [τ0 ... τ]) ∧ P
[

τ0
τ

]
V P .

The conditions idle-stable and idle-invariant differ in that for the former the
value does not change over the execution of an idle command, whereas for the

13

latter, if the value holds before, then it holds after. The latter differs from the
former in that for idle-invariance, if the predicate is false beforehand, then it
may become true during the execution of the idle.

If the command, C , in the body maintains the invariant, then on termination
of C , I holds, and because I is idle-invariant, it will still hold after the delay
at the end of the repetition body, and hence at the start of the next iteration,
as required. The assumption that I is idle-invariant places restrictions on how
I can refer to the current time variable, τ , because τ increases on execution
of an idle command, and on how I refers to external inputs, because these
may change over the execution of an idle command. For example, predicates
of the form D ≤ τ , where D is an idle-stable expression, are idle-invariant,
but predicates of the form τ ≤ D are not because the passage of time may
cause τ to exceed D . If I can be expressed in a form that does not refer to
the current time, τ , and all references to external inputs are explicitly indexed
with expressions that are idle-stable, then I is idle-invariant. In practice, the
link between the current time, τ , and the invariant, I , is made through a
time-valued program variable that approximates τ .

The standard laws on which ours are based are those of Jones [19] which, in
addition to an invariant, make use of a relation between initial and final states.
If a relation R holds between the initial and final states of the body of the
repetition on each iteration, then if the repetition terminates the transitive
closure of the relation, R∗, holds between the initial and final states of the
whole repetition. We define transitive closure and iteration of relations. A
relation iterated zero times corresponds to the identity relation on the current
time and state.

Definition 17 (transitive closure) Given a relation R, its transitive clo-
sure, R∗, is defined as follows.

R∗ == (∃ i : N • Ri)

where R0 == τ0 = τ ∧ ρ.v0 = ρ.v , and for a natural number i, Ri+1 == Ri o
9R.

An alternative way to view the transitive closure of a relation R is that there
is a sequence of intermediate times and states with adjacent pairs of times
and states related by R.

R∗ ≡ (∃ i : N; ~t : N→ Time; ~v : N→ Tv • ~t0 = τ0 ∧ ~v0 = ρ.v0 ∧
~ti = τ ∧ ~vi = ρ.v ∧ (∀ j : N • j < i ⇒ Rj+1))

where Rj+1 == R
[

~tj ,~tj+1,~vj ,~vj+1

τ0,τ,ρ.v0,ρ.v

]
.

As with the invariant we need to be careful about the time intervals cor-
responding to the guard evaluation and the minimum delay (branch back).

14

Hence we require that the relations used are impervious to these idle periods.
We use the terms pre-idle-invariant and post-idle-invariant to refer to rela-
tions that are impervious to pre and post, respectively, idle periods. If the
only references to τ0 and τ are as indices of outputs, the relation is both pre-
and post-idle-invariant. We introduce the relation IDLE , which corresponds
to the meaning of the idle command.

IDLE == τ0 ≤ τ ∧ (τ0 <∞⇒ τ <∞ ∧ eq(ρ.out , τ0, τ, ρ.v0, ρ.v))

Definition 18 (pre-idle-invariant) A relation R is pre-idle-invariant pro-
vided, τ0 <∞V (IDLE o

9 R ⇒ R).

Definition 19 (post-idle-invariant) A predicate R is post-idle-invariant
provided, τ <∞V (R o

9 IDLE ⇒ R).

For a nonterminating repetition, there is no final state, and hence no concept
of the loop invariant holding in the final state. Instead we use a strategy similar
to that of Hooman [17, page 129]. There is a sequence of times corresponding to
the starting times of executions of the repetition body at which the invariant is
true. If the body always terminates, then the sequence is infinite. In that case,
for any time, τ ′, after the start time of the repetition, there is always some later
time, τ , at which both the invariant, I , and the guard, B , hold. In addition the
state at that time is related to the initial state of the whole repetition by R∗.
Because the loop invariant is idle-invariant, it cannot express upper bounds on
the current time, τ . In order to express such bounds we introduce a deadline
command, deadlineD , at the beginning of the body of the repetition. Hence
we can also deduce that τ ≤ D holds at the beginning of every iteration.
Assuming that the frame of the body of the repetition is x , the overall effect
that holds for a nonterminating repetition with a terminating body is

I∞ == (∀ τ ′ : Time • (∃ τ : Time; ρ.v : Tv • τ ′ ≤ τ ∧ B @ τ ∧
τ ≤ D @ τ ∧ I ∧ R∗ ∧ eq(ρ.out \ x , τ0, τ, ρ.v0 \ x , ρ.v \ x)))

In the case in which there are an infinite number of iterations of the repeti-
tion, there are infinite sequences of times and states such that R holds between
adjacent pairs of times and states. In addition, there is some minimum sep-
aration between adjacent pairs of times. We introduce the notation R∞ to
capture this relationship.

Definition 20 (infinite iteration) Given a relation R, its infinite iteration,
R∞, is defined as follows.

R∞ == (∃ d : Time; ~t : N→ Time; ~v : N→ Tv • 0 < d ∧
~t0 = τ0 ∧ ~v0 = ρ.v0 ∧ (∀ i : N • ~ti + d ≤ ~ti+1 ∧ Ri+1))

where Ri+1 == R
[
~ti ,~ti+1,~vi ,~vi+1

τ0,τ,ρ.v0,ρ.v

]
.

15

If R is a well-founded relation then R∞ is equivalent to false because, by their
very definition, well-founded relations rule out the possibility of an infinite
sequence of successively related states. Note that R∞ does not refer to either
the final time τ or the final state ρ.v . The relation R may constrain the value
of outputs, typically over the interval from τ0 to τ . For example, R may state
that an output o is stable from τ0 through until τ , in which case R∞ guarantees
that o is stable from τ0 forever (until ∞).

Finally we combine the above discussion into a single law. The body of the
repetition consists of a deadline command followed by a specification. The
specification can assume that the initial time is before the deadline and that
both the guard and the invariant hold initially. The body of the repetition
either terminates, reestablishing I and establishing R between its initial and
final states, or it fails to terminate but establishes Q . This repetition refines
a specification that assumes that the invariant holds initially and either,

• terminates in a state in which the guard is false, the invariant holds, and
the relation R∗ is established between the initial and final states;
• fails to terminate because the body failed to terminate, and overall estab-

lishes (R∗ o
9 Q); or

• fails to terminate because the body always terminates but the guard always
remains true, in which case the predicate I∞ and infinite iteration of the
relation, R∞, are established.

