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Abstract

Both the theories of binary relations and multi-sets (or bags) in Z have
been usefully applied to software specification and development. In this
paper we examine a useful theory — multi-relations — which is a cross
between these two theories. One way of viewing relations is as sets of
pairs. Here, by analogy, we view multi-relations as multi-sets of pairs, and
we define multi-relation equivalents of most of the traditional operators
defined on binary relations. Multi-relations can also be viewed as graphs
or two-dimensional matrices (with indices over arbitrary sets).

The use of multi-relations is illustrated by specifying a bill-of-materials
system. This provides a good example of the paradigm of building a
suitable mathematical theory first and then developing a specification in
terms of the theory.
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1 Multi-relations

The development of mathematical theories to aid in the specification and de-
velopment of software systems is an important strategy for simplifying both the
description of such systems and reasoning about them. An important bonus is
that an abstract mathematical theory can be reused for the specification and
development of other systems requiring objects with similar abstract proper-
ties. This strategy has been expounded by Dahl [1] and Jones [7]. In this paper
we continue the development of this approach by developing a theory of multi-
relations for Z, which is a cross between the theories of binary relations and
multi-sets (or bags).

Section 1.1 gives a brief review of binary relations in Z via an example of
a bill-of-materials system. Sections 1.2 to 1.14 present the theory of multi-
relations following a pattern of development similar to that used for binary
relations in Z. A binary relation is viewed as a set of pairs. By analogy, we
view multi-relations as multi-sets of pairs, and develop multi-relation equiva-
lents of most of the operators defined for binary relations. Multi-relations can
also be viewed as graphs or two-dimensional integer matrices (with indices over
arbitrary sets). During the development we point out the relationship between
multi-relation and matrix operators. For the most part we have stuck to no-
tation derived from the Z binary-relation notation, rather than using matix
notation. This is to emphasise the close relationship between multi-relations
and binary relations.

Section 2 provides a case study of the use of multi-relations to develop a
specification of a bill-of-materials system. This specification is not intended
to be a specification of a real bill-of-materials system, but rather a realistic
illustration of the utility of multi-relations for specifying such systems.

Throughout this paper we make use of the Z notation [3, 8] and make ex-
tensive use of the theory and notations of multi-sets developed in [4]. In [4] the
more common term bag is used where, in this paper, we use the term multi-set;
this is to emphasise the correspondence between multi-sets and multi-relations.
In addition, [4] allows frequencies of occurrence of elements in bags to be neg-
ative; we also allow negative frequencies for multi-relations. For the definitions
of multi-set operators see Appendix B.

1.1 An example: bill-of-materials

To motivate the development of multi-relations and to highlight their relation-
ship to binary relations, we initially develop a simple bill-of-materials system
using binary relations. This example comes from [5, pages 201–203] and [6, page
156].

The system has a two-level hierarchy: products are made from assemblies
and assemblies from components. We use a binary relation Assemblies to record
the assemblies used in each product, and another relation Components to record
the components used in each assembly. These binary relations only record
whether or not a component (assembly) is used in an assembly (product), not the
number of components (assemblies) used in the assembly (product). Keeping
track of the number of components (assemblies) used in an assembly (product)
requires multi-relations.
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A glossary of the notation used for binary relations in Z is given in Appendix
A; for more detail on Z notation see [8].

Assemblies : Product ↔ Assembly
Components : Assembly ↔ Component

Given this model we can specify such things as the assemblies required for a
product P :

Assemblies(| {P} |).

This is the image through the relation Assemblies of the singleton set containing
just P ; it gives the set of assemblies related to P . Similarly, the components
required for an assembly A are given by,

Components(| {A} |).

The set of components required for a product P is given by,

Components(| Assemblies(| {P} |) |).

The relation between products and components is given by,

Assemblies o
9 Components,

where ‘o9’ is relation composition: a product P is related to a component C if
and only if there exists an assembly A related to both P and C .

The above scheme can be generalised to an arbitrary number of levels by
considering products, assemblies and components all to be parts and using a
single is a direct sub-part of relation to represent the bill-of-materials (BOM )
state.

BOM : Part ↔ Part

Given this relation the direct components of a product P are given by,

BOM (| {P} |),

and all sub-parts, direct and indirect, are given by,

BOM +(| {P} |),

where BOM + is the transitive closure of BOM : it relates one part P to another
Q if and only if there is a sequence of parts starting with P and ending with Q
such that all pairs of adjacent parts in the sequence are related by BOM .

We can define the atomic parts as those that do not contain any sub-parts.

atomic : (Part ↔ Part) → P Part

∀BOM : Part ↔ Part •
atomic BOM = Part \ (domBOM )

A relation that explodes out a part into its constituent atomic parts is given by
the following.
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explode : (Part ↔ Part) → (Part ↔ Part)

∀BOM : Part ↔ Part •
explode BOM = BOM + B (atomic BOM )

The above relations do not keep track of the number of assemblies required
for a product, etc., only whether the assembly is required. To keep track of the
frequency of occurrence of a sub-part within a part we introduce multi-relations.

1.2 Multi-relations in Z

With a set S one can determine whether or not a value x is in the set: x ∈ S ;
with a multi-set or bag B one can determine the frequency of occurrence of a
value x in the multi-set: B ] x . With a binary relation R one can determine
whether or not two values x and y are associated by the relation: (x , y) ∈ R;
with a multi-relation MR one can determine the multiplicity of the association
between the two values: MR ] (x , y).

In Z, we can declare a relation R between the types X and Y by,

R : X ↔ Y .

One way of viewing a relation is as a set of pairs (its graph). In fact, this is the
definition used for relations in Z:

X ↔ Y == P(X ×Y ),

where ‘P’ stands for powerset and ‘×’ is Cartesian product. By analogy, a
multi-relation MR between X and Y can be declared by,

MR : X ↔̃ Y ,

where ‘X ↔̃ Y ’ is defined to be all the bags of pairs with the first component
from the set X and the second component from the set Y ; see Appendix B for
more detail on bag notation.

X ↔̃ Y == bag(X ×Y ).

We use the notational convention of accenting relation operators to form the
equivalent multi-relation operators.

We also introduce the notation X ↔̃+ Y to denote multi-relations with non-
negative frequencies:

X ↔̃+ Y == bag(X ×Y ).

The empty multi-relation between X and Y is just the empty bag of pairs
of X and Y :

{| |}[X ×Y ].

Multi-relations can also be viewed as two-dimensional matrices with integer
elements, although the indices of the matrices come from arbitrary (possibly
infinite) sets. The empty multi-relation is equivalent to the zero matrix.
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We return to our simple two-level bill-of-materials system. This time, how-
ever, we take into account frequency of occurrence by using multi-relations.

Assemblies : Product ↔̃ Assembly
Components : Assembly ↔̃ Component

The number of A assemblies required for product P is given by

Assemblies ] (P ,A),

and the number of C components for assembly A by

Components ] (A,C ).

