
SOFTWARE VERIFICATION RESEARCH CENTRE

THE UNIVERSITY OF QUEENSLAND

Queensland 4072

Australia

TECHNICAL REPORT

No. 98-14

Separating Timing and Calculation
in Real-Time Refinement

Ian Hayes

July 1998

Phone: +61 7 3365 1003

Fax: +61 7 3365 1533

http://svrc.uq.edu.au

Copyright c© 1998 Springer-Verlag. Published in Jim Grundy, Martin Schwenke and Trevor
Vickers, editors, International Refinement Workshop and Formal Methods Pacific 1998, pages
1–16, Springer-Verlag Series in Discrete Mathematics and Theoretical Computer Science, Sin-
gapore, 1998.

Note: Most SVRC technical reports are available via anonymous ftp, from
svrc.uq.edu.au in the directory /pub/techreports. Abstracts and compressed
postscript files are available from http://svrc.uq.edu.au

Separating Timing and Calculation

in Real-Time Refinement

Ian Hayes

Abstract.

We consider the specification and refinement of sequential real-time programs. Our real-
time specifications describe the allowable behaviours of an implementation in terms of the
values of variables over time. Hence within a specification the values of the variables and the
times at which they have those values are intertwined. However, in a real-time program some
commands are concerned with calculating the right outputs, while other commands, such as
delays and deadlines, are concerned with making sure the outputs appear at the right time.

During the refinement process we would like to decompose the overall problem into those
aspects dealing with time and those that are purely calculation. We need refinement rules that
allow us to separate these concerns. Further, given a component that is only concerned with
calculation, the complexities of the real-time calculus that deal with timing behaviour are an
unnecessary burden. Such calculational components can be developed more straightforwardly
in the standard refinement calculus. We would like to allow the use of the untimed calculus
for the development of such components. To do that we need to embed the untimed calculus
within the real-time calculus.

1 Introduction

We consider the problem of developing a sequential real-time program via a process of stepwise
refinement from a specification of the required real-time behaviour of a system. The program
operates in an environment where it can sample inputs, perform calculations, and update
outputs. Of course, the all important extra dimension to the problem is time. Not only must
the program calculate the correct values to be output, it must also meet the specified timing
requirements.

Following the approach used in the physical sciences for many centuries, we consider inputs
and outputs to be traces over time (i.e., functions from time to their value at that time). A
specification determines the allowable values of the outputs in terms of the values of the inputs.
However, because inputs and outputs are both traces over time, a specification inherently in-
cludes both timing and value considerations rolled into one. As part of our refinement process,
we would like to decompose the problem into those aspects that deal with real-time constraints
and those that perform calculations. The aim of our approach is to be able to develop the
components that perform calculations using essentially the standard (untimed) sequential re-
finement calculus. To do this, we need to be able to perform refinement steps that separate

2 Ian Hayes

out timing constraints, leaving specifications of calculational components. To use standard re-
finement calculus derivations for the calculational components, we need to embed the standard
calculus within the real-time calculus.

In Section 2 we provide an overview of the sequential real-time refinement calculus [3].
Section 3 introduces an example to illustrate the goals of the rest of the paper, and Sections 4
and 5 look at the relationship between the timed and untimed calculi, and the embedding of
the untimed calculus within the real-time calculus.

2 Sequential real-time refinement

Environment In the real-time calculus, variables are modelled as functions over time. For
example, the variable v of type T is modelled by a function from Time to T

v : Time → T

where Time is represented by nonnegative reals. In the environment, ρ, of a program we dis-
tinguish between inputs, outputs and local variables. Inputs are under the control of the envi-
ronment, not the program, although the program may make assumptions about the behaviour
of inputs. Both outputs and local variables are under the control of the program; collectively
we refer to outputs and local variables as the program variables and use the abbreviation ρ̂
to stand for the program variables in an environment ρ. Outputs are distinguished from local
variables because outputs are externally observable, and hence refinements must take care to
preserve their behaviour.

The special variable τ is used to stand for the current time. It is not itself a function of
time.

The target programming language consists of the guarded command language [1] extended with
the following real-time commands:

– delay untilD – delays execution until the absolute time D ;
– x : gettime – assigns the current time to x ;
– x : read(v) – samples the input v and assigns the value to x ; and
– deadlineD – specifies an absolute time deadline, D , to be met by the preceding code.

Of these the deadline command [2] is novel. It cannot be implemented by simply generating
machine code (generating machine code only makes it harder to meet a deadline). Instead, a
timing analysis phase is required to ensure that for every valid execution of the machine code,
its deadlines will always be met. If the timing analysis is successful then the machine code is
a valid implementation, otherwise it must be discarded.