Law 21 (repetition) Given an idle-stable, boolean-valued expression, B; a
single-state, idle-invariant predicate, I ; an idle-stable, time-valued expression,
D; a pre-idle-invariant relation Q; and a pre- and post-idle invariant relation
R; then

∞x :

[
I ,

(τ <∞ ∧ ¬ B @ τ ∧ I ∧ R∗) ∨
(τ =∞ ∧ ((I∞ ∧ R∞) ∨ (R∗ o

9 Q)))

]
v doB → deadlineD ;

∞x :

[
B @ τ ∧ τ ≤ D @ τ ∧ I ,

(τ <∞ ∧ I ∧ R) ∨
(τ =∞ ∧ Q)

]
od .

Note that I may not refer to τ0 or initial variables because I is used both in
the specification, in which τ0 is the start time of the whole repetition, and in
the body of the repetition, in which τ0 is the start time of an iteration. In
order to refer to the start time of the whole repetition within I it is necessary
to introduce a fresh auxiliary variable to stand for the start time.

Taking Q as the predicate false gives the following special case.

Law 22 (repetition–terminating body) Given an idle-stable boolean-valued

16

expression, B; a single-state idle-invariant predicate, I ; a pre- and post-idle-
invariant relation R; and an idle-stable, time-valued expression, D; then

∞x :
[
I , (τ <∞ ∧ ¬ B @ τ ∧ I ∧ R∗) ∨ (τ =∞ ∧ I∞ ∧ R∞)

]
v doB → deadlineD ;

x :
[
B @ τ ∧ τ ≤ D @ τ ∧ I , I ∧ R

]
od .

If R is a well-founded relation then R∞ ≡ false, and hence the infinite iteration
alternative is ruled out. In addition, if D is infinity, the deadline introduces
no constraint whatsoever (deadline∞ vw skip) and the law reduces to the
following.

Law 23 (terminating repetition) Given an idle-stable, boolean-valued ex-
pression, B; a single-state, idle-invariant predicate, I ; and a pre- and post-
idle-invariant, well-founded relation R; then

x :
[
I , ¬ B @ τ ∧ I ∧ R∗

]
v doB → x :

[
B @ τ ∧ I , I ∧ R

]
od .

This is the standard law for refinement to a terminating repetition given in
the relational form [19].

A repetition with a constant true guard never terminates.

Law 24 (repetition–true guard) Given a single-state, idle-invariant pred-
icate, I ; an idle-stable, time-valued expression, D; a pre-idle-invariant relation
Q; and a pre- and post-idle invariant relation R; then

∞x :
[
I , (τ =∞ ∧ ((I∞ ∧ R∞) ∨ (R∗ o

9 Q)))
]

v do true → deadlineD ;

∞x :
[
τ ≤ D @ τ ∧ I , (τ <∞ ∧ I ∧ R) ∨ (τ =∞ ∧ Q)

]
od .

A special case of this law is for an always terminating body. As with Law 22
this can be handled by choosing Q to be false.

For a repetition with a terminating body (Q ≡ false), if the deadline D
is constant for the duration of the entire repetition, then the repetition is
guaranteed to terminate. This follows because I∞ is false, due to the fact that
τ ′ cannot be less than the fixed value D for all times τ ′.

Law 25 (deadline as termination) Given an idle-stable boolean-valued ex-
pression, B; a single-state, idle-invariant predicate, I ; a pre- and post-idle-

17

invariant relation R; and an idle-stable, time-valued expression, D, which does
not include any references to variables in the frame; then

x :
[
I ∧ D @ τ <∞, ¬ B @ τ ∧ I ∧ R∗

]
v doB → deadlineD ; x :

[
B @ τ ∧ τ ≤ D @ τ ∧ I , I ∧ R

]
od .

This is a variant of a law presented elsewhere [10], but here it is just a special
case of the general law.

5 Example

Before giving a proof of the general law in Section 7, to illustrate our approach
we use the example of a conveyor belt that transports objects which are mea-
sured for their size and then sorted into a corresponding bin. This example
was used in an earlier paper illustrating the use of auxiliary variables [5]. Here
the relational law for the repetition makes the proof of correctness consider-
ably simpler. A light beam is used to detect objects, and measure their size.
The boolean input beam represents the detection of the light beam: its value
is false (no light) at time t if and only if there is an object on the conveyor
blocking the beam at time t . (We ignore failures of the light beam, etc.) The
boolean output lbin selects between a bin for large objects (if it is true) and
a bin for small objects (if it is false).

The objects on the conveyor belt have a minimum length and separation. This
translates to there being a minimum time, MinW , for which beam is false while
an object passes the beam, and a minimum time, MinS , for which beam is true
between objects. Hence beam can only change a finite number of times within
any finite time interval. For such finitely-variable inputs we introduce some
notational conventions. For i a natural number, the notation beam ↓ i stands
for the time at which beam makes transition number i from true to false, and
beam ↑ i stands for the time at which beam makes its transition number i from
false to true. The assumption of finite variability means that these times are
well defined for every natural number provided beam makes an infinite number
of transitions over all time. If there are only a finite number of transitions over
all time, then if i is greater than the total number of up transitions, we define
beam ↑ i to be infinity, and similarly for down transitions. If we assume that
beam ↓ i < beam ↑ i (the other case is symmetric) then

beam(| (0 ... beam ↓ 0) |) = {true}
∀ i : N • (beam ↓ i <∞⇒ beam(| (beam ↓ i ... beam ↑ i) |) = {false}) ∧

(beam ↑ i <∞⇒ beam(| (beam ↑ i ... beam ↓ i + 1) |) = {true})

18

We assume that there is no object on the conveyor for an initial period of at
least MinS . As well as giving the types of the variables and constants, we also
give their units of measurement [8].

input beam : boolean; output lbin : boolean;
constMinS = 40ms; MinW = 20ms; MaxW = 40ms;

A == MinS ≤ beam ↓ 0 ∧ ∀ i : N •
(beam ↓ i <∞⇒ MinW ≤ beam ↑ i − beam ↓ i ≤ MaxW) ∧
(beam ↑ i <∞⇒ MinS ≤ beam ↓ (i + 1)− beam ↑ i)

The task of the program is to measure the size of the passing objects, and select
the bin into which they are to be placed. We assume that the conveyor moves
with a constant velocity of vel metres per second. (The assumption of constant
velocity is unrealistic, but simplifies our example; a nonconstant velocity can
be accommodated within the current specification by decreasing the value
of mrgn below.) The size of an object can only be measured approximately.
Hence the specification allows a margin of error, mrgn, in determining whether
an object is large or small. If an object is of size greater than or equal to
limit +mrgn then it must go in the large bin. If its size is less than or equal to
limit −mrgn it must go in the small bin. Objects with sizes between limit −
mrgn and limit + mrgn can go in either bin. The predicate ObjSize relates
object j to the bins it is allowed to be placed in.

const vel = 1m/s; limit = 30mm; mrgn = 1mm;
ObjSize(j , b) == let sz = vel ∗ (beam ↑ j − beam ↓ j) •

(sz > limit + mrgn ⇒ b) ∧ (sz < limit −mrgn ⇒ ¬ b)

The output lbin controls the bin selector. In order for the object to be placed
in the correct bin, lbin should have the correct value from time bin select after
the end of object j , i.e., time beam ↑ j , through until bin stable after the end
of the object is detected. We introduce the predicate ObjBin to abbreviate
this condition.

const bin select = 10ms; bin stable = 30ms;
ObjBin(j) == (∃ b : boolean • ObjSize(j , b) ∧

lbin(| (beam ↑ j + bin select ... beam ↑ j + bin stable) |) = {b})

The program is specified using a nonterminating specification command with
a termination time, τ , of infinity.