1.3 Conversion to/from multi-relations

Before we begin to define the multi-relation equivalents of operators on binary
relations, let us define conversions between relations and multi-relations, as these
will help us to see the correspondence between the two concepts. The function
‘relof’ extracts a relation from a multi-relation by ignoring the frequency, and
‘mrelof’ forms a multi-relation from a relation by giving related pairs a frequency
of one. These are just specialisations of the bag operators ‘setof’ and ‘bagof’
(see Appendix B).

relof[X ,Y ] == setof[X ×Y ]
mrelof[X ,Y ] == bagof[X ×Y ]

The functions ‘relof’ and ‘mrelof’ are generic in the two sets X and Y, while
‘setof’ and ‘bagof’ are generic in a single set, which for these definitions is
instantiated to the set X ×Y .

Laws Throughout the paper we give laws for each new multi-relation operator
that show how it relates to other operators. The majority of these laws are the
multi-relation equivalents of laws for binary relations or multi-sets. These laws
are given without detailed explanation and may be skipped on first reading.

The conversion operators satisfy the following laws.

∀R : X ↔ Y ; MR : X ↔̃ Y ; x : X ; y : Y •
((x , y) ∈ (relof MR) ⇔ MR ] (x , y) 6= 0) ∧
((x , y) ∈ R ⇒ (mrelof R) ] (x , y) = 1) ∧
((x , y) 6∈ R ⇒ (mrelof R) ] (x , y) = 0) ∧
relof(mrelof R) = R ∧
(MR ∈ X ↔̃+ Y ⇒ mrelof(relof MR)vMR)

The operator ‘v’ is bag containment: the frequency of occurrence of every
element of the left bag is less than or equal to its frequency in the right bag.
Note that the last law only holds for bags not containing elements with negative
frequencies because a pair with a negative frequency is considered to be in the
equivalent relation; in the sequel, many of the laws involving ‘relof’ and ‘mrelof’
have a similar restriction.
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1.4 Composition

To determine the number of components required for a product taking into
account all the assemblies required for the product, we can use the equivalent
of relation composition:

Assemblies õ
9 Components,

which is of type Product ↔̃Component . For each product P and component C ,

(Assemblies õ
9 Components) ] (P ,C )

gives the number of C components required for the product P . This value is
given by the sum over all assemblies required for P , of the number of assemblies
required times the number of C components required for the assembly. For
example, if Assemblies and Components have values,

Assemblies = [[(widget ,watsit) 7→ 2, (widget , thingo) 7→ 1,
(hanafran,watsit) 7→ 3]] ∧

Components = [[(watsit , screw) 7→ 4, (watsit , rod) 7→ 2,
(thingo, screw) 7→ 3, (thingo, rod) 7→ 3]]

then their composition Assemblies õ
9 Components is,

[[(widget , screw) 7→ 2 ∗ 4 + 1 ∗ 3,
(widget , rod) 7→ 2 ∗ 2 + 1 ∗ 3,
(hanafran, screw) 7→ 3 ∗ 4,
(hanafran, rod) 7→ 3 ∗ 2]]

The composition of the two (ordinary) relations P : X ↔ Y and Q : Y ↔ Z
is denoted P o

9 Q , and relates all pairs (x , z ) such that there is some y ∈ Y
such that P relates x to y , and Q relates y to z . The multi-relation equivalent
MP õ

9 MQ of two multi-relations MP : X ↔̃ Y and MQ : Y ↔̃ Z takes into
account the frequencies of occurrence. If x is multi-related to y by MP n times,
and y is multi-related to z by MQ m times, this contributes n ∗ m ways that
x is multi-related to z via y . The total number of ways x is multi-related to z
can be found by summing over all possible intermediate y values. For this to be
well defined there must only be a finite number of intermediate values related to
both x and z . The astute reader will recognise that multi-relation composition
is matrix multiplication.

Below we give a generic definition in Z of multi-relation composition. It is
generic in the sets [X ,Y ,Z ]. The definition is given in two parts: the declaration
of the type of the composition operator, ‘ õ

9 ’, and a predicate defining both
the domain of definition of composition and the result of composing two multi-
relations in that domain. The definitions of other multi-relation operators that
follow take a similar form.
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[X ,Y ,Z ]
õ
9 : (X ↔̃ Y )× (Y ↔̃ Z ) 7→ (X ↔̃ Z )

∀MP : X ↔̃ Y ; MQ : Y ↔̃ Z ; x : X ; z : Z •
((MP ,MQ) ∈ dom( õ

9 ) ⇔ (∀ x : X ; z : Z •
{y : Y | MP ] (x , y) 6= 0 ∧ MQ ] (y , z ) 6= 0} ∈ F Y )) ∧

((MP ,MQ) ∈ dom( õ
9 ) ⇒

(MP õ
9 MQ) ] (x , z ) =∑

[[y : Y | MP ] (x , y) 6= 0 ∧ MQ ] (y , z ) 6= 0 •
MP ] (x , y) ∗MQ ] (y , z )]])

The notation F Y stands for the set of all finite subsets of Y . The notation in
the brackets ‘[[’ and ‘]]’ is called bag comprehension and stands for the bag of
values of the expression after the ‘•’ for y ranging over all values in Y such that
the predicate after the ‘|’ holds (see Appendix B). A bag is required here as
there may be multiple values of y for which the expression has the same value.

To see the correspondence to binary relations, replace ‘∗’ by ‘∧’ and sum-
mation over the bag by an existential quantifier.

1.5 Finitary multi-relations

The condition for multi-relation composition to be well-defined given above is
the most general. However, it is complicated to use in practice as it is a property
of pairs of multi-relations rather than individual multi-relations. (For example,
the interested reader might like to determine the most general condition required
on the three multi-relations MP , MQ and MR for the associative law,

(MP õ
9 MQ) õ

9 MR = MP õ
9 (MQ õ

9 MR),

to be well-defined.)
A simpler, although more restrictive, approach is to require the multi-relations

involved to all satisfy a property individually. A suitable property is that for
each x value there are only finitely many y values for which MR ] (x , y) is non-
zero and for each y there are only finitely many x values for which MR ] (x , y)
is non-zero. A multi-relation with this property is referred to as being finitary.
If we think of a multi-relation as a matrix then each row and each column has
only finitely many non-zero entries. We introduce the new notation X ↔̃f Y to
stand for the set of all finitary multi-relations between X and Y.

X ↔̃f Y == {MR : X ↔̃ Y |
(∀ x : X • {y : Y | MR ] (x , y) 6= 0} ∈ F Y ) ∧
(∀ y : Y • {x : X | MR ] (x , y) 6= 0} ∈ F X )}

Laws We now give laws for multi-relation composition on these finitary multi-
relations. Multi-relation composition is well defined for any two finitary multi-

8



relations, and the result of such a composition is also finitary.

∀MP : W ↔̃f X ; MQ : X ↔̃f Y ; MR : Y ↔̃f Z •
(MP ,MQ) ∈ dom( õ

9 ) ∧
(MP õ

9 MQ) ∈ (W ↔̃f Y ) ∧
(MP õ

9 MQ) õ
9 MR = MP õ

9 (MQ õ
9 MR) ∧

(MP ∈ W ↔̃+ X ∧ MQ ∈ X ↔̃+ Y ⇒
relof(MP õ

9 MQ) = (relof MP) o
9 (relof MQ))

1.6 The identity multi-relation

The multi-relation equivalent of the identity relation on a set S is the multi-
relation that relates each element x ∈ S to itself, exactly once.

