A Case Study in Timed Refinement:
A Central Heater

Brendan Mahony
Ian Hayes
University of Queensland
St. Lucia, 4072
Australia

January, 1991

Abstract

The refinement calculus is proving a useful tool for the specification and refinement
of sequential processes. In this paper we contend that it is also useful in the timed
case. This paper displays the use of the refinement calculus for a small embedded
system.

1 Introduction

The refinement calculus [7, 6, 1, 8] extends Dijkstra’s weakest precondition program
semantics to the realm of specifications. This provides a uniform notation for the entire
refinement process. We assume that the reader is familiar with the notion of weakest
precondition semantics for programs. Some familiarity with the refinement calculus
and real functions will be useful.

The Z notation [2, 10] is used for expressing predicates on states, but a knowledge
of Z is not essential to the reading of this paper. Those not familiar with Z may view the
schema boxes as a convenient way of naming and expressing predicates. The schema
consists of two sections, the first serving merely to introduce the variables discused in
the predicate, appearing in the second section.

For sequential processes the refinement calculus sees programs in terms of the state
of a system prior to execution and the state after execution of the program. The suit-
ability of this approach relies on three assumptions about the nature of sequential pro-
cesses.

1 Sequential processes terminate.

2 Sequential processes have sole access to program variables so there can be no
interference from other processes.

3 Sequential processes have no timing obligations other than termination.

We are interested in investigating the usefulness of the refinement calculus where these
assumptions break down. Our special interest lies in the realm of non-terminating real-
time processes, but the process view we describe is equally applicable wherever these
assumptions do not apply.

Specification of processes in terms of their initial and final states is not suitable
for discussing non-sequential processes, since there may be no final state or interme-
diate states may be important. We propose two changes to the way in which predicate
transformers are understood.

Firstly, the state of a system should be its behaviour over all time. It is essential
whenever any of the above assumptions fail that the initial and final state paradigm is
replaced by a state history paradigm. Since our interest is in non-terminating processes
and we are also interested in real-time, we adopt a history model in which the time
domain is represented by the positive real numbers.

Secondly we observe that the initial/final state paradigm is in fact a degenerate case
of the history paradigm. A history in which only two state observations are made.
Viewed in this light we can see that the the refinement calculus is in fact dealing with
the relationship between the structure induced on the system by the process (the post-
condition involving initial and final states) and the structure inherent in the system (the
precondition involving only the initial states). Thus the process is actually viewed in
terms of how it transforms the behaviour of a system that it acts upon. We contend that
the natural generalisation of the sequential refinement calculus is based on mapping
the desired behaviour of system plus process, the effect of the process, to the known
behaviour of the system in isolation, the assumptions the process may make about the
system. We generalise the weakest precondition semantics for sequential processes to
a weakest assumption semantics for non-sequential processes.

A full justification for the above decisions and a derivation of the resulting non-
sequential refinement calculus may be found in [3, 4]. Here we give give only informal
motivations for and explanations of the notation we use. The purpose here is to demon-
strate the practical usefulness of the techniques.

2 Central Heating

We consider a household central heating system. The intention of the central heater is
to maintain the temperature of a house around a certain minimum temperature

tmin : TEMPERATURE.

We represent the domain of temperatures, TEMPERATURE, by the positive real
numbers, R, being the temperature measured in degree Kelvin.

2.1 Functionality

The house may be modelled as a simple thermodynamic system attached to a heat sink
(the cold cold snow) and a heat source (the heater). The state of the house may then
be represented by its temperature, and the rates at which heat is going out and coming
into the house. The history of the temperature and heat loss and heat gain may be

represented as functions over all time. To avoid pathological, and unrealistic, cases we
restrict consideration to topologically continuous functions. A function is topologically
continuous if it respects open sets. Formally, the preimage of an open set in the range
must be open in the domain. We write X > Y for the total continuous functions from
X to Y and X = Y for the partial ones. Strictly speaking, these definitions should be
made with respect to particular topologies, but we will assume that each domain has
a default topology and omit explicit reference to them. For instance, in the standard
topology for the reals, 7, the open sets are constructed from arbitrary unions of open
intervals. An open interval ¢z ...) is the set of points {z : R | 2 < z < y}. Jg is the
set of all open intervals.

The temperature of the house at any time depends on the amount of heat that is
flowing into and out of the house.

__House
0: TIME s TEMPERATURE
Hin, Hout : TIME TEMPERATURE per TIME

Vt1,t2 : TIME o
6(t2) = 6(t1) + N Hin(s) - Hout(s) e ds

The heat flows are modelled as temperature flows so that the specific heat of the house
need not be considered explicitly. The time domain, T/MFE, and the rates of temperat-
ure change, TEMPERATURE per TIME, are represented by positive reals.

The purpose of the central heater is to regulate the temperature of the house. The
temperature must be prevented from falling below ¢min for periods longer than

0: TIME.