∞lbin:
[
A, τ =∞ ∧ (∀ i : N • beam ↓ i <∞⇒ ObjBin(i))

]
(2)

Before going through the details of the refinement of the above specification,
we give the final machine-independent program in Fig. 1. It makes use of
a procedure Await that waits for the beam to attain the value of its first
parameter and returns an approximation to the time at which this occurs.

19

|[aux j : natural ;

A ::
{
τ ≤ beam ↓ 0−MinS

}
;

j := 0 ;

do true →
|[var st , et : naturalms; size : naturalmm;

B :: st ← Await(false, beam ↓ j); -- start at beam ↓ j

C :: et ← Await(true, beam ↑ j); -- end at beam ↑ j

size := (et − st) ∗ vel ;
lbin := (limit ≤ size);

D :: deadline beam ↑ j + bin select ;

delay until et + bin stable;

j := j + 1

]|
od

]|

Fig. 1. Main program

The program makes use of the auxiliary variable j which counts the objects
as they pass. The local variables st and et capture the start and finish times
of object j (approximately), and the variable size is used to calculate the
(approximate) size of the object from the time it took to pass and its velocity.
If the calculated size is greater than or equal to limit then lbin is set to true,
otherwise it is set to false. It is assumed that the program starts when the
current time, τ , is at least MinS seconds before the first object passes through
the beam.

In addition to the expected standard code there are deadline commands, a
number of uses of the auxiliary variable, j , and auxiliary parameters; these
are highlighted within boxes. These are used to ensure that the operation of
the program takes place in a timely fashion. No code needs to be generated
for any of the highlighted constructs. Their purpose is to facilitate reasoning
and to allow the specification of timing constraints via deadline commands.

The task of procedure Await is to wait until beam takes on the value of its
first argument, val , and return in result pt (an approximation to) the time at
which the value of beam changes to val . To allow simpler specification of the
procedure, an auxiliary parameter is used: event gives the (future) time of the
awaited change. The value of beam from the time of the call up until event
(an interval that may be empty) is the complement of val , and once it changes
to val it remains equal to val for a time of at least err . If the value of beam
never changes, then Await never returns. Otherwise it returns the result, pt ,

20

|[var p : boolean;

aux before : Time∞ ;

before := event ;

p := ¬ val ;
do p 6= val →{

(p = val ⇒ event ≤ τ) ∧ (p 6= val ⇒ before ≤ event)
}
;

deadline event + err ;

E :: before := τ ;

p : read(beam);

F :: deadline event + err ;
od;{
event ≤ τ

}
;

pt : gettime;

G :: deadline event + err
]|

Fig. 2. Body of procedure Await

which is an approximation to event .

const err = mrgn/vel ;
{
err ≤ MinS ∧ err ≤ MinW

}
;

procedure pt : time ← Await(val : boolean; aux event : Time∞) =

∞pt :

 beam(| (τ ... event) |) ⊆ {¬ val} ∧
beam(| (event ... event + err) |) = {val},

event0 = τ =∞ ∨
(event <∞ ∧ τ <∞ ∧

event ≤ pt ∧
pt ≤ event + err)


The implementation of Await in Fig. 2 repeatedly tests the value of beam until
it changes to equal val . Hence when a value equal to val is read from beam, the
time must be after event . The read must be completed before event + err in
order to ensure that the procedure is not detecting some later change of beam
to val . Hence the deadline after the read. If the value read is equal to val the
repetition terminates and one can deduce that event is less than or equal to
the current time, τ . The deadline after the gettime ensures that the value of
pt is a close enough approximation to event . If the repetition never terminates
then for any time, τ ′, there is a later time, τ , at which τ ≤ event+err . As there
is no upper bound on τ ′ and τ ′ ≤ τ ≤ event + err , this implies event must be
infinity. The deadline at the start of the body of the repetition is introduced
as a consequence of the form of the law for introducing a repetition, although
in this case it is subsumed by the tighter deadline labelled F. Note that the
latter deadline is not subsumed by the deadline at G. If both deadlines within
the body of the repetition were removed then it is possible for the read to

21

always occur while beam is not equal to val , and hence for the repetition to
never terminate. However, if the repetition never terminates, the deadline at
G is never reached and does not have to be considered.

5.1 Refinement of the main program

To refine the specification (2) of the main program to the code in Fig. 1 we
make use of Law 24 (repetition–true guard). The desired effect of (2) is

τ =∞ ∧ (∀ i : N • beam ↓ i <∞⇒ ObjBin(i)) . (3)

If beam ↓ j = ∞ for some j , then beam ↓ k = ∞ for all values of k greater
than or equal to j . Hence we can split effect (3) into the case in which there is
a never ending stream of objects on the conveyor, and the case in which there
is only a finite number of objects.

τ =∞ ∧
((∀ i : N • beam ↓ i <∞ ∧ ObjBin(i)) ∨
(∃m : N • (∀ i : N • i < m ⇒ beam ↓ i <∞ ∧ ObjBin(i)) ∧

beam ↓ m =∞))

(4)

We need to devise relations R and Q such that the first alternative corresponds
to R∞ and the second to R∗ o

9 Q . The obvious choice is to have iteration i of
the repetition establish ObjBin(i) provided beam ↓ i <∞. To accomplish this
we introduce an auxiliary variable j , that counts iterations. A suitable pre-
and post-idle-invariant relation R is defined as follows.

R == beam ↓ j0 <∞ ∧ ObjBin(j0) ∧ j = j0 + 1

If there is only a finite number of objects in total, beam ↓ j = ∞ for some
j , and no further processing takes place once that is reached. Hence we take
Q to be the following pre-idle-invariant relation. (Q is written in terms of j0
rather than j because in this case τ is infinity and there is no final state.)

Q == beam ↓ j0 =∞

Using Definition 20 (infinite iteration) we instantiate R∞ with the sequence
of values of the auxiliary variable j represented by the vector ~j , i.e., ~j0 is the
initial value of j and ~ji is the value of j after iteration i .