Wide-spectrum language As with the standard refinement calculus, our language is extended
with a specification command. However, in our case the specification is dealing with variables
that are traces over time as well as the special variable, τ , that stands for the current time.
The form of a specification command is ?x̃ :

[
R

]
. The frame, x̃ , is the vector of variables that

may be modified by the command. Any program variables in the environment that are not in

Separating Timing and Calculation 3

the frame remain unchanged (stable) for the duration of the execution of the command. We
introduce the abbreviation

stable(y ,S) == (∀ t1, t2 : S • y(t1) = y(t2))

in order to state such stability properties. We also allow a vector of variables to be used in
place of y , in which case all of the variables in the vector are stable over S .

The postcondition, R, of a specification command is a predicate specifying the effect that
the command is to achieve. The real-time specification command has been defined by Utting
and Fidge [7] by encoding it as a standard specification command that changes only time:

?x̃ :
[
R

]
== τ :

[
R ∧ 8τ ≤ τ ′ ∧ stable(ρ̂ \ x̃ , [8τ ... τ ′])

]
(1)

where 8τ and τ ′ stand for the start and finish times of the command (equivalent to Morgan’s
τ0 and τ convention [6]), and ρ̂ \ x̃ is the set of program variables in the environment ρ minus
the frame x̃ . As well as establishing R, the specification also ensures that time does not go
backward, and that the program variables that are not in the frame are stable for the duration
of the command.

Stable predicates Assertions within real-time specifications may refer to inputs and to the
current time. Because of this, one cannot guarantee that just because an assertion, P , holds
at time t , that P will hold at any later time, even if the program has not modified any of the
variables occurring in P in the intervening period. For example, the assertion τ ≤ 1 holds at
time 1 but does not hold at any later time. On the other hand, if the assertion 1 ≤ τ holds at
some time t , it holds for all later times. If v is an input then, if the assertion v(τ) = 0 holds
at time 1, that does not guarantee that it holds at later times, because the value of the input
may change independently of the action (or lack thereof) of the program.

In dealing with real-time programs, assertions that are stable over time have special signif-
icance. For example, consider the following refinement, for introducing a selection command,
that is valid in the standard refinement calculus

?
{
P

}
; ?x :

[
R

]
v ifB → ?

{
P ∧ B

}
; ?x :

[
R

]
[] ¬ B → ?

{
P ∧ ¬ B

}
; ?x :

[
R

]
fi

where B is some boolean expression. The above refinement is not necessarily valid in the timed
calculus, because evaluating the guards takes time. Although P may be assumed to hold at
the start time of the selection command, it may no longer hold at the beginning of a command
within a branch because time has passed during the evaluation of the guards.

To avoid this problem, we insist that P is an idle-stable predicate, i.e., P does not change
its value if only the current time and the value of inputs change. If we assume that, within P ,
8τ is used to reference the current time, then P is idle-stable provided

8τ ≤ τ ′ ∧ stable(ρ̂, [8τ ... τ ′]) ∧ P ⇒ P [8τ\τ ′]

That is, if P holds at time 8τ , and all the program variables are stable from 8τ until some later
time, τ ′, then P still holds at τ ′.

4 Ian Hayes

A further problem arises with the guards themselves. If the guards refer to inputs or to the
current time, then their values are not necessarily stable. Although the guard B may evaluate
to true, there is no guarantee that B will still hold at the time the corresponding branch
commences execution. To avoid this problem, we insist that guards do not refer to inputs or
to the current time, and hence they are idle-stable.

Similarly, just because both branches of the selection establish R, it does not follow that
the whole selection will establish R. There are two problems here:

– a branch may have established R, but it takes time for the selection command to exit after
completing the branch, during which time R may be invalidated;

– if R refers to initial values of variables, then within the specification command on the left
side of the refinement the initial values refer to the values at the start time of the whole
selection command, whereas within a branch the initial values refer to the values of the
variables when the body of the branch commenced. References to either time or inputs
may have changed.

To avoid these problems, we require that such predicates are both pre-idle-stable and post-idle-
stable. Within an effect predicate, R, 8τ is used to refer to the start time of the command, and
τ ′ is used to refer to the finish time of the command. R is pre-idle-stable provided

∀ u : Time • u ≤ 8τ ≤ τ ′ ∧ stable(ρ̂, [u ... 8τ]) ∧ R ⇒ R [8τ\u]

That is, if the program variables are stable from some time u (representing the start time of
the selection command in our example) until 8τ , and R holds with respect to start time 8τ and
finish time τ ′, then R also holds with the start time replaced by u.

R is post-idle-stable provided

∀ u : Time • 8τ ≤ τ ′ ≤ u ∧ R ∧ stable(ρ̂, [τ ′ ... u]) ⇒ R [τ ′\u]

That is, if R holds for start time 8τ and finish time τ ′, and the program variables are stable
from τ ′ until a later time u (representing the finish time of the whole selection command), then
R also holds with the finish time replaced by u.

In the selection command example, in the time periods taken to evaluate the guards and
exit the selection, the program variables are stable. If the effect R is both pre and post-idle-
stable, then provided R is achieved for each of the branches, it will be achieved for the whole
selection command.