[X ]
ĩd : P X → (X ↔̃ X )

∀S : P X •
ĩdS = [[x : bagof S • (x , x )]]

This corresponds to the identity matrix on S .

Laws

∀MR : Y ↔̃ Z •
MR õ

9 (ĩdZ ) = MR = (ĩdY ) õ
9 MR

∀S ,T : P X ; x , y : X •
(x ∈ S ⇒ (ĩdS ) ] (x , x ) = 1) ∧
((x 6∈ S ∨ x 6= y) ⇒ (ĩdS ) ] (x , y) = 0) ∧
ĩdS ∈ (X ↔̃f X ) ∧
(ĩdS ) õ

9 (ĩdT ) = ĩd(S ∩ T ) ∧
relof(ĩdS ) = idS ∧
mrelof(idS ) = ĩdS

1.7 Addition and multiplication

Continuing the product/assembly example, if there are two stages of production,
then each stage could require a different collection of assemblies to produce a
product.

stage1, stage2 : Product ↔̃ Assembly

The total assemblies required by the combined stages is the sum of the re-
quirements for the two stages: stage1 ] stage2, where ‘]’ is bag addition (see
Appendix B).

In producing an assembly we use a collection of machines a number of times,
and each time we use a machine there is a cost associated with the use:

machineuse : Assembly ↔̃ Machine
machinecost : Assembly ↔̃ Machine
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where for machinecost we use the frequency as the cost in cents. The cost for
each assembly and each machine is the product of the number of times the
machine is used and the cost of each use:

machineuse ∩∗ machinecost ,

where ‘∩∗ ’ is bag multiplication (see Appendix B).

Laws The following laws are the multi-relation specialisations of equivalent
laws for multi-sets.

∀MP ,MQ ,MR : X ↔̃ Y ; x : X ; y : Y •
(MP ]MQ) ] (x , y) = MP ] (x , y) + MQ ] (x , y) ∧
(MP ]MQ) ]MR = MP ] (MQ ]MR) ∧
MP ]MQ = MQ ]MP ∧
MP ] {| |} = MP = {| |} ]MP ∧
(MP ∩∗ MQ) ] (x , y) = MP ] (x , y) ∗MQ ] (x , y) ∧
(MP ∩∗ MQ) ∩∗ MR = MP ∩∗ (MQ ∩∗ MR) ∧
MP ∩∗ MQ = MQ ∩∗ MP ∧
MP ∩∗ {| |} = {| |} = {| |} ∩∗ MP ∧
MP ∩∗ (MQ ]MR) = (MP ∩∗ MQ) ] (MP ∩∗ MR)

∀MP ,MQ : X ↔̃+ Y •
relof(MP ]MQ) = (relof MP) ∪ (relof MQ) ∧
relof(MP ∩∗ MQ) = (relof MP) ∩ (relof MQ)

Viewing multi-relations as matrices, ‘]’ is matrix addition, and ‘∩∗ ’ is pair-
wise multiplication of matrix elements.

1.8 Image

Given the multi-relation Assemblies from Section 1.2, which gives assembly
counts for each product, and given a bag of products B , it is useful to determine
the corresponding bag of assemblies required to produce the products. For
this we introduce the multi-relation equivalent of relation image; the assemblies
required are given by the expression,

Assemblies(| B̃ |).

The definition of multi-relation image follows.

[X ,Y ]
(| ˜ |) : (X ↔̃ Y )× bag X 7→ bag Y

∀MR : X ↔̃ Y ; B : bag X ; y : Y •
((MR,B) ∈ dom( (| ˜ |)) ⇔

(∀ y : Y • {x : setof B | MR ] (x , y) 6= 0} ∈ F X )) ∧
((MR,B) ∈ dom( (| ˜ |)) ⇒

(MR(| B̃ |)) ] y =
∑

[[x : B | MR ] (x , y) 6= 0 • MR ] (x , y)]])

For example, if Assemblies has the value,

[[(widget ,watsit) 7→ 2, (widget , thingo) 7→ 1, (hanafran,watsit) 7→ 3]],
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then Assemblies(| ˜[[widget 7→ 2]] |) has the value,

[[watsit 7→ 4, thingo 7→ 2]].

Again, as for multi-relation composition, the well-definedness condition is a
property of the pair of multi-relation and bag, rather than a property of the
multi-relation and bag individually. We can utilize the finitary property on
multi-relations to provide simpler, although more restrictive, laws.

Laws

∀MR : X ↔̃f Y ; B ,C : bag X •
(MR,B) ∈ dom( (| ˜ |)) ∧
MR(| ˜B ] C |) = (MR(| B̃ |)) ] (MR(| C̃ |)) ∧
(MR ∈ X ↔̃+ Y ∧ B ∈ bag X ⇒

setof(MR(| B̃ |)) = (relof MR)(| setof B |))

Alternatively, we could have chosen the bags to be finite.
Viewing multi-relations as matrices, multi-relation image is the product of

a vector (the bag) and a matrix.

1.9 Iteration

If we take the multi-level view of the bill-of-materials system, we can consider
products, assemblies and components all to be parts, and have a single multi-
relation BOM giving the sub-part occurrence for all parts.

BOM : Part ↔̃ Part ,

There is now no fixed limit on depth in the sub-part hierarchy, but we do require
that there are no infinite chains (including cycles) in the sub-part hierarchy and
hence a particular sub-part hierarchy does have a maximum depth. This issue
is addressed in Section 1.10.

BOM gives, for each part, the sub-parts that it is made from. BOM õ
9 BOM

gives the sub-sub-parts, BOM õ
9 BOM õ

9 BOM gives the sub-sub-sub-parts, etc.
As with relations we can define iteration on homogeneous multi-relations. We
only define iteration for finitary multi-relations.

[X ]˜ : (X ↔̃f X )× N → (X ↔̃f X )

∀MR : X ↔̃f X ; n : N •
MR0̃ = ĩdX ∧
MR ˜(n+1) = MR õ

9 MRñ

For example, the sub-sub-part multi-relation can now be written BOM 2̃.
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Laws

∀MR : X ↔̃f X ; S : P X ; n,m : N •
MR1̃ = MR ∧
MR2̃ = MR õ

9 MR ∧
MR ˜(n+m) = (MRñ) õ

9 (MRm̃) ∧
MR ˜(n∗m) = (MRñ)m̃ ∧
(n ≥ 1 ⇒ (ĩdS )ñ = ĩdS ) ∧
(MR ∈ X ↔̃+ X ⇒ relof(MRñ) = (relof MR)n)

Viewing multi-relations as matrices, iteration is raising a matrix to a power.

1.10 Transitive sum

If we want to determine the fully exploded part counts for all parts, we need to
sum the sub-part, sub-sub-part, etc, multi-relations:

BOM ] BOM 2̃ ] BOM 3̃ ] · · ·

For example, if we have the direct sub-part multi-relation BOM ,

[[(widget ,watsit) 7→ 2, (widget , screw) 7→ 3, (watsit , screw) 7→ 4]],

then a widget requires two watsits each of which requires four screws, and in
addition, a widget also directly requires three screws (no doubt to screw together
the two watsits). BOM represents the direct sub-part multi-relation. The sub-
sub-part multi-relation is given by BOM 2̃:

[[(widget , screw) 7→ 8]].

