
Specification Directed Module Testing
Ian J. Hayes

Abstract— If a program is developed from a specification in a
mathematically rigorous manner, work done in the development
can be utilized in the testing of the program. We can apply the
better understanding afforded by these methods to provide a
more thorough check on the correct operation of the program
under test. This should lead to earlier detection of faults (making
it easier to determine their causes), more useful debugging
information, and a greater confidence in the correctness of
the final product. Overall, a more systematic approach should
expedite the task of the program tester, and improve software
reliability.

The testing techniques described in this paper apply to testing
of abstract data types (modules, packages). The techniquesutilize
information generated during refinement of a data type, such
as the data type invariant and the relationship between the
specification and implementation states; this informationis used
to specify parts of the code to be written for testing. The
techniques are illustrated by application to the implementation
of a symbol table as an ordered list and as a height-balanced
tree.

Index Terms— Abstract data types, data type invariant, mod-
ules, module testing, packages, pre- and postconditions, retrieval
function, software reliability, specification language—Z.

INTRODUCTION

Rigorous program development, such as that advocated in
Jones’s excellent book [1], can do much to increase our confi-
dence in software we produce. The development of a program
starts from a high-level specification, which is then refined
through one or more stages to produce the final program.
Rigorous methods rely heavily on mathematics to specify the
software to be developed, and to formalize the relationship
between the specification and an implementation. The work
done in formalizing these relationships can be of great benefit
to program testers in developing a thorough testing strategy
that will trap errors as early as possible and thus be an aid to
debugging.

Given a rigorously developed program it is possible to
prove that it meets its specification [2], [3]. If such a proof
is performed mechanically (and we trust the verifier), then
testing should not be required; given the current state of the
art, however, complete mechanical verification is a rarity and is
expensive in resources. If the proof is done by hand then there
is still room for error and hence room for testing. Rigorous
methods can help greatly to increase our understanding of the
program that we are developing and hence reduce the number

The author was with the Programming Research Group, Oxford University,
Oxford OX1 3QD, England. He is now with the University of Queensland.

This paper was originally published inIEEE Transactions on Software
Engineering, SE-12(1):124–133, January 1986. This version (dated June19,
2006) uses more up to date Z notation, corrects a few errors, and has had a
second appendix added to illustrate handling of nondeterministic operations.
Significant changes are commented on via footnotes.

of errors in the initial version of the program. However,
we are still prone to make mistakes through oversights and
typographical errors and without mechanical verification we
will still require testing, especially on larger, more complex
programs where errors could more easily slip in unnoticed. By
making use of rigorous methods in testing we can increase our
confidence in the correctness of the final product in a relatively
straightforward manner that requires more moderate resources
than complete mechanical verification.

The testing techniques described in this paper apply to
the testing of abstract data types (modules, classes, packages,
clusters). An abstract data type consists of some data, which
we will refer to as its state, and a set of operations on that
state. It is a good unit for testing purposes because it represents
a coherent whole and, because the operations are all working
on the same state, parts of the testing code are common to all
the operations; in many cases it would be difficult to test an
operation without having the other operations of the data type
available. Testing of abstract data types can make use of the
data type invariant for checking the consistency of the state
between operations, the precondition for distinguishing errors
in the module under test from those in the test program, and
the relationship between the specification and implementation
states along with the individual input-output relations for
testing the correctness of the operations. These conditions and
relations become specifications for parts of the code written
for testing.

The techniques presented here for testing abstract data types
differ from those of Gannonet al. [4] in that Gannon uses
an algebraic specification of a data type using axioms which
interrelate the operations on the data types, while in this paper
we use model-based specifications of the individual operations
giving the effect of each operation acting upon an abstract
state. The algebraic approach is more appropriate for more
primitive data types (e.g., stacks, queues) while the model-
based approach is more manageable for specifying larger
modules (e.g., subsystems, application-oriented packages). As
the number of operations on data types increases, the algebraic
axioms interrelating all the operations become more difficult
to devise and the definition of an individual operation becomes
spread amongst a larger number of axioms. With the model-
based approach there is a single specification of each operation
and the specifications can be built making use of previously
defined data types. For more complex data types, the model-
based specification tends to be simpler.