3 An example

Consider the example of trying to determine the size of an object passing through a sensor
beam on a conveyor belt moving at constant speed. (This example is taken from [4] where a
more complete refinement may be found.) The sensor signal rises when the object interrupts
the beam and falls when the object has passed through the beam. The size of the object is
(f − r) ∗ s, where r and f are the times at which the sensor rises and falls, and s is the speed
of the belt.

con r , f : Time;
const s == 10 m/s – speed in metres per second

Separating Timing and Calculation 5

The logical constants, r and f , denote the exact times at which the sensor rises and falls. We
cannot use these directly within the final program. Instead we need to determine approxima-
tions, rt and ft , to r and f , and then calculate the approximate size of the object in terms of
rt and ft .

var size : N µm; – size in micrometres
var rt , ft : N µ s – times in microseconds

Although these variables have been declared to be of type natural number (with units), recall
that in the underlying model they are viewed as functions from Time to natural numbers, and
hence to determine the value of a variable at a particular time, one must index the variable by
that time.

Let us concentrate on the calculation component of the refinement, assuming the approxi-
mations to r and f have been determined to within an error bound of 100 µ s:

const e == 100 µ s;
?
{
rt(8τ) ∈ [r ... r + e] ∧ ft(8τ) ∈ [f ... f + e]

}
(2)

An assertion states a condition that is true at the point at which it appears in a program.
An assertion may refer to the current time, but as the assertion takes no time, both the start
time, 8τ , and the finish time, τ ′, of an assertion are the same. To allow for simpler expression
of laws later, we follow the convention of only ever using 8τ to refer to the current time within
an assertion.

The task is to calculate the size of the object to within 1mm, and to complete the calculation
within 100 µ s of the object having passed:

?size:
[
size(τ ′) ∈ (f − r) ∗ s ± 1 mm ∧ τ ′ ≤ f + 100 µ s

]
(3)

To satisfy this specification, one must both calculate the size and meet the deadline. Here we
can make use of the deadline command to separate calculation and timing requirements. This
is a crucial step in the process as it allows one to concentrate on the calculation of the size
without having to worry explicitly about the timing constraint. We make use of the separate
deadline law [3].

Law 1 (separate deadline) Given an environment, ρ, provided D is a time-valued expres-
sion, which may only include references to logical constants and program variables but no
references to 8τ

?x :
[
P , R ∧ τ ′ ≤ (D @ τ ′)

]
v ?x :

[
P , R

]
; deadlineD

The expression D may contain references to program variables. These are to be interpreted as
the value of the variables at the finish time of the command. The notation D @ τ ′ stands for
the expression D with any reference to a program variable, v , replaced by v(τ ′). Refining (3)
using this law gives

?size:
[
size(τ ′) ∈ (f − r) ∗ s ± 1 mm

]
; (4)

deadline f + 100 µ s

The specification command can now be refined to an assignment command using the assignment
introduction rule of the real-time calculus.

6 Ian Hayes

Law 2 (assignment) Given an environment, ρ, a frame, x̃ , such that x̃ ⊆ ρ̂, and a vector of
idle-stable expressions, Ẽ , provided

8τ ≤ τ ′ ∧ stable(ρ̂ \ x̃ , [8τ ... τ ′]) ∧ P ∧ x̃ (τ ′) = (Ẽ @ 8τ) ⇒ R

for all states, then

?
{
P

}
; ?x̃ :

[
R

]
v x̃ := Ẽ .

The specification command (4) can be refined using this law to the assignment

size := (ft − rt) ∗ s

with the following proof obligation

8τ ≤ τ ′ ∧
stable(rt , [8τ ... τ ′]) ∧
stable(ft , [8τ ... τ ′]) ∧
rt(8τ) ∈ [r ... r + e] ∧
ft(8τ) ∈ [f ... f + e] ∧
size(τ ′) = (ft(8τ)− rt(8τ)) ∗ s

 ⇒ size(τ ′) ∈ (f − r) ∗ s ± 1 mm (5)

If we consider the refinement of the specification command (4) in the standard untimed
refinement calculus, the assumptions (2) can be written

?
{

8rt ∈ [r ... r + e] ∧ 8ft ∈ [f ... f + e]
}

(6)

where 8rt stands for the value of the variable at the time at which the assertion is reached. We
use the before-state decoration to simplify writing laws involving assertions as preconditions.
The specification (4) can be written as

?size:
[
size ′ ∈ (f − r) ∗ s ± 1 mm

]
(7)

where size ′ refers to the value of the variable size on termination of the command. This can
be refined to the same assignment as before but with the following proof obligation:(

8rt ∈ [r ... r + e] ∧
8ft ∈ [f ... f + e]

)
⇒ (8ft − 8rt) ∗ s ∈ (f − r) ∗ s ± 1 mm (8)

In this case the standard refinement contains all the essential information of the refinement in
the timed calculus, but omits the complexities of explicit time indices and stability conditions.
More importantly the proof obligation is considerably simpler. The goal of this paper is to show
how this simpler approach for calculational components can be embedded within the real-time
refinement calculus.