The standard topology for the reals, 7, has the useful property that any open set may
be covered by a countable' disjoint union of open intervals [9]. It is thus possible to
uniquely define a function,

‘ OpenCover : Tp — P, Ir

YO:Tr e
Ucov(O) =0
YAN :coviO)e AN = ANAN ={}

which decomposes every open set into a countable set of maximal open intervals. In
essence any open set of real numbers may be viewed as a (possibly infinite) sequence
of intervals.

Using OpenCover we are able to concisely express the requirements for the heater
in terms of the length of the time intervals for which the temperature is too low. The
times for which the temperature is too low are in the pre-image of the temperature
region (0 ... tmin) under the temperature function 0, i.e. 07'(¢0 ... tmin)). Using the
continuity of 6 we know this pre-image is an open set, so OpenCover may be used to
find the maximal intervals of time for which the temperature falls below tmin.

'We extend the Z notation, using P, X to represent the countable subsets of X .

A

TEMPERATURE

tman Jo o2 2

N—— N——
<d <d

Each such interval, A, must have duration, |A|, less than 6.

_ WarmHouse
House

YA :cov(071(€0 ... tmin))) o |A| < &

This ability to decompose time regions into sets of time intervals adds great expressive
power to our specifications.

The question now arises of under what condition can we reasonably expect a central
heater to be able to do this. Whether it chooses to keep the house warm by restricting
the outflow of heat (improved insulation) or by increasing the inflow of heat, the efforts
of the heater will be finite in scope. We cannot expect it to be able to compensate for
arbitrary rates of heat loss. Therefore we require that there be a bound

Insul : TEMPERATURE per TIME

on the rate at which heat flows out of the house.

For similar reasons to above we cannot expect the heater to heat the house within
time & from an arbitrary starting temperature. Consequently we will assume that the
temperature begins in the required range. If desired a terminating process can be used
to heat the room up, before turning it over to the standard central heating process.

Consequently we will allow the central heater to assume the house satisfies

___InsulatedHouse
House

0(0) > tmin
Vt: TIME e Hout(t) < Insul

Our specification is then that the heater must cause the house to satisfy WarmHouse
as long as the house is known to be an InsulatedHouse. We write the specification

CentralHeater == [InsulatedHouse, WarmHouse].

This notation mimics the specification statements of Morgan [6]. We also adopt the
term specification statement for such constructs. In [6] the first predicate is called the

precondition and the second predicate the postcondition. The terms ‘precondition’ and
‘postcondition’ are not suitable in the context of non-terminating processes. Instead,
we adopt the terms assumption and effect respectively.

The specification CentralHeater is interpreted as: if the environment in isolation
satisfies the first predicate (assumption CentralHeater), applying the CentralHeater
process to it will cause it to satisfy the further conditions expressed in the second pre-
dicate (effect CentralHeater).

2.2 The Heater

The central heating system will be implemented using a heating element, with min-
imum output

Output : TEMPERATURE per TIME
that may be turned on and off to control the house’s temperature.

Heater
FElement : TIME - {on, off}

The Element function cannot be both continuous and total. Continuous functions into
discrete domains must be step functions, with periods of non-definedness between
steps. This is a good representation for digital quantities that remain constant until
acted on by an event, during the action of which they are undefined.

The heater must act as the heat source of the house.

___InstalledHeater
House
Heater

true

Yt : dom Element e
Element(t) = on = Hin(t) > Output

Here the specification statement appears in a vertical format which is more convenient
when the process assumptions are trivial. The syntactic format is inspired by the Z
schema, with the first section declaring the process’ state variables and their types, the
second displaying the assumptions predicate, and the third the effects predicate. The
invariants expressed in House and Heater become invariants that are preserved by the
process.

When the temperature falls below ¢min the heater control reacts by turning on the
heater until the temperature has again risen above ¢min. The heater is turned on within

r: TIME

of the temperature becoming too low.

__ ControlHeater
House
Heater

true

YA : cov(071(€0 ... tmind)) e
@Gnf A+ r...supA) C Element™"({on})

The heater will restore the temperature in time as long as
0.Insul < (& — r). Output.

So we add the assumption

)
Output > ——.Insul
dO-r

These two processes will implement CentralHeater if they are run in parallel. The
parallel operator for specification statements [5] is defined

[assumption,, effect;] || [assumption,, effect,] ==
[assumption; A assumption,, effect; A effect;]

The design for the central heating system is then

CentralHeater, == (InstalledHeater || ControlHeater).

Theorem 2.1

CentralHeater T CentralHeater,

Proof: The definition of refinement for specification statements [6, 5] means we must
show that

assumption CentralHeater =
assumption CentralHeater; A
effect CentralHeater; = effect CentralHeater

Since assumption CentralHeater; is true this reduces to

assumption CentralHeater A eftect CentralHeater; =
effect CentralHeater

Writing this out in full, we find that we must show that

Vit: TIME e (InsulatedHouse)
Hout(t) < Insul
0(0) > tmin

Vit: TIME e (effect InstalledHeater)
Element(t) = on = Hin > Output

YA cov(071(€0 ... tmin))) e (effect ControlHeater)
Gnf A+ 7 ...supA) C Element™'({on})

=

YA cov(071(€0 ... tmin))) e

Al <0 (WarmHouse)
Case (A finite)
Suppose A € cov(07'((0, tmin))) is finite in length, then as 0 is continuous and
0(0) > tmin

0(@inf A) = O(sup A) = tmin,
so from the invariant on House,

0= O?SEAAHm(s) — Hout(s) e ds.