(∃ d : Time; ~t : N→ Time; ~j : N→ N • 0 < d ∧ ~t0 = τ0 ∧ ~j0 = j0 ∧
(∀ i : N • ~ti + d ≤ ~ti+1 ∧ beam ↓ ~ji <∞ ∧ ObjBin(~ji) ∧ ~ji+1 = ~ji + 1))

Assuming j has been initialised to zero, i.e., j0 = ~j0 = 0, then because ~ji+1 =
~ji + 1 for all i , we can deduce ~ji = i for all i . Hence, ignoring the timing

22

information, the above implies the following, which is the first alternative of
our expanded requirement (4).

(∀ i : N • beam ↓ i <∞ ∧ ObjBin(i)))

For the finite iterations case R∗ o
9 Q is the following, if we assume j is initially

zero. Here we make use of the sequence version of transitive closure.

∃m : N; ~t : N→ Time; ~j : N→ N • ~t0 = τ0 ∧ ~j0 = 0 ∧
(∀ i : N • i < m ⇒ beam ↓ ~ji <∞ ∧ ObjBin(~ji) ∧ ~ji+1 = ~ji + 1) ∧
beam ↓ m =∞

V ignoring timing information; ~ji = i
∃m : N • (∀ i : N • i < m ⇒ beam ↓ i <∞ ∧ ObjBin(i)) ∧

beam ↓ m =∞

This is the second alternative of the expanded requirement (4). Applying Law
24 (repetition–true guard) with the deadline D infinity (i.e., the deadline can
be ignored), I the predicate true, and R and Q as defined above gives the
following repetition.

(2)

v do true →

∞j , lbin:

[
(τ <∞ ∧ beam ↓ j0 <∞ ∧ ObjBin(j0) ∧ j = j0 + 1) ∨

(τ =∞ ∧ beam ↓ j0 =∞)

]
(5)

od

To refine the body of the repetition we introduce three local variables, st , et
and size to store the start and finish times of the next object on the conveyor
and the size of the object, respectively, and refine the body to the code given
in Fig. 1. The details of these steps are similar to standard refinement steps
and do not make use of repetitions; hence they are omitted here.

5.2 Refinement of procedure Await

The refinement of procedure Await introduces a local variable p and auxiliary
variable before as shown in Fig. 2. For the repetition we make use of an in-
variant that relates the most recent sample of the value of beam to the time
of occurrence of event :

I == (p = val ⇒ event ≤ τ) ∧ (p 6= val ⇒ before ≤ event) ∧
beam(| (τ ... event) |) ⊆ {¬ val} ∧
beam(| (event ... event + err) |) = {val}

Note that I is idle-invariant. If we factor out the initialisation of p and before
to establish the invariant, and the setting of pt after the repetition (as shown

23

in Fig. 2), the specification of the repetition is as follows.

∞p, before:
[
I , (τ <∞ ∧ event ≤ τ) ∨ (τ =∞ ∧ event0 =∞)

]
(6)

We use Law 22 (repetition–terminating body) with a guard of p 6= val , invari-
ant I above, relation R just true, and a deadline of event + err .

(6)

v do p 6= val →
deadline event + err ;

p, before:
[
p 6= val ∧ τ ≤ event + err ∧ I , I

]
od

This is a valid refinement provided

(τ <∞ ∧ p = val ∧ I) ∨ (τ =∞ ∧ I∞)
V (τ <∞ ∧ event ≤ τ) ∨ (τ =∞ ∧ event0 =∞)

The terminating case follows from the definition of I . For the nonterminating
case I∞ implies the following predicate.

(∀ τ ′ : Time • (∃ τ : Time; p : boolean; before : Time∞; event : Time∞ •
τ ′ ≤ τ ∧ p 6= val ∧ τ ≤ event + err ∧ I ∧ event = event0))

V (∀ τ ′ : Time • τ ′ ≤ event0 + err)
V event0 =∞

The refinement of the body of this repetition is standard and does not make
use of any further repetitions so we omit the details here.

6 Timing constraint analysis

In order for compiled machine code to implement the machine-independent
program it must guarantee to meet all the deadlines. The auxiliary variables
and parameters introduced above aid this analysis. There are three deadlines
within the procedure Await (Fig. 2). The deadline at the start of the repetition
is subsumed by the more stringent requirement of the deadline at (F). The
deadline (F) within the repetition is reached initially from the entry to the
procedure, and subsequently on each iteration. We defer analysis of the entry
path to the analysis of the main program, because the context of the main
program is necessary for the analysis. For an iteration we consider the path
(shown in Fig. 3) that starts at the assignment to before (E), reads the value
of beam into p, passes through the deadline (F), restarts the body of the

24

E :: before := τ ;
p : read(beam);

F :: deadline event + err ;
[p 6= val];{
(p = val ⇒ event ≤ τ) ∧ (p 6= val ⇒ before ≤ event)

}
;

deadline event + err ;
E :: before := τ ;

p : read(beam);
F :: deadline event + err

Fig. 3. Repetition path in Await

repetition because p is not equal to val , performs the assignment to before (E),
reads the value of beam, and reaches the deadline (F). The guard evaluation
is represented by [p 6= val], which indicates that in order for the path to be
followed, p must not be equal to val at that point in the path. The initial time
assigned to before, i.e., the time at which the path begins execution, must be
before time event because the value of p was not equal to val , and the final
deadline on the path is event +err . Hence, if the path is guaranteed to execute
in less than time err , it will always meet its deadline. If this path is guaranteed
to reach its deadline then any path with this as a suffix is also guaranteed to
meet the final deadline. A similar analysis can be performed for the same path
as in Fig. 3 but extended to exit the repetition because p = val , and read the
current time into pt , before reaching the final deadline (G). The constraint on
this path is also err .

The analysis of the main program has to take into account deadlines within
the procedure calls. There is a path (shown in Fig. 4) that starts at (A) in
Fig. 1. The path initialises j to 0, enters the repetition, allocates the local
variables st , et and size, makes the first call to Await (B), and within Await
allocates and assigns the local and auxiliary variables corresponding to the
formal value parameters, allocates the local variable p, extends the auxiliary
variables with before, initialises these, and follows the path into the repetition,
ending at the deadline (F) of event + err . The last deadline is labelled B.F to
indicate that it is the deadline labelled F within the call to Await labelled B.
The initial assertion guarantees the start time of the path is less than or equal
to beam ↓ 0 −MinS . For this call to Await , event is beam ↓ 0 and hence the
final deadline is beam ↓ 0 + err . Therefore a suitable constraint on the path is

beam ↓ 0 + err − (beam ↓ 0−MinS) = MinS + err = 41ms .

If this path is guaranteed to execute in a time of less than 41ms then the
deadline is guaranteed to be reached.

