
Under consideration for publication in Formal Aspects of Computing

Specification by interface separation
I. J. Hayes1 and J. W. Sanders2

1Department of Computer Science, University of Queensland, Brisbane, 4072, Australia
2Programming Research Group, O.U.C.L.,

Wolfson Building, Parks Rd, Oxford, OX1 3QD, England

Keywords: Formal specification; specification language Z

Abstract. In specifying an operation it is often advantageous to describe it with abstract inputs and outputs
whose concrete representation is described separately. For example, it is often convenient to describe as a
set, input which in practice occurs as a sequence.

The primary advantage of this approach is that one can initially concentrate on specifying an operation
without the representations of its interface (that is, its inputs and outputs) obscuring the more important
concerns of its abstract functional properties. Interface representations can be tackled independently, after
the abstract functionality has been decided.

Such separation of an operation into an abstract core and its interface with its environment makes the
task of specification simpler, aids clarity of the result, and encourages reuse of both the abstract operation
and its interface descriptions.

1. Introduction

The specification of an operation (or program) often embodies details of its interface—that is, its input and
output—that, if included directly in its specification, would obscure its function. Such details are typically
imposed by an environment in which particular representations of the inputs and outputs are a consequence
of the way the operation is to be used. Apart from compromising clarity of the specification they may make
it difficult subsequently to reuse essentially the same operation in different environments. In such situations
we propose separation of the specification into a core abstract description of the operation (written using
suitably abstract representations of input and output) and descriptions of the way the actual inputs and
outputs represent the abstract inputs and outputs. Not only can this lead to a clearer specification; it also
leads to a specification that is less dependent on the particular environment. For a new environment only
the interface representations need be updated. The result is separation of the representation of the interface
from the functionality of the abstract core of the operation.

In such cases we propose that the specification of an operation be given in three parts:

• an operation specification (aop) using abstract inputs and outputs;

Correspondence and offprint requests to: I. J. Hayes, Department of Computer Science, University of Queensland, Brisbane,
4072, Australia.



2 Hayes and Sanders

• the concrete representation (in) of the inputs; and
• the concrete representation (out) of the outputs.

The specification of the complete operation is the composition of the three components:

op == in >> aop >> out

Each component can be regarded as a binary relation, and ‘>>’ as relational composition. The examples
given in this paper are specified using Z schemas [Spi92], with schema piping playing the part of ‘>>’.
However the technique proposed is largely independent of notation.

In Section 2 we give an example of the use of separate interface representations to aid in structuring
a specification. Section 3 discusses representation restrictions and errors. Section 4 discusses the use of
relational composition in specification more generally. Section 5 contains a typical numerical example, whose
interface representation is of a more general nature than the others considered in this paper. Finally Section
6 reviews the approach.

2. File update

To demonstrate our approach the first example is typical of specifications written using formal methods, like
Z and VDM [Jon90]. The example is a sequential file update similar to that specified in [Hay93, p7]. A file
is considered to be a mapping from keys to values (Key 7 7→ Value). Abstractly, a file-update operation takes
as input a set d? of keys to be deleted from the file and a partial mapping r? to replace part of the file; it
outputs the set e! of keys that were to be deleted but were not in the file. In Z:

File Update
f , f ′ : Key 7 7→ Value
d? : P Key
r? : Key 7 7→ Value
e! : P Key

d? ∩ dom r? = {} ∧
f ′ = (d?−C f )⊕ r? ∧
e! = d? \ dom f

The keys to be deleted and the keys to be replaced must not overlap. The keys to be deleted are removed
from the file and the replacements, r?, replace items in (or add items to) the file. Any keys in d? that were
not in the file are returned in the set, e!, of erroneous keys. In the above the state is described abstractly
(as a mapping) and the inputs and outputs are described equally abstractly.

The concrete operation reflects its environment’s lower-level nature: input and output are expressed as
sequences. Moreover the inputs—delete or update—are represented by a single combined sequence. Each item
in the sequence consists of a key/update pair, where each update is either a deletion or a new replacement
value:

Update ::= delete | new〈〈Value〉〉
An update is either delete, indicating that the corresponding key is to be deleted, or of the form new(v)
indicating that the value associated with the key is to be replaced by v (or the key is added with value v if
it was not present in the original file). The sequence is strictly ordered on keys.