Notational conventions We start by introducing a notational convention that allows us to
write the simpler form of specification within the real-time calculus. Within assertions and
specifications, we allow a variable, v , to be referenced in one of three ways:

Separating Timing and Calculation 7

– v refers to the whole trace of v (it may be explicitly indexed to get the value of v at a
particular time);

– 8v refers to the value of v at the current time within an assertion, and within a specification
to the value of v at the start time of the specification; and

– v ′, which is only meaningful in a specification, refers to the value of v at the finish of the
command.

Using this convention within assertions and specifications, 8v is equivalent to v(8τ), and within
a specification v ′ is equivalent to v(τ ′). Hence the assertions (2) and (6) are equivalent, and
the specifications (4) and (7) are equivalent.

Our choice of notation is motivated by wanting v ′ and 8v to have the same meaning as v
and v0 in Morgan’s refinement calculus [6], while allowing references to the value of v at times
other than the start and finish times of a specification using the trace notation v . Our choice
of notation for this paper is based on the desire to have an identifier v stand for its whole
timed trace, rather than its value at some particular time. Then to avoid ambiguities, we need
separate notations for the before and after-state values of variables; the notation chosen is
derived from that of Hehner [5]. (Aside: In earlier papers we have used the notation v0 to
stand for the initial value of v , and v to stand for both the whole trace and the final value
of v . Unfortunately, expressions like x = y , where x and y are variables, are then ambiguous:
the x and y could either both be whole traces or final state values, and the context cannot
disambiguate the two interpretations.)

For example, the read command samples its input at some time during its execution. It can
be defined in terms of a specification command as follows:

x : read(v) == ?x :
[
x ∈ v(| [8τ ... τ ′] |)

]
where v(| [8τ ... τ ′] |) is the set of values of v over the closed interval from the start of the
command, 8τ , to the finish of the command, τ ′. Using just the 8v and v ′ conventions one
cannot specify the read command because one can only refer to the values of v at 8τ and τ ′,
and not over the range in between.

Our notational conventions allow us to abbreviate assertions and specifications as illustrated
above. However, they do not justify the abbreviation of the proof obligation (5) to (8). If we
expand (8) using our notational conventions we get(

rt(8τ) ∈ [r ... r + e] ∧
ft(8τ) ∈ [f ... f + e]

)
⇒ (ft(8τ)− rt(8τ)) ∗ s ∈ (f − r) ∗ s ± 1 mm (9)

which is simpler than (5). For such calculational components, the additional premisses in (5)
are not needed to prove the obligation.

4 Relating the timed and untimed calculi

In order to support the use of the simpler untimed proof obligations for refinement steps
for calculational components, we need to examine the relationship between the untimed and
timed refinement calculi. In this section, we examine an example refinement law and its proof
obligation, and show how the proof obligation for the real-time law can be transformed into a
proof obligation in the untimed model.

8 Ian Hayes

Consider the following refinement in the real-time calculus

?
{
P

}
; ?x̃ :

[
Q

]
v ?

{
P

}
; ?x̃ :

[
R

]
(10)

where P , Q and R are predicates in which there is no use of the 8v and v ′ notation, except
for 8τ and τ ′, i.e., all references to a variable, v , treat it explicitly as a function of time. In
addition, P does not refer to τ ′, only 8τ . The refinement (10) is valid provided that

8τ ≤ τ ′ ∧ stable(ρ̂ \ x̃ , [8τ ... τ ′]) ∧ P ∧ R ⇒ Q (11)

holds for all timed states. This is essentially just the strengthen postcondition rule of Morgan [6]
adapted to the slightly different notation, and with the additional premisses 8τ ≤ τ ′ and
stable(ρ̂ \ x̃ , [8τ ... τ ′]) derived from the definition of the specification command (1).

We would like to make use of the 8v and v ′ notation to stand for v(8τ) and v(τ ′), respec-
tively. We can always eliminate the abbreviations by replacing 8v by v(8τ) and v ′ by v(τ ′).
We define the notation R @ (8τ, τ ′) to be R with all references to 8v replaced by v(8τ) and all
references to v ′ replaced by v(τ ′), for all variables, v , occurring in R.

If the predicates P , Q and R in the above refinement rule are allowed to use the abbreviated
notation (noting that P is restricted to use only 8v and not v ′), then (11) has to be rewritten

8τ ≤ τ ′ ∧ stable(ρ̂ \ x̃ , [8τ ... τ ′]) ⇒ (P ∧ R ⇒ Q) @ (8τ, τ ′) (12)

Now consider the special case of a calculational component in which P , Q and R make no
explicit references to the trace variable v , i.e., they only reference v via the 8v and v ′ conven-
tions. Further, P , Q and R make no references to 8τ and τ ′. For this case P is essentially a
predicate constraining the pre-state values of variables, and Q and R are predicates relating
the pre and post-state values of variables.