25

A ::
{
τ ≤ beam ↓ 0−MinS

}
;

j := 0;
[true];
alloc var st , et : naturalms; size : naturalmm;

B :: st ← Await(false, beam ↓ j);
alloc var val : boolean;
alloc aux event : Time∞;
val , event := false, beam ↓ j ;
alloc var p : boolean;
alloc aux before : Time∞;
before := event ;
p := ¬ val ;
[p 6= val];{
(p = val ⇒ event ≤ τ) ∧ (p 6= val ⇒ before ≤ event)

}
;

deadline event + err ;
B .E :: before := τ ;

p : read(beam);
B .F :: deadline event + err ;

Fig. 4. Initial path in main program

The remaining timing paths are analysed in a similar manner. We briefly
summarise them. Another path starts as for this one, continues on to exit the
repetition on the first evaluation of its guard, and ends at deadline B.G. The
timing constraint for this path is the same as the one above, for the same
reasons. The path starting with the final deadline in the first call to Await
(B.G) and ending at the deadline in the second call to Await (C.F) has a start
time before beam ↓ j + err and a deadline of beam ↑ j + err . Therefore a
constraint that guarantees that the final deadline will be met is

(beam ↑ j + err)− (beam ↓ j + err) = beam ↑ j − beam ↓ j ,

which from our assumptions is greater than MinW . Hence if the code on the
path executes in less than time 20ms, the deadline will be met.

The next deadline we consider is the one occurring in the repetition within the
main program. It has a deadline of beam ↑ j + bin select . The path begins at
the final deadline (C.G) within the second call to Await , which has a deadline
of event + err , where event for the second call is beam ↑ j . The path exits the
call, calculates size, and sets lbin, before reaching the deadline (D). A suitable
constraint on this path that guarantees the final deadline will be met is

(beam ↑ j + bin select)− (beam ↑ j + err) = bin select − err = 9ms .

26

The final path we consider begins at the deadline (D) within the main loop,
delays until et + bin stable, increments j , deallocates the local variables st ,
et , and size, iterates back to the start of the repetition, allocates the local
variables st , et , and size, enters the first call to Await (B), and progresses
down to the deadline (B.F) within the repetition. The final deadline is event +
err and for this case event is beam ↓ j . However along the path j has been
incremented, and hence in terms of the initial value of j for the path the
deadline is beam ↓ (j + 1) + err . Therefore a suitable constraint is

(beam ↓ (j + 1) + err)− (beam ↑ j + bin select)
= (beam ↓ (j + 1)− beam ↑ j) + err − bin select .

From our initial assumptions beam ↓ (j + 1) − beam ↑ j is greater than or
equal to MinS , and hence we can use the constant constraint

MinS + err − bin select = 31ms .

In the above analyses we have assumed that the constants MinS , vel , etc.,
have been supplied with the specification. However, an alternative approach
allows them to be treated symbolically and some of them determined by a
combination of the other constants and the worst-case execution times for
the paths in the program. For example, the velocity of the conveyor belt,
vel , determines MinS , MinW and err in terms of the minimum separation
distance between objects, minimum length of objects, and the error margin,
mrgn, respectively. Hence an alternative approach is to vary the velocity of
the conveyor belt to ensure that all deadlines within the program are met.

7 Proof of general repetition law

In this section we give a proof of Law 21 (repetition). The other repetition laws
given earlier are simple corollaries of this law. As abbreviations we introduce
S to stand for the left side of the refinement in Law 21 (repetition), i.e.,

S ==∞x :

[
I ,

(τ <∞ ∧ ¬ B @ τ ∧ I ∧ R∗) ∨
(τ =∞ ∧ ((I∞ ∧ R∞) ∨ (R∗ o

9 Q)))

]
,

and ITERL to stand for ITER with C instantiated to the body of the repetition
in the law:

ITERL == |[aux u : Time • u := τ ;
[
B @ τ

]
; deadlineD ;

∞x :

[
B @ τ ∧ τ ≤ D @ τ ∧ I ,

(τ <∞ ∧ I ∧ R) ∨
(τ =∞ ∧ Q)

]
;[

u + d ≤ τ
]

]|

27

From Definition 15 (repetition) we need to show

S v []{d : Time | 0 < d • (ITER∗
L;
[
¬ B @ τ

]
[] ITER∞

L)}
≡ Law 8 (general choice)

(∀ d : Time | 0 < d • (S v (ITER∗
L;
[
¬ B @ τ

]
[] ITER∞

L)))

≡ Law 6 (choice)

(∀ d : Time | 0 < d • (S v ITER∗
L;
[
¬ B @ τ

]
) ∧ (S v ITER∞

L))

We divide our proof into two major components showing respectively the two
refinements of S for all strictly positive times, d .

7.1 A finite number of iterations

We would like to show

S v ITER∗
L;
[
¬ B @ τ

]
(7)

Our first step is to factor out the negation of the guard from the effect of S
so that both sides of the refinement (7) end with the negation of the guard.

S
v Law 28 (separate post guard) in Appendix A

T ;
[
¬ B @ τ

]

where T ==∞x :

[
I ,

(τ <∞ ∧ I ∧ R∗) ∨
(τ =∞ ∧ ((I∞ ∧ R∞) ∨ (R∗ o

9 Q)))

]
.

By monotonicity of refinement, to show (7) it is sufficient to show the following.

T v ITER∗
L

≡ Definition 13 (finite iterations)
T v []{i : N • ITERi

L}
≡ Law 8 (general choice)

(∀ i : N • T v ITERi
L)

At this stage in order to simplify the proof we introduce an abstraction, IT ,
of ITERL that is sufficient to show the above refinement, where

IT ==∞x :


τ0 + d ≤ τ ∧(

I
[

τ0,ρ.v0

τ,ρ.v

]
⇒
(

(B @ τ0 ∧ τ0 ≤ D @ τ0)
[

ρ.v0

ρ.v

]
∧

((τ <∞ ∧ I ∧ R) ∨ (τ =∞ ∧ Q))

)) .

28

Lemma 26 (below) shows that IT v ITERL. Hence by monotonicity of refine-
ment, all we need to prove is

(∀ i : N • T v IT i) ,

which we show by induction. Case i = 0 reduces to showing T v skip. The
equivalent specification command to skip has the effect τ0 = τ . By Law 27
(strengthen effect) given in Appendix A, it is sufficient to show

τ0 <∞ ∧ I
[

τ0,ρ.v0

τ,ρ.v

]
∧ τ0 = τ ∧ eq(ρ.out , τ0, τ, ρ.v0, ρ.v) V

τ <∞ ∧ I ∧ R∗

which follows because both the following hold.

τ0 <∞ ∧ I
[

τ0,ρ.v0

τ,ρ.v

]
∧ τ0 = τ ∧ eq(ρ.out , τ0, τ, ρ.v0, ρ.v) V I

τ0 <∞ ∧ τ0 = τ ∧ eq(ρ.out , τ0, τ, ρ.v0, ρ.v) V R0 V R∗

For the inductive step we assume that T v IT n holds for n a natural number,
and are required to show T v IT n+1. We start from the right side.