Thought of as representing the elements they contain, the input and output sequences must contain the
same information as the input and output sets they represent in the abstract schema. That would lead us,
were we to ignore the possibility of interface separation, to the following rather opaque specification of the
concrete operation.



Specification by interface separation 3

File Update Rep1
f , f ′ : Key 7 7→ Value
up? : seq(Key ×Update)
se! : seqKey

(∀ i , j : dom up? • i < j ⇒ first(up?(i)) < first(up?(j ))) ∧
{k : Key | (k , delete) ∈ ran up?} ∩

dom{k : Key ; v : Value | (k ,new(v)) ∈ ran up?} = { } ∧
f ′ = ({k : Key | (k , delete) ∈ ran up?} −C f )⊕

{k : Key ; v : Value | (k ,new(v)) ∈ ran up?} ∧
ran se! = {k : Key | (k , delete) ∈ ran up?} \ dom f ∧
(∀ i , j : dom se! • i < j ⇒ se!(i) < se!(j ))

The clarity of the abstract operation has been obscured by the complex nature of the input and output.
Let us now see how it can be simplified by interface separation. First we formalise the relationship between

the abstract and concrete interfaces, then combine those representations with the abstract operation. The
representation of the updates is specified by schema:

Update Rep
up? : seq(Key ×Update)
d ! : P Key
r ! : Key 7 7→ Value

(∀ i , j : dom up? • i < j ⇒ first(up?(i)) < first(up?(j ))) ∧
d ! = {k : Key | (k , delete) ∈ ran up?} ∧
r ! = {k : Key ; v : Value | (k ,new(v)) ∈ ran up?}

The output representation is treated in a similar manner. The erroneously deleted keys are represented by
a strictly-ordered sequence of keys.

Error Rep
e? : P Key
se! : seqKey

(∀ i , j : dom se! • i < j ⇒ se!(i) < se!(j )) ∧
ran se! = e?

The effect of the concrete operation is specified by the composition of the input representation, the
abstract operation and the output representation:

File Update Rep == Update Rep >> File Update >> Error Rep

The piping operator ‘>>’ identifies outputs (variables with names ending in ‘!’) of its first operand with inputs
(ending in ‘?’) to its second operand that have the same basename and type. Such variables then become
local in the composition. File Update Rep can be expanded to give the equivalent operation specification in
one larger schema.



4 Hayes and Sanders

File Update Rep2
f , f ′ : Key 7 7→ Value
up? : seq(Key ×Update)
se! : seqKey

(∀ i , j : dom up? • i < j ⇒ first(up?(i)) < first(up?(j ))) ∧
(∃ d : P Key ; r : Key 7 7→ Value; e : P Key •

d = {k : Key | (k , delete) ∈ ran up?} ∧
r = {k : Key ; v : Value | (k ,new(v)) ∈ ran up?} ∧
d ∩ dom r = {} ∧
f ′ = (d −C f )⊕ r ∧
e = d \ dom f ∧
ran se! = e) ∧

(∀ i , j : dom se! • i < j ⇒ se!(i) < se!(j ))

The predicate can be simplified to eliminate d , r and e, in which case it becomes identical to the predicate
of File Update Rep1.

While it is possible to give the expanded form as a specification of the operation, splitting the specification
into parts dealing with representations and a part dealing with the abstract operation leads to a clearer
separation of concerns:

• the abstract operation is separate from its interface, which is specific to a given environment;
• the abstract purpose of the operation is clearer (for both writer and reader) than in the combined

specification;
• the concrete (efficient) purpose of the interface is clearer (for both writer and reader) than in the combined

specification;
• the abstract operation can be reused, consistently, in different contexts; and
• the interface representation can be reused, consistently, with different operations.

3. Representation errors

Consider the operation Double that doubles a natural number.

Double
x?, y ! : N

y ! = 2 ∗ x?

The input is represented as a 32-bit unsigned quantity.

Bit32 == (0 . . 4294967295)

The input-representation schema restricts the input to the range of values that can be represented in 32 bits.