The sub-sub-sub-part relationship is empty because widget is not a sub-part of
any other part and screw has no sub-parts. Hence BOM ñ = {| |} for n ≥ 3.
If we take the fully exploded view, then a widget requires a total of two times
four plus three, i.e., eleven, screws. This corresponds to BOM ] BOM 2̃:

[[(widget ,watsit) 7→ 2, (widget , screw) 7→ 11, (watsit , screw) 7→ 4]].

We do not need to include any higher powers of BOM as they are all empty.
We need to insist that no part has itself as a sub-part either directly or

indirectly, that is, there are no cycles in the dependency relationship, to avoid
getting infinite part counts. If the set of parts is infinite, we also need to insist
that there is no infinite chain of parts where each part is a sub-part of the
previous part. Both these conditions are covered by requiring that for some
n : N1 (and hence all values greater than n), BOM ñ = {| |}. A multi-relation
satisfying this condition is referred to as being nilpotent; i.e., the matrix is
nilpotent.

[X ]
nilpotent : P(X ↔̃f X )

nilpotent = {MR : X ↔̃f X | (∃n : N1 • MRñ = {| |})}
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The sum BOM ]BOM 2̃]· · · is the multi-relation equivalent of the transitive
closure of a relation, which we call the transitive sum (it is no longer a ‘closure’
so we avoid calling it that). The transitive sum is only well-defined provided
the multi-relation is nilpotent, that is, there exists a power of the multi-relation
which is the empty multi-relation.

[X ]
+̃ : (X ↔̃f X ) 7→ (X ↔̃f X )
∗̃ : (X ↔̃f X ) 7→ (X ↔̃f X )

dom( +̃) = nilpotent ∧
dom( ∗̃) = nilpotent ∧
(∀MR : nilpotent[X ] •

MR+̃ =
⊎

[[n : N1 • MRñ ]] ∧
MR∗̃ =

⊎
[[n : N • MRñ ]])

The operator ‘
⊎

’ is distributed bag addition (see Appendix B). It combines a
bag of bags into a single bag. In this case,

MR+̃ = MR1̃ ]MR2̃ ]MR3̃ ] · · ·

Laws

∀MR : nilpotent[X ] •
MR∗̃ = ĩdX ]MR+̃ ∧
(MR ∈ X ↔̃+ X ⇒

relof(MR+̃) = (relof MR)+ ∧
relof(MR∗̃) = (relof MR)∗)

The matrix equivalents of nilpotent and transitive sum should be obvious.

1.11 Transpose

The transpose of a relation is the set of pairs in the relation with the first and
second components swapped. The same holds for multi-relations.

[X ,Y ]
∼̃ : (X ↔̃ Y ) → (Y ↔̃ X )

∀ x : X ; y : Y ; MR : X ↔̃ Y •
MR∼̃ ] (y , x ) = MR ] (x , y)

Laws

∀MR : X ↔̃ Y ; x : X ; y : Y •
(MR∼̃)∼̃ = MR ∧
relof(MR∼̃) = (relof MR)∼

Viewing multi-relations as matrices, multi-relation transpose is matrix trans-
pose.
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1.12 Domain and range

The domain (range) of a relation is the set of first (second) components of the
pairs in the relation.

domR = {x : X | (∃ y : Y • (x , y) ∈ R)} ∧
ranR = {y : Y | (∃ x : X • (x , y) ∈ R)}

We can generalise domain (range) to multi-relations by taking the domain
(range) of the corresponding relation.

[X ,Y ]
d̃om : (X ↔̃ Y ) → P X
r̃an : (X ↔̃ Y ) → P Y

∀MR : X ↔̃ Y •
d̃omMR = {x : X | (∃ y : Y • MR ] (x , y) 6= 0)} ∧
r̃anMR = {y : Y | (∃ x : X • MR ] (x , y) 6= 0)}

Laws

d̃om({| |}[X ×Y ]) = { }[X ] ∧
r̃an({| |}[X ×Y ]) = { }[Y ]
∀MP : X ↔̃ Y •

d̃omMP = dom(relof MP) ∧
r̃anMP = ran(relof MP)

Aside: An alternative approach to the definition of the domain (range) of a
multi-relation is the bag of values where the frequency of a value x in the bag
is the sum of the frequencies of all pairs in the multi-relation with first (second)
component x . We have chosen not to follow this approach because,

• the set versions are simpler and more useful in practice,

• the bag versions are not always well defined, and

• the bag version of domain is already given by MR∼̃(| Ỹ |) and the bag
version of range by MR(| X̃ |).

1.13 Domain/range restriction/subtraction

Binary relation domain and range restriction constrain the domain and range,
respectively, of a relation to given sets.

∀R : X ↔ Y ; S : P X ; T : P Y •
S C R = {xy : R | first xy ∈ S} ∧
R B T = {xy : R | second xy ∈ T}

We can define multi-relation equivalents of these. We also define equivalents of
domain and range subtraction.
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[X ,Y ]
C̃ , −̃C : P X × (X ↔̃ Y ) → (X ↔̃ Y )
B̃ , −̃B : (X ↔̃ Y )× P Y → (X ↔̃ Y )

∀S : P X ; MR : X ↔̃ Y ; T : P Y •
S C̃ MR = [[xy : MR | first xy ∈ S ]] ∧
S −̃C MR = [[xy : MR | first xy 6∈ S ]] ∧
MR B̃ T = [[xy : MR | second xy ∈ T ]] ∧
MR −̃B T = [[xy : MR | second xy 6∈ T ]]

Laws The following laws are the equivalents of similar laws for binary rela-
tions.

∀MR : X ↔̃ Y ; S : P X ; T : P Y •
S C̃ MR = (ĩdS ) õ

9 MR ∧
MR B̃ T = MR õ

9 (ĩdT ) ∧
d̃om(S C̃ MR) = S ∩ (d̃omMR) ∧
r̃an(MR B̃ T ) = (r̃anMR) ∩ T ∧
relof(S C̃ MR) = S C (relof MR) ∧
relof(MR B̃ T ) = (relof MR) B T ∧
S C̃ MR ] S −̃C MR = MR ∧
MR B̃ T ]MR −̃B T = MR

Continuing our bill-of-materials example, the atomic parts are those that
have no sub-parts at all.

atomic : (Part ↔̃ Part) → P Part

∀BOM : Part ↔̃ Part •
atomic BOM = Part \ (d̃omBOM )

We can define a function that explodes the sub-part multi-relation but only
gives the atomic components. Compare these definitions with those in Section
1.1.

explode : (Part ↔̃f Part) 7→ (Part ↔̃f Part)

dom explode = nilpotent
∀BOM : dom explode •

explode BOM = (BOM +̃) B̃ (atomic BOM )

Given an order of products (a bag of parts) we can determine the required
atomic components by using multi-relation image.

(explode BOM )(| ˜order |)
1.14 Override

Relation override satisfies the following condition.

Q ⊕ R = (domR −C Q) ∪ R
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We can generalise override to multi-relations by using the corresponding multi-
relation operators.