IT n+1

vw Definition 13 (finite iterations)
IT n ; IT
w inductive assumption

T ; IT

vw T ; ∞x :


τ0 + d ≤ τ ∧(

I
[

τ0,ρ.v0

τ,ρ.v

]
⇒
(

(B @ τ0 ∧ τ0 ≤ D @ τ0)
[

ρ.v0

ρ.v

]
∧

((τ <∞ ∧ I ∧ R) ∨ (τ =∞ ∧ Q))

))
w definition of T ; Law 27 (strengthen effect)

∞x :

[
I ,

(τ <∞ ∧ I ∧ R∗) ∨
(τ =∞ ∧ ((I∞ ∧ R∞) ∨ (R∗ o

9 Q)))

]
;

∞x :
[
I , (τ <∞ ∧ I ∧ R) ∨ (τ =∞ ∧ Q)

]
w Law 12 (sequential composition with relation)

∞x :

[
I ,

(τ <∞ ∧ I ∧ (R∗ o
9 R)) ∨

(τ =∞ ∧ ((I∞ ∧ R∞) ∨ (R∗ o
9 Q) ∨ (R∗ o

9 Q)))

]
w as (R∗ o

9 R) V R∗

T

Before proceeding to the infinite iterations case we validate that IT is a valid
abstraction of ITERL.

Lemma 26 Given an idle-stable, boolean-valued expression, B; an idle-stable,
time-valued expression, D; a time-valued constant, d; an idle-invariant, single-
state predicate, I ; a pre-idle-invariant relation, Q; and a pre- and post-idle-

29

invariant relation, R,

IT v ITERL

PROOF. We begin from the definition of IT .

∞x :


τ0 + d ≤ τ ∧(

I
[

τ0,ρ.v0

τ,ρ.v

]
⇒
(

(B @ τ0 ∧ τ0 ≤ D @ τ0)
[

ρ.v0

ρ.v

]
∧

((τ <∞ ∧ I ∧ R) ∨ (τ =∞ ∧ Q))

))
v introduce auxiliary u to capture start time

|[aux u : Time • u := τ ;

∞x :


u + d ≤ τ ∧(

I
[

τ0,ρ.v0

τ,ρ.v

]
⇒
(

(B @ τ0 ∧ τ0 ≤ D @ τ0)
[

ρ.v0

ρ.v

]
∧

((τ <∞ ∧ I ∧ R) ∨ (τ =∞ ∧ Q))

)) (8)

]|

We separate the final delay.

(8)

v Law 28 (separate post guard)

∞x :

[
I
[

τ0,ρ.v0

τ,ρ.v

]
⇒
(

(B @ τ0 ∧ τ0 ≤ D @ τ0)
[

ρ.v0

ρ.v

]
∧

((τ <∞ ∧ I ∧ R) ∨ (τ =∞ ∧ Q))

)]
; (9)[

u + d ≤ τ
]

Next we factor out the guard and the deadline.

(9)

v equivalent specification

∞x :

[
I ,

(B @ τ0 ∧ τ0 ≤ D @ τ0)
[

ρ.v0

ρ.v

]
∧

((τ <∞ ∧ I ∧ R) ∨ (τ =∞ ∧ Q))

]
v Law 29 (separate pre guard) in Appendix A[

B @ τ ∧ τ ≤ D @ τ
]
; (10)

∞x :
[
B @ τ ∧ τ ≤ D @ τ ∧ I , (τ <∞ ∧ I ∧ R) ∨ (τ =∞ ∧ Q)

]
(11)

We separate out the deadline as a post-guard. Because the deadline appears
after the guard evaluation, it also implies that start time of the guard evalu-
ation must be before the deadline as required in the original specification.

(10)

v Law 28 (separate post guard)[
B @ τ

]
;
[
τ ≤ D @ τ

]
(12)

30

The upper bound on the start time of the repetition body (12) is implemented
by deadlineD . Combining the above refinement steps proves the lemma. 2

7.2 An infinite number of iterations

To complete the proof of Law 21 (repetition) we need to show S v ITER∞
L .

Again we can make use of Lemma 26 and monotonicity to reduce the task to
showing S v IT∞. Because we are dealing with the infinite iteration case, we
start by refining S as follows.

∞x :

[
I ,

(τ <∞ ∧ ¬ B @ τ ∧ I ∧ R∗) ∨
(τ =∞ ∧ ((I∞ ∧ R∞) ∨ (R∗ o

9 Q)))

]
v Law 27 (strengthen effect)

∞x :
[
I , τ =∞ ∧ I∞ ∧ R∞

]
Now we show that this refines to IT∞ using Definition 14 (infinite iterations).
First we note that τ0 <∞ ∧Mρ (IT) V τ0 + d ≤ τ , where 0 < d , and hence
the definition is applicable.

Mρ (IT∞)
≡ Definition 14 (infinite iterations)

τ0 ≤ τ ∧ (τ0 <∞⇒ τ =∞ ∧
(∃~t : N→ Time; ~v : N→ Tv • ~t0 = τ0 ∧ ~v0 = ρ.v0 ∧

(∀ i : N • Mρ (ITi+1))))

Let us concentrate on the universally quantified term. We extend the abbrevia-
tion ITi+1, given with Definition 14 (infinite iterations), to apply to predicates

as well as commands. For example, Ii = I
[
~ti−1,~ti ,~vi−1,~vi
τ0,τ,ρ.v0,ρ.v

]
, which because τ0 and

ρ.v0 do not appear in I reduces to I
[

~ti ,~vi
τ,ρ.v

]
.

∀ i : N • Mρ (ITi+1)

≡ ∀ i : N • ~ti ≤ ~ti+1 ∧ (~ti <∞⇒ ~ti + d ≤ ~ti+1 ∧(
Ii ⇒

(
Bi @~ti ∧ ~ti ≤ Di @~ti ∧
((~ti+1 <∞ ∧ Ii+1 ∧ Ri+1) ∨ (~ti+1 =∞ ∧ Qi+1))

))
∧

eq(ρ.out \ x ,~ti ,~ti+1, ~vi \ xi , ~vi+1 \ xi+1))

All the ~ti terms are finite (from their type), and hence their comparisons with
infinity can be simplified.

∀ i : N • ~ti + d ≤ ~ti+1 ∧
(Ii ⇒ Bi @~ti ∧ ~ti ≤ Di @~ti ∧ Ii+1 ∧ Ri+1) ∧
eq(ρ.out \ x ,~ti ,~ti+1, ~vi \ xi , ~vi+1 \ xi+1)

31

For all i , Ii ⇒ Ii+1. Hence provided I0 holds, Ii will hold for all i . However,

from the context I0 = I
[
~t0,~v0

τ,ρ.v

]
= I

[
τ0,ρ.v0

τ,ρ.v

]
. Therefore the above implies the

following.