In Rep
x? : Bit32
x ! : N

x ! = x?

The output is also to be represented as a 32-bit number, but this is not always possible. For outputs that are
out of the allowable range the Boolean variable overflow ! is set to True (and the output left unconstrained).



Specification by interface separation 5

Rep Err
y? : N
y ! : Bit32
overflow ! : B

(y? ∈ Bit32 ⇒ y ! = y? ∧ overflow ! = False) ∧
(y? 6∈ Bit32 ⇒ overflow ! = True)

The range-restricted operation can be defined as follows.

Double Rep == In Rep >> Double >> Rep Err

An alternative approach is to disallow inputs that cause overflow. This can be specified by choosing the
following output representation.

Out Rep
y? : N
y ! : Bit32

y ! = y?

The combination is defined as follows.

Double Rep2 == In Rep >> Double >> Out Rep

Because Out Rep does not accept out-of-range results, that restriction is imposed, as a result of the conjunc-
tion and renaming in the definition of ‘>>’, on the input to the whole operation: the input must be such that
its double is within range. Indeed the operator ‘>>’ acts like relational composition rather than sequential
composition in an imperative programming language. This significant aspect of relational composition is
examined in the next section.

Note that the easy distinction between the two versions of Double is another benefit of interface separation.

4. Composition of specifications

A specification in Z can be thought of as specifying a relation between inputs and outputs and hence can be
characterised by a predicate.

The piping (relational) composition, P >> Q , of schemas P and Q specifies a new schema. Any outputs
of P (variables with names ending in ‘!’) that match inputs to Q (variables with names ending in ‘?’) when
their respective decorations ‘!’ and ‘?’ are removed, are identified in the composition and become internal to
it. The types of the corresponding variables must match for the composition to be well-defined. If we let y !
(of type T ) stand for the outputs of P that match corresponding inputs y? (also of type T ) to Q , then the
composition of P and Q is given by

P >> Q == (∃ y : T • P [y/y !] ∧ Q [y/y?])

where P [y/y !] is the schema P with every free occurrence of the variable y ! replaced by y . (We have assumed
here that the variable y does not already occur in P and Q ; if it does we can choose some fresh variable not
occurring in either P or Q instead of y .) An input x? of P is related to an output z ! of Q by the composition
P >> Q if there exists a y such that x? is related to y by P [y/y !] and y is related to z ! by Q [y/y?].

When used for interface specification, composition of schemas acts like relational composition of binary
relations. Relational composition should not be confused with sequential composition (‘;’) in imperative
programming languages.1 The distinction between relational and sequential composition becomes apparent
when the specification P is nondeterministic, that is, if there is more than one output value allowed for a
particular input. Consider a simple example involving a nondeterministic operation P . For input a, P can

1 Note that we are referring to sequential composition (‘;’) in programming languages; this should not be confused with the
Z schema composition operator ‘o9’ which also acts as a form of relational composition similar to ‘>>’ but composing states
rather than inputs and outputs.



6 Hayes and Sanders

produce an output of either b1 or b2; but Q terminates only on input b2, producing output c. The relational
composition P >> Q produces output c for input a. This behaviour resembles that of backtracking in logic
programming languages such as Prolog.

On the other hand for the sequential composition, ‘P ; Q ’, of P and Q , the assumption is that P computes
its result independently of whether or not Q terminates on inputting that result. If for a particular input a,
P can produce either an input b1 or b2, but Q terminates only on input b2, then the sequential composition
‘P ; Q ’ is not guaranteed to terminate on input a because P may choose output b1. There is no possibility
of backtracking.

All imperative programming languages support sequential composition but few support the backtracking
facility of relational composition. In our present context we are concerned with relational composition as a
specification operator; there, as we have seen, it is a powerful tool allowing separation of the representation
of the interface from that of the abstract operation.

The laws for ‘>>’ when used for interface specification mimic those for relational composition. Indeed in
that context the following condition holds.

Every output of an input representation is matched by an input to the operation, and
every input of an output representation is matched by an output of the operation. (In
addition, input and output representations do not have any state components.)