[X ,Y ]
⊕̃ : (X ↔̃ Y )× (X ↔̃ Y ) → (X ↔̃ Y )

∀MQ ,MR : X ↔̃ Y •
MQ ⊕̃MR = (d̃omMR −̃C MQ) ]MR

Laws The following laws for multi-relation override are equivalents of similar
laws for relation override.

∀MP ,MQ ,MR : X ↔̃ Y •
MR ⊕̃ {| |} = MR = {| |} ⊕̃MR ∧
(MP ⊕̃MQ) ⊕̃MR = MP ⊕̃ (MQ ⊕̃MR) ∧
(d̃omMQ ∩ d̃omMR = { } ⇒

MQ ⊕̃MR = MQ ]MR = MR ⊕̃MQ) ∧
(∀ x : X ; y : Y •

(x ∈ d̃omMR ⇒ (MQ ⊕̃MR) ] (x , y) = MR ] (x , y)) ∧
(x 6∈ d̃omMR ⇒ (MQ ⊕̃MR) ] (x , y) = MQ ] (x , y)))

2 Case study: A bill-of-materials system

The following specification makes use of Z schemata (see [3, 8]) to present the
state and operations of a bill-of-materials system. The specification makes ex-
tensive use of bags and multi-relations. The description of the bill-of-materials
system is split into three major sections:

• product descriptions,

• customer orders and the store, and

• factory production.

2.1 Product descriptions

We introduce the set Part which denotes all possible parts, including products,
assemblies and atomic components. The specification makes use of a multi-
relation for the bill-of-materials (BOM ) product descriptions. In addition, we
have the set of all known parts and the set of products.

Products
allparts,
products : F Part
BOM : Part ↔̃+ Part

BOM ∈ nilpotent ∧
d̃omBOM ⊆ allparts ∧
r̃anBOM ⊆ allparts ∧
products ⊆ allparts
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Each product description must not make use of itself as a sub-part either directly
or indirectly. Hence the product descriptions are required to form a nilpotent
multi-relation, i.e., no cycles.

An alternative approach could have used the following, almost equivalent,
structure.

BOM : Part 7→ bag Part

The main advantage of using a multi-relation is the useful set of operations
analogous to those for relations, that have been defined for multi-relations.

We introduce the following change and no change schemata.

∆Products =̂ Products ∧ Products ′

ΞProducts =̂ [∆Products | θProducts ′ = θProducts]

AddPart adds new parts/products to the descriptions.

AddPart0
∆Products
p? : Part
madefrom? : bagf Part
product? : Boolean

p? 6∈ allparts ∧
setof madefrom? ⊆ allparts ∧
allparts ′ = allparts ∪ {p?} ∧
(product? = True ⇒ products ′ = products ∪ {p?}) ∧
(product? = False ⇒ products ′ = products) ∧
BOM ′ = BOM ] [[p : madefrom? • (p?, p)]]

Note that as p? is a new part and all the parts in madefrom? must already exist,
cyclic dependencies cannot be introduced between parts.

ChangePart changes the description of an existing part.

ChangePart0
∆Products
p? : Part
madefrom? : bagf Part
product? : Boolean

p? ∈ allparts ∧
setof madefrom? ⊆ allparts ∧
¬ p? inBOM ∗̃(| ˜madefrom? |) ∧
allparts ′ = allparts ∧
(product? = True ⇒ products ′ = products ∪ {p?}) ∧
(product? = False ⇒ products ′ = products \ {p?}) ∧
BOM ′ = BOM ⊕̃ [[p : madefrom? • (p?, p)]]

As p? is an existing part we have to avoid introducing cycles by insisting that
p? is not used to make anything in the set of parts that p? is made from.
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Errors Problems occur if an already existing part is added, or if its sub-parts
do not exist, or if a part to be changed does not exist, or if it is used as a
component, perhaps indirectly, of its new description.

Report ::= OK
| Part already exists
| Parts not known〈〈P Part〉〉
| Part not known
| Part used to make itself

PartExists
ΞProducts
p? : Part
rep! : Report

p? ∈ allparts ∧
rep! = Part already exists

PartMissing
ΞProducts
madefrom? : bagf Part
rep! : Report

¬ (setof madefrom? ⊆ allparts) ∧
rep! = Parts not known(setof madefrom? \ allparts)

PartNonExistent
ΞProducts
p? : Part
rep! : Report

p? 6∈ allparts ∧
rep! = Part not known

CyclicDefn
ΞProducts
p? : Part
madefrom? : bagf Part
rep! : Report

p? inBOM ∗̃(| ˜madefrom? |) ∧
rep! = Part used to make itself

The operations with error reports follow.

Success =̂ [rep! : Report | rep! = OK ]
AddPart =̂ (AddPart0 ∧ Success) ∨ PartExists ∨ PartMissing
ChangePart =̂ (ChangePart0 ∧ Success) ∨ PartNonExistent ∨ CyclicDefn
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2.2 Customer orders and the store

Customers may order a bag of parts. Here we do not keep track of the details
of customers, only orders; such details could be easily added. Orders are given
an order number from the set OrderNo. As well as keeping track of the current
unfilled orders, we record the original orders for posterity. The parts currently
in stock are recorded in the bag store.

Orders
Products
unfilled ,
orders : OrderNo 7→ bag Part
store : bag Part

(∀B : ran orders • setof(B) ⊆ allparts) ∧
(dom unfilled) C orders = unfilled ∧
setof store ⊆ allparts

The operations to record orders do not change the product descriptions.

∆Orders =̂ Orders ∧ Orders ′ ∧ ΞProducts
ΞOrders =̂ [∆Orders | θOrders ′ = θOrders]

When orders arrive they are recorded and a new order number is generated.

Order0
∆Orders
order? : bag Part
orderid ! : OrderNo

order? 6= {| |} ∧
setof order? ⊆ products ∧
orderid ! 6∈ dom orders ∧
unfilled ′ = unfilled ∪ {orderid ! 7→ order?} ∧
orders ′ = orders ∪ {orderid ! 7→ order?} ∧
store ′ = store

Given the current crop of orders a useful enquiry is to determine which orders
are able to be filled from the current stock.

Fillable0
ΞOrders
fillable! : P OrderNo

fillable! = {n : OrderNo | unfilled(n)v store}

Note that, although each order returned is able to be filled, this does not imply
any pair of these orders can necessarily be filled together.

Orders are filled from the current stock. Partial filling of orders is not allowed
in this simple example.

19



Fill0
∆Orders
orderid? : OrderNo

orderid? ∈ dom unfilled ∧
unfilled(orderid?)v store ∧
unfilled ′ = {orderid?} −C unfilled ∧
orders ′ = orders ∧
store ′ = store ∪- unfilled(orderid?)

The operator ‘∪- ’ is bag subtraction (see Appendix B).
Orders may be modified if they have not been filled.

Modify0
∆Orders
order? : bag Part
orderid? : OrderNo

order? 6= {| |} ∧
setof order? ⊆ products ∧
orderid? ∈ dom unfilled ∧
unfilled ′ = unfilled ⊕ {orderid? 7→ order?} ∧
orders ′ = orders ⊕ {orderid? 7→ order?} ∧
store ′ = store

Orders may be cancelled if they have not been filled. The cancelled order
number cannot be reused; this is ensured by retaining it in the domain of orders,
but mapping it to the empty order.