The stability predicate implies that for every program variable, v , that is not in the frame
(v ∈ ρ̂ \ x̃), its value does not change and therefore we may deduce that 8v = v ′. This allows
one to replace any occurrences of v ′ with 8v , and hence to rewrite (12) as(

8τ ≤ τ ′ ∧
stable(ρ̂ \ x̃ , [8τ ... τ ′])

)
⇒ (P ∧ R ⇒ Q) [v ′\ 8v]v∈ρ̂\x̃ @ (8τ, τ ′) (13)

where the notation [v ′\ 8v]v∈ρ̂\x̃ stands for the replacement of all occurrences of v ′ by 8v , for
all identifiers, v , in the set ρ̂ \ x̃ . Now we note that the time progress and stability premisses
(to the left of the first implication) in (13) are of no help in establishing the right side of (13)
because the predicate makes no references to 8τ and τ ′, or to the values of variables other than
via 8v and v ′. Hence we can simplify (13) to

(P ∧ R ⇒ Q) [v ′\ 8v]v∈ρ̂\x̃ @ (8τ, τ ′) (14)

If (14) holds for all values of the timed traces of its variables, then the refinement (10) given
above is valid. But note that the predicate to the left of the ‘@’ is essentially that used in
the untimed refinement calculus for the strengthen postcondition law (aside from the different
notational conventions). If the predicate to the left of the ‘@’ holds for all values of 8v and v ′,
then (14) will hold for all timed traces. Hence all we need to show is that for all values of the
before and after states

(P ∧ R ⇒ Q) [v ′\ 8v]v∈ρ̂\x̃ (15)

Separating Timing and Calculation 9

In the next section, we formalise the above reasoning by showing that for any predicate M
that does not refer to 8τ or τ ′ and only references variables via the 8v and v ′ convention, that
if M holds for all untimed states, then M @ (8τ, τ ′) holds for all timed trace states.

5 Embedding the untimed calculus

In this section we formalise the relationship between the timed and untimed models. In the
timed model, variables are represented by traces over time, while in the untimed model only
the before and after-state values of variables are available. The before-state value of a variable,
8v , is the value of v at time 8τ and the after-state value, v ′, is the value of v at time τ ′. Below
we formalise timed and untimed states and the relationship between them, and then we show
the relationship between untimed and timed proof obligations.

In a specification command, the effect predicate may refer to logical constants, program
constants, variables (inputs, outputs, and local variables), and the start and finish time of the
command (8τ and τ ′). In both the timed and untimed models, constants are treated in the
same manner, and hence we shall ignore them in this exposition. We represent environments
by the following schema

Environment
in, out , lvar , pvar , vars : P Ident
typeof : Ident 7→ P Val

pairwise disjoint〈in, out , lvar〉
pvar = out ∪ lvar
vars = in ∪ out ∪ lvar ∧ ‘τ ’ 6∈ vars
dom typeof = vars

where Ident is the set of all identifiers (including ‘τ ’) and Val is the set of all values (including
booleans, integers, Time, etc.). The disjoint sets in, out , and lvar represent the names of the
inputs, outputs and local variables, respectively. The set pvar gives the names of the program
variables; for an environment, ρ, ρ̂ is an abbreviation for ρ.pvar . The set vars gives the names
of all of the variables, and the function typeof gives their types.

In the timed model, variables are represented by functions of time, and the start and finish
times are just time values. We can model a timed state by a mapping from identifiers to values,
in which the identifiers ‘ 8τ ’ and ‘τ ′’ are elements of the domain of a timed state and their
values are of type time, and variables are modelled by timed traces. Given an environment, ρ,
the set of all timed states is given by

TStateρ == {γ : Ident 7→ Value |
{‘ 8τ ’, ‘τ ′’} ⊆ dom γ ∧ {γ(‘ 8τ ’), γ(‘τ ′’)} ⊆ Time ∧
ρ.vars ⊆ dom γ ∧ (∀ id : ρ.vars • γ(id) ∈ (Time → ρ.typeof (id)))}

where Value includes Val as well as timed traces of type Time → Val . For example, the
following timed state represents a start time of zero and a finish time of two, and a variable x
that has value zero up to time one, and then has value one.

γ1 = {‘ 8τ ’ 7→ 0, ‘τ ′’ 7→ 2, ‘x ’ 7→ (λ t : Time • if t < 1 then 0 else 1)}

10 Ian Hayes

In the untimed model, we only have to model the values of variables in the before and after
states. Given a plain identifier, id , we use 8id to refer before-state decorated identifier and id ′

to refer to the after-state decorated identifier. The sets of all before and after-state decorated
identifiers are given by 8Ident and Ident ′:

8Ident == {id : Ident • 8id}
Ident ′ == {id : Ident • id ′}

The set of all untimed states is given by

UStateρ == {σ : (8Ident ∪ Ident ′) 7→ Val |
{‘ 8τ ’, ‘τ ′’} ⊆ dom σ ∧ {σ(‘ 8τ ’), σ(‘τ ′’)} ⊆ Time ∧
(∀ id : ρ.vars • { 8id , id ′} ⊆ dom σ ∧ {σ(8id), σ(id ′)} ⊆ ρ.typeof (id))}

For example, the following represents an untimed state with a start time of zero and a finish
time of two, and a variable, x , with an initial value of zero and a final value of one.