(1)

Fortunately condition (1) is sufficient to ensure that ‘>>’ behaves like relational composition. We assume
it holds from here on. We now comment on three ways of exploiting interface separation, each based on a
separate law.

The most important law is associativity. Firstly it enables parentheses to be omitted in in >> op >>
out , demonstrating the unimportance of the order in which in and out are combined with op. Secondly
associativity enables a complicated interface to be specified incrementally: from abstract interface to slightly
less abstract, to even less abstract, and so on to concrete interface. The increments can then be piped together
to give the desired complicated interface. That method constructs

inn >> (. . . >> (in1 >> op >> out1) >> . . .) >> outn

but, by associativity, that is equivalent to

(inn >> . . . >> in1) >> op >> (out1 >> . . . >> outn).

Disjunction distributes ‘>>’. Frequently an operation is specified as op1 ∨ op2, where op1 describes the
ideal case and op2 the error case. Employing the technique of interface separation one specifies

in >> (op1 ∨ op2) >> out ,

but that is equivalent to
(in >> op1 >> out) ∨ (in >> op2 >> out).

and correctness of that factorisation follows by distributivity, provided both op1 and op2 satisfy condition
(1).

Examples like Double Rep and Double Rep2 of the previous section occur frequently in hardware design
where Double is a typical abstract view of a combinational circuit. (In a hardware application the type Bit32
would typically be replaced by a type of bitstrings.) Interface separation permits such devices to be specified,
combined and reasoned about abstractly, before interface representation. One of the reasons is that input and
output representations are often the inverse of each other, as well as being bijections, so that out >> in acts
as an identity. Thus adjacent interface representations cancel each other out when the abstract components
are piped together. This time the law justifying such factorisation is

(in >> op1 >> out) >> (in >> op2 >> out) = in >> (op1 >> op2) >> out .

which follows from the associativity of ‘>>’ and the fact that (out >> in) acts as an identity.
Such properties of ‘>>’ play an important part in its utility for interface separation.
One property of composition requires care. In general it is not possible to refine a specification P >> Q

by refining P and Q independently and then combining these refinements using composition. But this is not
really of any consequence here: our goal has been to promote clear specification. The specification of a whole
operation has been given by composition and it is the whole operation that must be refined. The choice of
any internal representations of variables for the implementation may match the interface representation, or



Specification by interface separation 7

alternatively the abstract representation; but it could equally well match a third representation that allows
a more efficient implementation of the operation. The main point here is that the issues of specification and
implementation should be kept separate. As usual the form of a specification is chosen for clarity and that
of an implementation for efficiency.

5. A numerical example – sine

The final example is chosen to demonstrate another typical use of interface separation: numerical com-
putation. Whilst previous interface representations were one-to-one (with the exception of Rep Err when
restricted to the complement of Bit32), the present example provides an interface representation which is
one-to-many from abstract to concrete.

As an example of the application of separated interface representations in a numerical context, we consider
an operation to calculate the sine of a real number. It is specified abstractly as follows.

Sine
x?, y ! : R

0 ≤ x? < 2 ∗ π ∧
y ! = sin(x?)

This specification is given in terms of real numbers which can only be approximated on a machine by,
say, a floating-point representation: some finite subset of the reals that we represent here by the set Float .
The actual input and output use floating-point representation. The input representation has the effect of
restricting the input to be a Float rather than an arbitrary real number.

In
x? : Float
x ! : R

x ! = x?

One could argue that the input for the original specification could just as easily have been a Float rather
than a real, but the representation of Float may be different in different environments, such as different
machines.

The separation becomes clearer for the output representation where we need to deal with representation
restrictions. For the output, the floating point representation can only approximate the abstract output to
within a given relative error bound Rel Error and absolute error bound Abs Error :

Rel Error : R
Abs Error : R

0 < Rel Error < 1 ∧ 0 < Abs Error

We assume here that the definition of the subset Float of R reflects its eventual representation using the
conventional combination of a mantissa plus an exponent. The relative error allows for the fact that the
mantissa has only finite accuracy and the absolute error for the fact that the exponent has a limited range
– in this case we are concerned only with the smallest non-zero real that can be represented using the
mantissa/exponent form.