I
[

τ0,ρ.v0

τ,ρ.v

]
⇒
(
∀ i : N •

~ti + d ≤ ~ti+1 ∧ Bi @~ti ∧ ~ti ≤ Di @~ti ∧ Ii ∧
Ri+1 ∧ eq(ρ.out \ x ,~ti ,~ti+1, ~vi \ xi , ~vi+1 \ xi+1)

)

Because Ri+1 holds for all i , we can deduce that R∞ holds overall, and that the
transitive closure of R holds between the initial state and all the intermediate
states, i.e., R∗

[
~ti ,~vi
τ,ρ.v

]
holds for all i . Similarly the stability of the outputs over

all the adjacent intervals implies that the outputs are stable from the initial
time up to every time ~ti , and the local and auxiliary variables that are not in
the frame are at each step equal to their initial values.

I
[

τ0,ρ.v0

τ,ρ.v

]
⇒

∀ i : N •


~ti + d ≤ ~ti+1 ∧ Bi @~ti ∧ ~ti ≤ Di @~ti ∧
Ii ∧ R∗

[
~ti ,~vi
τ,ρ.v

]
∧

eq(ρ.out \ x , τ0,~ti , ρ.v0 \ x0, ~vi \ xi)

 ∧
R∞ ∧ eq(ρ.out \ x , τ0, τ, ρ.v0 \ x0, ρ.v \ x)



The above implies for each i that τ0+i ∗d ≤ ~ti , and hence because d is strictly
positive, for any time τ ′ there exists an index i such that τ ′ ≤ ~ti .

I
[

τ0,ρ.v0

τ,ρ.v

]
⇒


∀ τ ′ : Time • ∃ i : N • τ ′ ≤ ~ti ∧ Bi @~ti ∧ ~ti ≤ Di @~ti ∧ Ii ∧ R∗

[
~ti ,~vi
τ,ρ.v

]
∧ eq(ρ.out \ x , τ0,~ti , ρ.v0 \ x0, ~vi \ xi)

 ∧
R∞ ∧ eq(ρ.out \ x , τ0, τ, ρ.v0 \ x0, ρ.v \ x)



The elements ~ti and ~vi provide witnesses for the existentially quantified τ and
ρ.v in the following.

I
[

τ0,ρ.v0

τ,ρ.v

]
⇒


∀ τ ′ : Time • ∃ τ : Time; ρ.v : Tv •(

τ ′ ≤ τ ∧ B @ τ ∧ τ ≤ D @ τ ∧ I ∧ R∗ ∧
eq(ρ.out \ x , τ0, τ, ρ.v0 \ x0, ρ.v \ x)

)
∧

R∞ ∧ eq(ρ.out \ x , τ0, τ, ρ.v0 \ x0, ρ.v \ x)


Placing this back in the original context and noting the definition of I∞, we
can complete the proof of the infinite number of iterations case.

Mρ (IT∞)

V τ0 ≤ τ ∧
((

τ0 <∞ ∧
I
[

τ0,ρ.v0

τ,ρ.v

])⇒ (
τ =∞ ∧ I∞ ∧ R∞ ∧
eq(ρ.out \ x , τ0, τ, ρ.v0 \ x0, ρ.v \ x)

))
≡Mρ

(
∞x :

[
I , τ =∞ ∧ I∞ ∧ R∞

])

32

8 Conclusions

Nonterminating repetitions are commonly required in real-time control ap-
plications. Hence a real-time program development method needs to support
their use. The primary advantage of the approach taken in this paper is that we
develop code for a machine-independent real-time programming language, and
hence do not need to consider the detailed execution times of language con-
structs as part of the development process. This is achieved through the simple
mechanism of adding a deadline command to our programming language. The
approach allows the real-time calculus to appear to be a straightforward ex-
tension of the standard refinement calculus [4]. Of course, the compilation
process now has the added burden of checking that the deadlines are met [3].

As with the standard refinement calculus, it is advantageous to devise re-
finement laws that make use of loop invariants and relations [19]. We have
developed a general refinement law for introducing repetitions that encom-
passes all of our previous laws as special cases. In addition, the use of the
relations within the law allows the application of the law to be considerably
simpler, as illustrated in the development of the main program repetition in
the example in Section 5.

In order to reason about repetitions in a machine-independent manner, we
require that the loop invariant be idle-invariant, so that it holds over the
executions of the guard evaluation and branch back phases of repetition exe-
cution. This restricts the form of the invariant and blurs the link between the
invariant and the current time variable, τ . To reestablish the link between the
invariant and the time at which the invariant is true, a deadline command can
be added to the start of the repetition body. In a similar manner the relations
used in the rule need to be pre- and post-idle-invariant in order to cope with
the time periods corresponding to guard evaluation and branch back.

The infinite number of iterations case is the most interesting to deal with. If
the repetition body always terminates and establishes a relation R, then there
is an infinite sequence of states with each adjacent pair in the sequence related
by R. Hence for the whole repetition one can deduce the overall effect R∞. In
addition, the loop invariant, the guard and the deadline condition are true at
an infinite number of progressively increasing times. That leads to our final
refinement law for nonterminating repetitions.

We have presented a predicative semantics for our real-time language, and
within that framework given a simpler relational-style semantics for possibly
nonterminating repetitions than the semantics given in our earlier paper [6].
In the semantics of the repetition we considered two cases: a finite number of
iterations of the repetition (including the case where the last iteration fails to

33

terminate), and an infinite number of iterations. The relational-style semantics
leads to a considerably simpler proof of the refinement law.

Acknowledgements

This research was funded by Australian Research Council (ARC) Large Grant
A49801500, A Unified Formalism for Concurrent Real-time Software Develop-
ment. I would like to thank Colin Fidge, Karl Lermer, Mark Utting and the
excellent (but anonymous) referees for feedback on earlier drafts of this paper,
and the members of IFIP Working Group 2.3 on Programming Methodology
for feedback on this topic, especially Rick Hehner for his advice on how to
simplify our approach, and Cliff Jones on his rules that make use of relations.

References

[1] C. J. Fidge, I. J. Hayes, and G. Watson. The deadline command. IEE
Proceedings—Software, 146(2):104–111, April 1999.

[2] R. W. Floyd. Assigning meaning to programs. Math. Aspects of Comput. Sci.,
19:19–32, 1967.

[3] S. Grundon, I. J. Hayes, and C. J. Fidge. Timing constraint analysis. In
C. McDonald, editor, Computer Science ’98: Proc. 21st Australasian Computer
Sci. Conf. (ACSC’98), Perth, 4–6 Feb., pages 575–586. Springer, 1998.

[4] I. J. Hayes. Separating timing and calculation in real-time refinement. In
J. Grundy, M. Schwenke, and T. Vickers, editors, Int. Refinement Workshop
and Formal Methods Pacific 1998, pages 1–16. Springer, 1998.