σ1 = {‘ 8τ ’ 7→ 0, ‘τ ′’ 7→ 2, ‘ 8x ’ 7→ 0, ‘x ′’ 7→ 1}

Given a timed state, γ, one can extract the corresponding untimed state: the before and
after times, 8τ and τ ′ are the same in both models, and the before and after values of each
variable in the untimed model are just the values of the variables in the timed model at the
before and after times.

extract == TStateρ → UStateρ

extract(γ) = {‘ 8τ ’ 7→ γ(‘ 8τ ’), ‘τ ′’ 7→ γ(‘τ ′’)} ∪
{id : ρ.vars • 8id 7→ γ(id)(γ(‘ 8τ ’))} ∪
{id : ρ.vars • id ′ 7→ γ(id)(γ(‘τ ′’))}

For example, if we apply extract to the example timed state γ1 given above, then the result is
equal to the example untimed state σ1.

Given a predicate P that only references variables via the 8v and v ′ conventions we would
like to show that if P holds for all states in an untimed interpretation, then P @ (8τ, τ ′) holds
for all states in the timed interpretation. To formalise this, we need to give both the untimed
and timed semantics of predicates. We begin by giving part of the syntax for terms (including
predicates).

Term ::= constant | 8τ | τ ′ | 8id | id ′ | id | Term0 @ (Term1,Term2) |
¬ Term | Term0 ∧ Term1 | Term0 = Term1 | . . .

where constant stands for a constant, id is an identifier, and Term0, Term1 and Term2 are
terms.

Table 1 gives the untimed semantics for these constructs with the exception of variable
traces and the ‘@’ notation, neither of which make sense in the untimed interpretation. The
untimed semantic function, MU , given a term T and an untimed state σ, gives the value of
the term in that state. For example,

Separating Timing and Calculation 11

Table 1. Untimed semantics of terms

MU : Term 7→ (UStateρ → Val)

∀σ : UStateρ •
MU (constant)(σ) = constant

MU (8τ)(σ) = σ(‘ 8τ ’)

MU (τ ′)(σ) = σ(‘τ ′’)

MU (8id)(σ) = σ(8id)

MU (id ′)(σ) = σ(id ′)

MU (¬ T)(σ) = ¬ MU (T)(σ)

MU (T0 ∧ T1)(σ) = (MU (T0)(σ) ∧ MU (T1)(σ))

MU (T0 = T1)(σ) = (MU (T0)(σ) = MU (T1)(σ))

where T0 and T1 are terms.

MU (8τ = τ ′ ∧ ¬ (8x = x ′))(σ)
= MU (8τ = τ ′)(σ) ∧ MU (¬ (8x = x ′))(σ)
= (MU (8τ)(σ) = MU (τ ′)(σ)) ∧ ¬ MU (8x = x ′)(σ)
= σ(‘ 8τ ’) = σ(‘τ ′’) ∧ ¬ (MU (8x)(σ) = MU (x ′)(σ))
= σ(‘ 8τ ’) = σ(‘τ ′’) ∧ ¬ (σ(‘ 8x ’) = σ(‘x ′’))

Table 2 gives the semantics of terms in the timed model. The semantic function, MT , given
a term and a timed state, gives the value of the term in that state. In this case all constructs
can be given a meaning. An (undecorated) identifier, id , stands for its whole timed trace value,
γ(id), and before and after decorated identifiers stand for the value of the trace, γ(id), at the
start and finish times, γ(‘ 8τ ’) and γ(‘ 8τ ’).

Table 2. Timed semantics of terms

MT : Term 7→ (TStateρ → Value)

∀ γ : TStateρ •
MT (constant)(γ) = constant

MT (8τ)(γ) = γ(‘ 8τ ’)

MT (τ ′)(γ) = γ(‘τ ′’)

MT (id)(γ) = γ(id)

MT (8id)(γ) = γ(id)(γ(‘ 8τ ’))

MT (id ′)(γ) = γ(id)(γ(‘τ ′’))

MT (T0 @ (T1,T2))(γ) = MTT (T0)(γ)(MT (T1)(γ),MT (T2)(γ))

MT (¬ T)(γ) = ¬ MT (T)(γ)

MT (T0 ∧ T1)(γ) = (MT (T0)(γ) ∧ MT (T1)(γ))

MT (T0 = T1)(γ) = (MT (T0)(γ) = MT (T1)(γ))

where T0, T1 and T2 are terms.

12 Ian Hayes

In the definition of the ‘@’ notation, we allow terms to be used to specify the start and finish
times. Hence, within the term to the left of the ‘@’, the start and finish times are interpreted
as the values of these two terms. To define this, we introduce in Table 3 the auxiliary semantic
function MTT which takes an additional pair of parameters specifying the start and finish times.
(The definition of MTT for the ‘@’ operator is given here for completeness, but it corresponds
to the case where an ‘@’ operator is used within the left operand of another ‘@’ operator and
is not used in the remainder of this paper.)