Out
y? : R
y ! : Float

abs((y !− y?) / y !) < Rel Error ∨ abs(y !− y?) < Abs Error

The absolute value of a real number z is denoted by abs(z ). Putting these together we get:

Sine Op == In >> Sine >> Out

or expanding we get the following.



8 Hayes and Sanders

Sine Op
x?, y ! : Float

0 ≤ x? < 2 ∗ π ∧
(abs((sin(x?)− y !) / y !) < Rel Error ∨

abs(y !− sin(x?)) < Abs Error)

An alternative approach to handling output-representation errors is explicitly to introduce an underflow
indication similar to the overflow indication for the doubling operation. If the output cannot be represented
because it is too small, an underflow indication is given instead.

All the benefits of interface separation apply to such numerical examples. The more involved the interface
representation, (here one-to-many) the more is to be gained!

6. Discussion

When choosing representations for inputs and outputs, there are a number of approaches possible. The
simplest approach is to represent each abstract input (or output) by a corresponding concrete input (or
output). One needs to be aware that the choice of representation may restrict the range of inputs allowed,
as well as having implications for possible implementation strategies.

Another approach is to consider a group of abstract input (output) variables and represent the group
via one or more concrete input (output) variables. There may be different numbers of abstract and concrete
variables. The input to the file update specification in Section 2 provides an example where two abstract
inputs, the deletions and the replacements, have been represented by a single sequence of updates. This
approach has the advantage that combinations of abstract inputs not allowed by the abstract operation can
be implicitly excluded from the concrete representation, i.e., there is no way to represent such combinations.
In the file update example, the fact that a deletion and a replacement are not allowed for the same key is
translated into the requirement of the concrete representation that the sequence is strictly ordered.

The choice of interface representations for an operation (or program) involves concerns separate from the
specification of the abstract functionality of the operation. One approach to specifying a system is initially
to concentrate on its functionality and ignore the question of input/output representations. This allows one
to get, more quickly, an overview of the system’s functionality and resolve the more important questions of
what it is to do, before considering interface representations. There is no point designing representations of
the inputs and outputs to an operation when one has not yet settled on its functionality, or perhaps even on
what abstract inputs and outputs it requires.

Once the abstract operation has been devised one can turn one’s attention to the interface representation.
But even here one may want to decouple the operation from the representation of its interface. Commonly
the form of the input/output representations is not so much dictated by the requirements of the abstract
operation but can be influenced by the particular programming environment (including such things as the
programming language and the data structures it supports) or even the chosen implementation strategy. In
this latter case there may be many possible representations that are equally suitable from the point of view of
the user of the operation, but if the specifier is aware that one of them allows a more efficient implementation,
then the specifier can chose that representation.

In practice it is not uncommon to leave the interface-representation details undecided until further into
the implementation phase. Once the choice of interface representation can be made, however, one should be
aware that although it is perhaps chosen to suit the implementation, it is really part of the specification
and hence cannot be left completely up to the implementor. Agreement is required from the client that the
chosen representation is suitable because

• the interface representation determines the external view of the operation;
• the choice of input representation may directly limit the range of inputs handled;
• the choice of output representation may indirectly limit the range inputs handled (as in the doubling

example); and
• the choice of output representation may restrict the choices that a non-deterministic abstract operation

can make for its corresponding output.

After considering the interface representation it is conceivable that one may wish to change (perhaps restrict)



Specification by interface separation 9

the abstract operation to accommodate the representations more appropriately. This is part of the usual
design cycle which may require compromise when separate specifications are combined to give a single
specification.

Acknowledgements The technique described in this paper was reported by the authors at the Workshop
on Refinement, University of York, January 1988. Ian Hayes acknowledges financial assistance provided by
the Special Studies Program of the University of Queensland. We thank Ken Robinson and Lucy Chubb for
useful discussions on this topic.

References

[Hay93] Ian Hayes, editor. Specification Case Studies. Prentice-Hall International, second edition, 1993.
[Jon90] C.B. Jones. Systematic Software Development Using VDM. Prentice Hall International, Englewood Cliffs, NJ,

second edition, 1990.
[Spi92] J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International, second edition, 1992.