Using the hypotheses about the heater and the maximum heat loss this gives
Mata
>N AA Hout(s) e ds (insulation hypothesis)
= ﬂissprAHin(s) o ds

> NP2 Output e ds (element hypothesis)

inf A+7

Insul e ds

sup A o
> ﬂmfmrglnsul e (s

Thus

Insul

|A| .Insul > (|A] — 7). .
o-r

ie. (0 —7).]Al = (Al - 7).0

ie. O0.|Al —r.|Al = |A].0 — 7.0

ie. &> |Al
as required.

Case (A infinite)
A similar proof will show that A must be finite.

O

The specification InstalledHeater can be implemented by the simple expedient of pla-
cing the heating element inside the house. All control logic may therefore be restricted
to the process ControlHeater, and we can restrict further consideration to that process.

2.3 Avoiding Rapid Oscillations

It would be undesirable if the heater were to turn off immediately the temperature
climbed to tmin, since this would mean the temperature was usually below tmin. To
avoid this we strengthen ControlHeater to ensure that the heater remains on until the
temperature reaches tmax : TEMPERATURE, where tmazx > tmin.

__ ControlHeater
House
Heater

true

YA :cov(®(€0 ... tmind)) e
AA : cov(07((O0 ... tmaz))) e
ACA A
@Gnf A+ r...sup A’y C Element ™' ({on})

Since ControlHeater; is gained by strengthening of the effect of ControlHeater it is
clear that it is a refinement thereof.

Theorem 2.2

ControlHeater T ControlHeater,

The parallel operator is monotonic with respect to refinement [5]. This means that
refining one of the sub-specifications yields a refinement of the combined specification.

Corollary 2.3

CentralHeater T (InstalledHeater||ControlHeater;)

3 Conclusion

We have demonstrated that non-terminating real-time processes may be developed us-
ing rigorous specification and refinement techniques. The techniques in this paper de-
compose specifications into assumptions a process may make and the effect required of
it. In this way non-terminating processes can also be associated with a predicate trans-
former semantics. We have demonstrated that notions from the sequential refinement
calculus, such as refinment (Theorems 2.1,2.2) and monotonic specification combinat-
ors (Corollary 2.3) are applicable to real-time, non-terminating and parallel processes.
Whilst our case study lies in the realm of embedded, real-time systems, the techniques
demonstrated are applicable to arbitrary non-sequential processes.

Further the techniques we have demonstrated are a generalisation of the refinement
calculus for sequential processes. Sequential processes may be considered as a special

case in the assumption/effect view of processes. The predicate transformer calculus
derived in [1] remains the theoretical grounding for our non-sequential refinement cal-
culus.

Acknowledgements

This paper is the result of work begun while I was visiting the Programming Research
Group, Oxford University, under funding from the Australian Commonwealth Post-
graduate Research Award Scheme. I would like to thank the Programming Research
Group for their hospitality.

I am in debt to Carroll Morgan for his inspiring work.

Lastly I would like to acknowledge the contribution of the English weather in mo-
tivating this case study.

References

[1] R. J. R. Back and J. von Wright. Refinement calculus, part I: Sequential non-
deterministic programs. In J. W. de Bakker, W. P. de Roever, and G. Rozenberg,
editors, Stepwise Refinement of Distributed Systems: Models, Formalism, Cor-
rectness, LNCS 430, pages 42-66. Springer Verlag, 1990.

[2] I.J. Hayes, editor. Specification Case Studies. Prentice Hall International, 1987.

[3] B. P. Mahony. The refinement calculus and process construction. Submitted for
publication to Acta Informatica, 1990.

[4] B. P. Mahony. The Specification and Refinement of Real-time Processes. PhD
thesis, University of Queensland, 1991.

[5] B. P. Mahony and I. J. Hayes. Generalising the specification statement to real-
time. Working Paper, 1990.

[6] C.C.Morgan, K. A. Robinson, and P. Gardiner. On the refinement calculus. Tech-
nical Monograph PRG-70, Oxford University Programming Research Laborat-
ory, 1988.

[7] C.C. Morgan. The specification statement. ACM Trans. Prog. Lang. and Sys.,
10(3), July 1988. Reprinted in [6, pp. 7-30].

[8] J. M. Morris. A theoretical basis for stepwise refinement and the programming
calculus. Science of Computer Programming, 9:287-306, 1987.

[9] H. L. Royden. Real Analysis. Macmillan Publishing Co., Inc., second edition,
1968.

[10] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International,
1989.