Table 3. Auxiliary function for timed terms

MTT : Term 7→ (TStateρ → (Time × Time → Value))

∀ γ : TStateρ; t0, t1 : Time •
MTT (constant)(γ)(t0, t1) = constant

MTT (8τ)(γ)(t0, t1) = t0
MTT (τ ′)(γ)(t0, t1) = t1
MTT (id)(γ)(t0, t1) = γ(id)

MTT (8id)(γ)(t0, t1) = γ(id)(t0)

MTT (id ′)(γ)(t0, t1) = γ(id)(t1)

MTT (T0 @ (T1,T2))(γ)(t0, t1) =

MTT (T0)(γ)(MTT (T1)(γ)(t0, t1),MTT (T2)(γ)(t0, t1))

MTT (¬ T)(γ)(t0, t1) = ¬ MTT (T)(γ)(t0, t1)

MTT (T0 ∧ T1)(γ)(t0, t1) = (MTT (T0)(γ)(t0, t1) ∧ MTT (T1)(γ)(t0, t1))

MTT (T0 = T1)(γ)(t0, t1) = (MTT (T0)(γ)(t0, t1) = MTT (T1)(γ)(t0, t1))

where T0, T1 and T2 are terms.

As an example of the application of the timed semantics, we consider the term used earlier,
8τ = τ ′ ∧ ¬ (8x = x ′), but with an application of an ‘@’ operator added.

MT ((8τ = τ ′ ∧ ¬ (8x = x ′)) @ (8τ, τ ′))(γ)
= MTT (8τ = τ ′ ∧ ¬ (8x = x ′))(γ)(MT (8τ)(γ),MT (τ ′)(γ))
= MTT (8τ = τ ′ ∧ ¬ (8x = x ′))(γ)(γ(‘ 8τ ’), γ(‘τ ′’))
= MTT (8τ = τ ′)(γ)(γ(‘ 8τ ’), γ(‘τ ′’)) ∧ MTT (¬ (8x = x ′))(γ)(γ(‘ 8τ ’), γ(‘τ ′’))
= (MTT (8τ)(γ)(γ(‘ 8τ ’), γ(‘τ ′’)) = MTT (τ ′)(γ)(γ(‘ 8τ ’), γ(‘τ ′’)) ∧

¬ MTT (8x = x ′)(γ)(γ(‘ 8τ ’), γ(‘τ ′’))
= (γ(‘ 8τ ’) = γ(‘τ ′’)) ∧ ¬ (MTT (8x)(γ)(γ(‘ 8τ ’), γ(‘τ ′’)) = MTT (x ′)(γ)(γ(‘ 8τ ’), γ(‘τ ′’))
= (γ(‘ 8τ ’) = γ(‘τ ′’)) ∧ ¬ (γ(‘x ’)(γ(‘ 8τ ’)) = γ(‘x ’)(γ(‘τ ′’)))
= false

Note that we can deduce in the timed model that this term is false, independently of the
state γ, because if the start and finish times are the same then the values of a variable at the
start and finish times must be the same. This was not possible for the same example in the
untimed model for an arbitrary state, σ. However, if we assume that the untimed state, σ, in
the untimed interpretation is the result of extracting an untimed state from some timed state,

Separating Timing and Calculation 13

γ, then we can also deduce the term is false. Let σ = extract(γ), then

σ(‘ 8τ ’) = σ(‘τ ′’) ∧ ¬ (σ(‘ 8x ’) = σ(‘x ′’))
= extract(γ)(‘ 8τ ’) = extract(γ)(‘τ ′’) ∧ ¬ (extract(γ)(‘ 8x ’) = extract(γ)(‘x ′’))
= γ(‘ 8τ ’) = γ(‘τ ′’) ∧ ¬ (γ(‘x ’)(γ(‘ 8τ ’)) = γ(‘x ’)(γ(‘τ ′’)))
= false

Note that the second last line is the same as that in the timed semantics case. This example is
a special case of the general theorem that we would like to prove.

Theorem 1. For any predicate P that does not use the ‘@’ operator, and only references
variables via the 8v and v ′ conventions, if P holds for all states in an untimed interpretation,
then P @ (8τ, τ ′) holds for all states in the timed interpretation:

(∀σ : UStateρ • MU (P)(σ)) ⇒ (∀ γ : TStateρ • MT (P @ (8τ, τ ′))(γ))

Proof. The proof relies on Lemma 1 below.

∀ γ : TStateρ • MT (P @ (8τ, τ ′))(γ)
≡ Lemma 1
∀ γ : TStateρ • MU (P)(extract(γ))

W change of variable; range(extract) ⊆ UStateρ

∀σ : UStateρ • MU (P)(σ)

Lemma 1. Given any term, P, satisfying the same restrictions as for Theorem 1, the timed
meaning of a term P @ (8τ, τ ′) in a timed state γ, is equal to the untimed meaning of P in the
untimed state extracted from γ.