Cancel0
∆Orders
orderid? : OrderNo

orderid? ∈ dom unfilled ∧
unfilled ′ = {orderid?} −C unfilled ∧
orders ′ = orders ⊕ {orderid? 7→ {| |}} ∧
store ′ = store

When parts are delivered to the store they are recorded.

Stow0
∆Orders
parts? : bag Part

setof parts? ⊆ allparts ∧
store ′ = store ] parts? ∧
unfilled ′ = unfilled ∧
orders ′ = orders

Errors Orders must be non-empty and may only be made for products; orders
may only be filled if the request is completely in stock; and only known orders
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may be filled, modified or cancelled. We extend the previous definition of error
reports with these reports plus two we will need later.

Report ::= OK
| Part already exists
| Parts not known〈〈P Part〉〉
| Part not known
| Part used to make itself
| Empty order
| Parts not products〈〈P Part〉〉
| Not in stock〈〈bag Part〉〉
| Order filled or not known
| Not made by factory〈〈P Part〉〉
| Not in production〈〈bag Part〉〉

Empty
ΞOrders
order? : bag Part
rep! : Report

order? = {| |} ∧
rep! = Empty order

If requested parts are not products, the set of non-product parts requested
is reported.

NotProduct
ΞOrders
order? : bag Part
rep! : Report

¬ (setof order? ⊆ products) ∧
rep! = Parts not products(setof order? \ products)

If an order is not able to be filled, the bag of parts that are not in stock is
reported. This is determined by subtracting the parts in stock from the parts
required for the order. Parts with a positive frequency in the result do not have
sufficient stock to fulfill the order, while parts with a zero or negative frequency
do have sufficient stock. The function ‘pbagof’ selects just those parts with
positive frequencies.

NotFillable
ΞOrders
orderid? : OrderNo
rep! : Report

orderid? ∈ dom unfilled ∧
¬ (unfilled(orderid?)v store) ∧
rep! = Not in stock(pbagof(unfilled(orderid?) ∪- store))
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InvalidOrderNo
ΞOrders
orderid? : OrderNo
rep! : Report

orderid? 6∈ dom unfilled ∧
rep! = Order filled or not known

The operations complete with error alternatives follow.

Order =̂ (Order0 ∧ Success) ∨ NotProduct ∨ Empty
Fillable =̂ Fillable0 ∧ Success
Fill =̂ (Fill0 ∧ Success) ∨ InvalidOrderNo ∨ NotFillable
Modify =̂ (Modify0 ∧ Success) ∨ InvalidOrderNo ∨ NotProduct ∨ Empty
Cancel =̂ (Cancel0 ∧ Success) ∨ InvalidOrderNo
Stow =̂ (Stow0 ∧ Success) ∨ PartMissing [parts?/madefrom?]

2.3 The factory

For the operations that we define for the factory, we need access to the informa-
tion about orders and the store. At any time the factory is building a number
of parts.

Factory
Orders
inproduction : bag Part

setof inproduction ⊆ allparts

Operations on the factory do not update the product descriptions or the
orders.

∆Factory
Factory
Factory ′

ΞProducts

unfilled ′ = unfilled ∧ orders ′ = orders

ΞFactory =̂ [∆Factory | θFactory ′ = θFactory ]

The major enquiry operation is to determine the total parts required to fulfill
all orders excluding those already in stock or in production. This is split into
two components: the atomic parts needed to be ordered into the store and the
parts that need to be produced by the factory.

To define this operation we introduce the function maximal which, given a set
of bags, SB, returns a set containing those bags within SB which are maximal.
A bag B is maximal within SB if there does not exist another bag within SB
which strictly contains B.
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[X ]
maximal : P(bag X ) → P(bag X )

∀SB : P(bag X ) •
maximal(SB) = {B : SB | ¬ (∃B ′ : SB • B @ B ′)}

The total parts on order by customers consists of the items in unfilled orders:

onorder =
⊎

(items unfilled).

The function items when applied to a function f gives the bag of items that are
contained in the range of f. The frequency of each item in the bag is the number
of members of the domain of f that map to that item (see Appendix B). In the
above use items unfilled gives a bag of bags of parts, which is then collapsed
into a single bag by ‘

⊎
’.

To calculate the requirements we obviously need to subtract those parts
which are already in hand.

inhand = store ] inproduction

But the true picture is more complex than this. If a part is on order but not in
hand, then not only does this part need to be produced, but the sub-parts from
which it is made are also needed. The complete requirements can be ascertained
by fully exploding the parts that are on order:

BOM ∗̃(| ˜onorder |).

This gives the parts on order as well as the sub-parts required to produce them,
as well as the sub-sub-parts required to produce the sub-parts, etc. In the
calculation of the requirements we need to take into account the fact that some
of the parts or sub-parts or sub-sub-parts, etc., may be in hand. Such parts
fulfill the exploded requirement for not only the parts themselves but also their
direct and indirect sub-parts. The bag of parts that are in hand, that can be
used in some way to fulfill the exploded requirements of the orders, is the subbag
of inhand whose explosion is maximal in the exploded order requirements.

BOM ∗̃(| ˜frominhand |) ∈ maximal{B : bag Part | B v inhand ∧
BOM ∗̃(| B̃ |)v BOM ∗̃(| ˜onorder |) • BOM ∗̃(| B̃ |)}

Note that frominhand is unique.
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Requirements0
ΞFactory
reqdall !,
reqdatomic!,
reqdproduce! : bag Part

∃ onorder , inhand , frominhand : bag Part •
onorder =

⊎
(items unfilled) ∧

inhand = store ] inproduction ∧
BOM ∗̃(| ˜frominhand |) ∈ maximal{B : bag Part | B v inhand ∧

BOM ∗̃(| B̃ |)v BOM ∗̃(| ˜onorder |) • BOM ∗̃(| B̃ |)} ∧
reqdall ! = (BOM ∗̃(| ˜onorder |)) ∪- (BOM ∗̃(| ˜frominhand |)) ∧
reqdatomic! = [[p : reqdall ! | p 6∈ d̃omBOM ]] ∧
reqdproduce! = [[p : reqdall ! | p ∈ d̃omBOM ]]

The factory manager can decide to start making some parts. If not all
the parts can be made from the parts in stock then a maximal sub-bag of
parts (beingmade!) is chosen and the residual that cannot currently be made is
reported in noparts!. The parts being made are recorded as being in production
and the parts required to make them are removed from stock.

Make0
∆Factory
tomake?,
noparts!,
beingmade! : bag Part

setof tomake? ⊆ d̃omBOM ∧
(∃makeable : P(bag Part) •

makeable = {B : bag Part | B v tomake? ∧
BOM (| B̃ |)v store} ∧

beingmade! ∈ maximal(makeable)) ∧
noparts! = tomake? ∪- beingmade! ∧
inproduction ′ = inproduction ] beingmade! ∧
store ′ = store ∪- (BOM (| ˜beingmade! |))

The set makeable gives all possible bags of parts that are directly makeable
from the parts in stock as well as being sub-bags of the parts requested to be
made. The parts beingmade! are a maximal bag contained in this set. Note
that this does not uniquely determine beingmade! as there can be more than
one makeable sub-bag of tomake? that cannot be extended to a larger makeable
bag.