[5] I. J. Hayes. Real-time program refinement using auxiliary variables. In
M. Joseph, editor, Proc. Formal Techniques in Real-Time and Fault-Tolerant
Systems, volume 1926 of Lecture Notes in Comp. Sci., pages 170–184. Springer,
2000.

[6] I. J. Hayes. Reasoning about non-terminating loops using deadline commands.
In R. Backhouse and J. N. Oliveira, editors, Proc. Mathematics of Program
Construction, volume 1837 of Lecture Notes in Computer Science, pages 60–79.
Springer, 2000.

[7] I. J. Hayes. A predicative semantics for real-time refinement. Technical Report
01-15, Software Verification Research Centre, The University of Queensland,
Brisbane 4072, Australia, May 2001.

[8] I. J. Hayes and B. P. Mahony. Using units of measurement in formal
specifications. Formal Aspects of Computing, 7(3):329–347, 1995.

34

[9] I. J. Hayes and M. Utting. Coercing real-time refinement: A transmitter. In
D. J. Duke and A. S. Evans, editors, BCS-FACS Northern Formal Methods
Workshop (NFMW’96). Springer, 1997.

[10] I. J. Hayes and M. Utting. Deadlines are termination. In D. Gries and
W.-P. de Roever, editors, IFIP TC2/WG2.2, 2.3 International Conference
on Programming Concepts and Methods (PROCOMET’98), pages 186–204.
Chapman and Hall, 1998.

[11] I. J. Hayes and M. Utting. A sequential real-time refinement calculus. Acta
Informatica, 37(6):385–448, 2001.

[12] E. C. R. Hehner. Termination is timing. In J.L.A. van de Snepscheut,
editor, Mathematics of Program Construction, volume 375 of Lecture Notes in
Computer Science, pages 36–47. Springer, June 1989.

[13] E. C. R. Hehner. A Practical Theory of Programming. Springer, 1993.

[14] C. A. R. Hoare. An axiomatic approach to computer programming. Comm.
ACM, 12:576–580, 583, 1969. Reprinted in [16, Chapter 4].

[15] C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice
Hall, 1998.

[16] C.A.R. Hoare. Essays in Computing Science. Prentice Hall International, 1989.
Editor C.B. Jones.

[17] J. Hooman. Assertional specification and verification. In M. Joseph, editor,
Real-time Systems: Specification, Verification and Analysis, chapter 5, pages
97–146. Prentice Hall, 1996.

[18] J. Hooman and O. van Roosmalen. Formal design of real-time systems in
a platform-independent way. Parallel and Distributed Computing Practices,
1(2):15–30, 1998.

[19] C. B. Jones. Program specification and verification in VDM. Technical Report
UMCS-86-10-5, Department of Computer Science, University of Manchester,
1986.

[20] C. C. Morgan. Programming from Specifications. Prentice Hall, second edition,
1994.

[21] M. Utting and C. J. Fidge. A real-time refinement calculus that changes
only time. In He Jifeng, editor, Proc. 7th BCS/FACS Refinement Workshop,
Electronic Workshops in Computing. Springer, July 1996.

A Additional laws

Law 27 (strengthen effect) Provided

τ0 <∞ ∧ P
[

τ0,ρ.v0

τ,ρ.v

]
∧ τ0 ≤ τ ∧ eq(ρ.out \ x , τ0, τ, ρ.v0 \ x0, ρ.v \ x) ∧ Q ′

35

V Q

then ∞x :
[
P , Q

]
v ∞x :

[
P , Q ′

]
.

The proof of this law follows directly from Definition 1 (real-time specifica-
tion).

Law 28 (separate post guard) Provided P and X are single-state predi-
cates, I is a single-state, idle-invariant predicate, R is a post-idle-invariant
relation, and Q is a relation,

∞x :
[
P , (τ <∞ ∧ X ∧ I ∧ R) ∨ (τ =∞ ∧ Q)

]
v ∞x :

[
P , (τ <∞ ∧ I ∧ R) ∨ (τ =∞ ∧ Q)

]
;
[
X
]

.

PROOF. Because R is post-idle-invariant composing it with the IDLE rela-
tion has no effect: τ < ∞ V (R o

9 IDLE) ⇒ R. Therefore the left side of the
law is refined by the following.

∞x :

[
P ,

(τ <∞ ∧ X ∧ I ∧ (R o
9 IDLE)) ∨

(τ =∞ ∧ (Q ∨ (R o
9 false)))

]
v Law 12 (sequential composition with relation)

∞x :
[
P , (τ <∞ ∧ I ∧ R) ∨ (τ =∞ ∧ Q)

]
;

∞x :
[
I , (τ <∞ ∧ X ∧ I ∧ IDLE) ∨ (τ =∞ ∧ false)

]
(A.1)

The second component can be refined to a guard.

(A.1)

v contract frame; τ <∞ implies it terminates[
I , X ∧ I ∧ IDLE

]
v as I is idle-invariant; empty frame implies IDLE ; weaken assumption[

X
]

Law 29 (separate pre guard) Provided P is a single-state, idle-invariant
predicate, I is a single-state predicate, Q and R are pre-idle-invariant rela-
tions, and X is a single-state predicate such that

τ0 <∞ ∧ IDLE ∧ X V X
[

τ0,ρ.v0

τ,ρ.v

]
then

∞x :
[
P , X

[
τ0,ρ.v0

τ,ρ.v

]
∧ ((τ <∞ ∧ I ∧ R) ∨ (τ =∞ ∧ Q))

]
v
[
X
]
; ∞x :

[
P ∧ X , (τ <∞ ∧ I ∧ R) ∨ (τ =∞ ∧ Q)

]

36

PROOF. The left side of the above is refined by the following because R and
Q are pre-idle-invariant.

∞x :

P ,
(τ <∞ ∧ I ∧ ((X

[
τ0,ρ.v0

τ,ρ.v

]
∧ IDLE) o

9 R)) ∨
(τ =∞ ∧ (false ∨ ((X

[
τ0,ρ.v0

τ,ρ.v

]
∧ IDLE) o

9 Q)))


v Law 12 (sequential composition with relation)

∞x :

[
P ,

(τ <∞ ∧ P ∧ X ∧ X
[

τ0,ρ.v0

τ,ρ.v

]
∧ IDLE) ∨

(τ =∞ ∧ false)

]
; (A.2)

∞x :
[
P ∧ X , (τ <∞ ∧ I ∧ R) ∨ (τ =∞ ∧ Q)

]
The first component can be refined to a guard.

(A.2)

v contract frame; τ <∞ implies it terminates; assumption about X[
P , P ∧ X ∧ IDLE

]
v P idle-invariant; weaken assumption; empty frame implies IDLE[

X
]

37