∀ γ : TStateρ • MT (P @ (8τ, τ ′))(γ) = MU (P)(extract(γ))

Proof. The proof makes use of the semantics of terms in both the timed and untimed interpre-
tations, and uses structural induction over terms.

MT (P @ (8τ, τ ′))(γ)
= timed semantics of ‘@’

MTT (P)(γ)(MT (8τ)(γ),MT (τ ′)(γ))
= timed semantics of 8τ and τ ′

MTT (P)(γ)(γ(‘ 8τ ’), γ(‘τ ′’))
= structural induction

MU (P)(extract(γ))

The last step is proved by structural induction over terms. Selected base cases follow:
Constants:

MTT (constant)(γ)(γ(‘ 8τ ’), γ(‘τ ′’))
= timed semantics

constant
= untimed semantics

MU (constant)(extract(γ))

14 Ian Hayes

Start time:

MTT (8τ)(γ)(γ(‘ 8τ ’), γ(‘τ ′’))
= timed semantics

γ(‘ 8τ ’)
= definition of extract

extract(γ)(‘ 8τ ’)
= untimed semantics

MU (8τ)(extract(γ))

Before variable value:

MTT (8id)(γ)(γ(‘ 8τ ’), γ(‘τ ′’))
= timed semantics

γ(id)(γ(‘ 8τ ’))
= definition of extract

extract(γ)(8id)
= untimed semantics

MU (8id)(extract(γ))

The inductive cases are straightforward. For example:

MTT (T0 ∧ T1)(γ)(γ(‘ 8τ ’), γ(‘τ ′’))
= timed semantics

MTT (T0)(γ)(γ(‘ 8τ ’), γ(‘τ ′’)) ∧ MTT (T1)(γ)(γ(‘ 8τ ’), γ(‘τ ′’))
= inductive hypothesis

MU (T0)(extract(γ)) ∧ MU (T1)(extract(γ))
= untimed semantics

MU (T0 ∧ T1)(extract(γ))

6 Conclusions

The sequential real-time refinement calculus [2] introduced a novel deadline command as a way
of including timing deadlines within machine-independent, higher-level, real-time programs.
In addition, it introduced laws, such as separate deadline, that allow the timing related parts
of a specification to be separated from the calculational parts. However refinements of the
calculational components in the raw real-time calculus are encumbered by the additional bag-
gage required for the real-time components. The objective of this paper has been to show that
the untimed calculus can be embedded within the real-time calculus via the use of some spe-
cial notational conventions. This allows components of programs that are only responsible for
performing calculations rather than meeting real-time constraints, to be developed using the
simpler untimed calculus.

The notational conventions allow abbreviated reference to the values of variables at the
start and finish times of a specification command, as well as reference to the value of a variable
at other times via the use of the trace notation. If a specification only uses the before and after
state conventions, i.e., it is a calculational component, then the simpler untimed refinement

Separating Timing and Calculation 15

laws may be used. To justify this approach, we have presented both a timed and untimed
semantics for predicates using this convention, and shown that if a predicate P holds for all
untimed states, then the corresponding predicate in the timed model, P @(8τ, τ ′), holds for all
states in the timed model.

The overall objective of our work is to provide a systematic method for the development of
real-time programs, and to provide tool support for such a method. This paper is a step towards
a method that supports both the sequential real-time refinement calculus, and embedding
within that the standard sequential calculus. The use of the embedded untimed calculus allows
simpler developments of program fragments that are not concerned with timing constraints.

Acknowledgements I would like to thank Ray Nickson and Peter Robinson for pointing out
possible ambiguities in earlier versions of the notation, and David Carrington, Andy Evans
and Luke Wildman for feedback on earlier drafts of this paper.

References

1. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
2. I. J. Hayes and M. Utting. Coercing real-time refinement: A transmitter. In D. J. Duke and A. S.

Evans, editors, BCS-FACS Northern Formal Methods Workshop (NFMW’96). Springer, 1997.
3. I. J. Hayes and M. Utting. A sequential real-time refinement calculus. Technical Report UQ-

SVRC-97-33, Software Verification Research Centre, The University of Queensland, URL http://
svrc.uq.edu.au, 1997.

4. I. J. Hayes and M. Utting. Deadlines are termination. In D. Gries and W.-P. de Roever, editors,
IFIP TC2/WG2.2, 2.3 International Conference on Programming Concepts and Methods (PRO-
COMET’98), pages 186–204. Chapman and Hall, 1998.

5. Eric C. R. Hehner. Predicative programming: Parts i and ii. Comm. ACM, 27(2):134–151, February
1984. Corrigendum: Comm. ACM Vol. 27 No. 6 (June 1984) p. 593.

6. C. C. Morgan. Programming from Specifications. Prentice Hall, second edition, 1994.
7. M. Utting and C. J. Fidge. A real-time refinement calculus that changes only time. In He Jifeng,

editor, Proc. 7th BCS/FACS Refinement Workshop, Electronic Workshops in Computing. Springer,
July 1996.