When parts have been produced by the factory they are placed back in the
store for later distribution.
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Made0
∆Factory
made? : bag Part

made?v inproduction ∧
inproduction ′ = inproduction ∪- made? ∧
store ′ = store ]made?

Errors Errors can occur if a part to be made is not one produced by the
factory, or the factory reports that it has made a part that was not one in
production.

NotProduced
ΞFactory
tomake? : bag Part
rep! : Report

¬ (setof tomake? ⊆ d̃omBOM ) ∧
rep! = Not made by factory(setof tomake? \ d̃omBOM )

NotInProduction
ΞFactory
made? : bag Part
rep! : Report

¬ (made?v inproduction) ∧
rep! = Not in production(pbagof(made? ∪- inproduction))

The total operations follow.

Requirements =̂ Requirements0 ∧ Success
Make =̂ (Make0 ∧ Success) ∨ NotProduced
Made =̂ (Made0 ∧ Success) ∨ NotInProduction

3 Conclusion

In Z, the theory of binary relations is built on a model consisting of sets of pairs.
The theory of multi-relations introduced above is built on a model consisting of
multi-sets (or bags) of pairs. As multi-relations are (special forms of) bags all
the bag operators can be used directly on multi-relations, in the same way that
the set operators can be used on ordinary relations. In addition, we have in-
troduced a comprehensive set of multi-relation operators that are multi-relation
equivalents of the ordinary relation operators. All of the ordinary relation op-
erators can be extended to provide useful operations on multi-relations.

Multi-relations are essentially two-dimensional integer matrices, and there
are equivalent matrix operators for many of the multi-relation operators defined
above. However, one of the main aims of this paper is to show the relationship
between ordinary relations and multi-relations. To emphasise this we have used
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the term multi-relation and chosen to introduce operators on multi-relations as
equivalents of operators on ordinary relations.

The bill-of-materials specification shows the usefulness of both the theories
of multi-sets (bags) and multi-relations. The details of the product descriptions
and the calculations of requirements, etc., based on these are complex operations
that can be modelled succinctly using multi-relations. The example bill-of-
materials system given above is somewhat simplified. It is not intended to
be the be-all and end-all of bill-of-materials systems. It is intended, however,
to show that multi-relations provide a useful abstraction for specifying such
systems.

The development of the bill-of-materials specification relied on the existence
of the theory of multi-relations. Even if such a theory was not available it
is worthwhile for the specifier to develop such a theory as the first stage in
producing a specification of a bill-of-materials system. The advantage of such an
approach is that the theory is an abstraction that concentrates on developing the
underlying concepts of such systems independent of the details of the particular
system. These concepts are used many times over in the specification of the
system. Furthermore, the laws developed for the abstract concepts developed
in the theory of multi-relations are considerably simpler than the properties of
the particular bill-of-materials system. In reasoning about such a system these
laws will be used over and over again.

Another significant advantage to developing a separate mathematical theory
is that it can be reused in the specification of other systems. The bill-of-materials
system given in Section 2 is one possible approach to such a system, but another
bill-of-materials system may take a quite different approach. In this case it is
unlikely that the specification given above can be reused, but it is likely that
the theory of multi-relations can be reused.

Not only is the theory of multi-relations useful for describing a bill-of-
materials system, it can be used to describe and reason about other quite differ-
ent systems that require objects with similar abstract properties. For example,
a reference count memory garbage collector can be modelled in terms of multi-
relations. One object in the memory may reference another object a number
of times. A multi-relation can record the frequency of such references. Multi-
relations may also be used to describe aspects of computer networks, such as
the multiplicity of links between nodes or the bandwidth between nodes.

The theory of multi-relations for Z presented above is based on the mathe-
matics of matrices and graph theory. Multi-relations correspond in graph theory
to graphs with integer weights. Graph theory is a well established field [2] that
has been successfully applied to many computing applications especially in the
area of optimisation problems. The theory of multi-relations can be used for
specifying and reasoning about such applications in Z.
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A Binary relations

A binary relation is modelled by a set of ordered pairs. Hence operators defined
for sets can be used on relations. Let X , Y and Z be sets; x , x1, . . . , xn : X ;
y , y1, y2, . . . , yn : Y ; S be a subset of X ; T be a subset of Y ; and R a relation
between X and Y .

X ↔ Y == P(X ×Y )
The set of relations between X and Y . The set X is referred to
as the source of the relation R and the set Y as its destination.

x R y == (x , y) ∈ R
x is related by R to y . The name of a relation may either be an
identifier or an infix operator symbol. A relation with an identifier

27



name may be used as an infix operator by underlining it. For an
infix relation operator, the whole relation may be referred to by
placing underscores either side of the symbol and enclosing that
in parentheses. For example, the whole relation corresponding to
the infix operator ‘<’ is referred to by ‘( < )’, so (x < y) ⇔
(x , y) ∈ ( < ).

x 7→ y == (x , y)

{x1 7→ y1, x2 7→ y2, . . . , xn 7→ yn}
== {(x1, y1), (x2, y2), . . . , (xn , yn)}
The relation relating x1 to y1, x2 to y2, . . . , and xn to yn .

domR == {x : X | (∃ y : Y • x R y)}
The domain of a relation: the set of x components that are related
to some y.

ranR == {y : Y | (∃ x : X • x R y)}
The range of a relation: the set of y components that some x is
related to.

R1
o
9 R2 == {x : X ; z : Z | (∃ y : Y • x R1 y ∧ y R2 z )}

Forward relational composition; R1 : X ↔ Y ; R2 : Y ↔ Z . The
composition relates x to z if there is some y such that x is related
to y by R1 and y is related to z by R2.

R1 ◦ R2 == R2
o
9 R1

Relational composition. This form is primarily used when R1 and
R2 are functions.

R∼ == {y : Y ; x : X | x R y}
Transpose of a relation R. R∼ relates y to x if and only if R relates
x to y.

idS == {x : S • x 7→ x}
Identity function on the set S .

Rk The relation R composed with itself k times. This operator (some-
times called iteration) is only defined for homogeneous relations:
relations that have the same source and destination sets. Given a
homogeneous relation R : X ↔ X and k : N
R0 = idX and Rk+1 = Rk o

9 R.

R+ ==
⋃
{n : N1 • Rn}

=
⋂
{Q : X ↔ X | R ⊆ Q ∧ Q o

9 Q ⊆ Q}
Transitive closure of relation R. A pair (x1, xn) is in the rela-
tion R+ if and only if there exists a finite sequence of values
x1, x2, ..., xn , where n ≥ 2, such that (x1, x2) ∈ R, (x2, x3) ∈ R,
... and (xn−1, xn) ∈ R.

R∗ ==
⋃
{n : N • Rn}

= R+ ∪ idX
=

⋂
{Q : X ↔ X | idX ⊆ Q ∧ R ⊆ Q ∧ Q o

9 Q ⊆ Q}
Reflexive transitive closure.
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R(| S |) == {y : Y | (∃ x : S • x R y)}
Image of the set S through the relation R.

S C R == {x : X ; y : Y | x ∈ S ∧ x R y}
Domain restriction: the relation R with its domain restricted to
the set S .

S −C R == (X \ S ) C R
Domain exclusion: the relation R with the members of S excluded
from its domain.

R B T == {x : X ; y : Y | x R y ∧ y ∈ T}
Range restriction to T .

R −B T == R B (Y \ T )
Range exclusion: the relation R with the members of T excluded
from its range.

R1 ⊕ R2 == ((domR2)−C R1) ∪ R2

Overriding; R1,R2 : X ↔ Y .

B Bags

Let B ,B1,B2, . . . be bags with elements from the set X ; t , t1, t2, . . . , tn be
expressions of type X ; x , x1, x2, . . . , xn be variables; and n, k1, k2, . . . , kn be
integers.

bag X == X 7→ N1

The set of bags whose elements are drawn from the set X . Only
positive frequencies are recorded.

{| |} == { }
The empty bag.

[[t 7→ n]] The bag which contains (only) t , n times.
= {t 7→ n}, if n 6= 0
= {| |}, if n = 0.

[[t1 7→ k1, t2 7→ k2, . . . , tn 7→ kn ]]
== [[t1 7→ k1]] ] [[t2 7→ k2]] ] · · · ] [[tn 7→ kn ]]
Note that with this definition we do not require the tj to be dis-
tinct; for example,
[[t 7→ k1, t 7→ k2]] = [[t 7→ k1]] ] [[t 7→ k2]]
= [[t 7→ k1 + k2]].

[[t1, t2, . . . , tn ]]
== [[t1 7→ 1, t2 7→ 1, . . . , tn 7→ 1]]
The bag containing the elements t1, t2, . . . , tn with the frequency
in which they occur in that list.

B ] t The frequency of occurrence of the value of t in the bag B :
(t ∈ domB ⇒ B ] t = B(t)), and
(t 6∈ domB ⇒ B ] t = 0).
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count(B)(t) The frequency of occurrence of the value of t in the bag B :
(t ∈ domB ⇒ count(B)(t) = B(t)), and
(t 6∈ domB ⇒ count(B)(t) = 0).

t inB == B ] t 6= 0
Test whether the element t occurs in the bag B with non-zero
frequency.

B1 ] B2 The sum of two bags. Each element of the sum of the bags has a
frequency which is the sum of its frequencies in the two bags:
(B1 ] B2) ] x = (B1 ] x ) + (B2 ] x ).

B1 ∩∗ B2 The (pairwise) product of two bags. Each element of the product
has a frequency which is the product of its frequencies in the two
bags:
(B1 ∩∗ B2) ] x = (B1 ] x ) ∗ (B2 ] x ).

n ⊗ B An integer constant times a bag. Each element of the product has
a frequency which is the product of its frequency in B and the
constant:
(n ⊗ B) ] x = n ∗ (B ] x ).

B1 u B2 The pairwise minimum of two bags.
(B1 u B2) ] x = min{B1 ] x ,B2 ] x}.

B1 t B2 The pairwise maximum of two bags.
(B1 t B2) ] x = max{B1 ] x ,B2 ] x}.

B1v B2 == (∀ x : X • (B1 ] x ) ≤ (B2 ] x )).
B1 is a sub-bag of B2. One bag is contained in another if the
frequency of every element in the first bag does not exceed its
corresponding frequency in the second bag.

B1 @ B2 == B1v B2 ∧ B1 6= B2
B1 is a proper sub-bag of B2.

setof B == {x : X | B ] x 6= 0}
The set of items in the bag B that occur with non-zero frequency.

bagof S The bag formed from the set S by including all the elements of S
(and no others) with a frequency of one.
dom(bagof S ) = S ∧ ran(bagof S ) = {1}.

bagf X == {B : bag X | (setof B) ∈ F X }
The set of all finite bags: those bags with only a finite number of
elements with non-zero frequency.

sizeB The size of a finite bag is the total number of items in the bag
taking into account the frequency of occurrence of each item.

size{| |} = 0
size[[t ]] = 1
size(B1 ] B2) = (sizeB1) + (sizeB2)
size(n ⊗ B) = n ∗ sizeB
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∑
B The sum of all the items in the finite bag of numbers B taking

into account their frequency in B .∑
{| |} = 0∑
[[t ]] = t∑
(B1 ] B2) = (

∑
B1) + (

∑
B2)∑

(n ⊗ B) = n ∗
∑

B

items(R) The bag of items which occur in the range of the relation R. The
frequency of each item is the number of domain elements that are
paired with the item in R. The relation must be ‘finitary’, that
is, for each element in the range of R there are only finitely many
domain elements related to it by R. Given R : W ↔ X

R ∈ dom items ⇔
(∀ x : ranR • {w : domR | (w , x ) ∈ R} ∈ F W )

R ∈ dom items ⇒
(items R) ] x = #{w : domR | (w , x ) ∈ R}

As both functions and sequences can be considered as special cases
of relations, items can be used on functions and sequences.

[[x : B | P • t ]]
The bag of all the values of the expression t , for x ranging over
all the items in the bag B such that the predicate P holds. If a
value of x occurs multiple times in the bag B , then we add the
corresponding value of t that many times to the resultant bag;

[[x : B | P • t ]] ] y =∑
items(λ x : setof B | P ∧ y = t • B ] x )

A bag comprehension is only well-defined if each value of t occurs
only finitely often. If the expression t is omitted, the default
expression is x .

[[x1 : B1; x2 : B2; . . . ; xn : Bn | P • t ]]
Multiple variables may be declared in a bag comprehension; each
declared variable ranges over the values in the associated bag with
the frequency of occurrence of the value in that bag. If the ex-
pression t is omitted, the default expression is the tuple of the
variables: (x1, x2, . . . , xn).

[[D • t ]] == [[D | true • t ]]
For example, if B : bag X and C : bag Y then

[[x : B ; y : C • (x , y)]],

is of type bag(X × Y ), and the pair (x , y) occurs in this bag
(B ] x ) ∗ (C ] y) times; this is the bag generalisation of Cartesian
product.
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⊎
BB The distributed bag sum of the bag of bags BB taking into account

the frequency of each bag in BB as well as the frequencies of the
items in the individual bags. Given BB : bag(bag X )
(
⊎

BB) ] x =
∑

[[B : BB • B ] x ]].

Bags can be generalised to allow both positive and negative frequencies. All
the operators from the previous section can be generalised to work with bags
allowing negative frequencies. The operator definitions given in the previous
section have been written so that they are appropriately defined if occurrences
of bag are replaced by bag. See [4] for further details and examples.

bag X == X 7→ (Z \ {0})
The set of generalised bags whose elements are drawn from the
set X . Both positive and negative frequencies are allowed in gen-
eralised bags.

−B The negation of bag B . Each element of the negation has a fre-
quency which is the negation of its frequencies in B :
(−B) ] x = −(B ] x ).

B1 ∪- B2 The difference between two bags. Each element of the difference
between the bags has a frequency which is the difference of its
frequencies in the two bags:
(B1 ∪- B2) ] x = (B1 ] x )− (B2 ] x ).

pbagof B == [[p : B | B ] p > 0]]
The bag with only positive frequency items included.
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