We will illustrate the testing technique by following through
the development and testing of a symbol table module. The
notation used in this paper will be based on the specification
language Z [5], [6]; programs will be given in a Pascal-like
notation.



2 IAN J. HAYES

SYMBOL TABLE SPECIFICATION

This example specifies a symbol table with an operation to
update an entry. We will describe the table by a partial function
from symbols (SYM) to values (VAL).

ST
st : SYM 7→ VAL

The arrow “ 7→” indicates a function fromSYM to VAL that
is not necessarily defined for all elements ofSYM (hence
“partial”). The subset ofSYM for which it is defined is its
domain of definition

dom(st).

If a symbol, s, is in the domain of definition ofst (s ∈
dom(st)), then st(s) is the unique value associated withs
(st(s) ∈ VAL). The notation{s 7→ v} describes a function
which is only defined for that particulars:

dom({s 7→ v}) = {s}

and mapss onto v:

{s 7→ v}(s) = v.

More generally, we can use the notation

{x1 7→ y1, x2 7→ y2, · · · , xn 7→ yn}

where all thexk’s are distinct, to define a function whose
domain is

{x1, x2, · · · , xn}

and whose value for eachxk is the correspondingyk. For
example, if we have the following mapping

st = {“John” 7→ v1, “Mary” 7→ v2}

which maps “John” onto v1 and “Mary” onto v2, then the
domain ofst is the set

dom(st) = {“John” , “Mary”}

and

st(“John”) = v1

st(“Mary”) = v2

The notation

{}

is used to denote the empty function, whose domain of
definition is the empty set.

We are describing a symbol table by modeling it as a partial
function. This use of a function is quite different from the
normal use of functions in computing where an algorithm
is given to compute the value of the function for a given
argument. Here we use it to describe a data structure. There
may be many possible models that we can use to describe the
same object. Other models of a symbol table could be a list of
pairs of symbol and value, or a binary tree containing a symbol
and value in each node. These other models are not as abstract
because many different lists (or trees) can represent the same

function. The list and tree models of a symbol table tend to
bias an implementor working from the specification towards
a particular implementation. In fact, both lists and trees could
be used to implement such a symbol table. However, any
reasoning we wish to perform involving symbol tables is far
easier using the partial function model than either the listor
tree model.

Initially the symbol table is empty.

st = {}

The update operation can change the symbol table. We repre-
sent the effect of such an operation by the relationship between
the symbol table before the operation and the symbol table
after the operation. We use

∆ST
ST0
ST

to represent the state before (ST0) and the state after (ST). The
above definition of∆ST is equivalent to the following one in
which ST0 andST have been expanded.

∆ST
st0 : SYM 7→ VAL
st : SYM 7→ VAl

We use the convention that the zero-subscripted symbol
table (st0) represents the state before an operation and the
undecorated (st) the state after. (This convention is slightly
different from the convention used in [1] and [6], both of
which use undecorated variables for the state before (st) and
primed variables for the state after (st′); the convention used
in this paper allows some simplification of the assertions used
in programs.)

The operation to update an entry in the table is described
by the following schema.

Update
∆ST
s? : SYM
v? : VAL

st = st0 ⊕ {s? 7→ v?}

A schema consists of two parts: the declarations (above the
center line) in which variables to be used in the schema are
declared, and a predicate (below the center line) containing
predicates giving properties of and relating those variables. In
the schemaUpdate the second line declares a variable with
name “s?” which is the symbol to be updated. The third line
declares a variable with name “v?” to be the value to be
associated withs? in the symbol table. By convention names
in the declarations ending in “?” are inputs and names ending
in “ !” are outputs; the “?” and “!” are otherwise just part of
the name.

The predicate part of the schema states that it updates the
symbol table (st0) to give a new symbol table (st) in which the
symbols? is associated with the valuev?. Any previous value



SPECIFICATION DIRECTED MODULE TESTING 3

associated withs? (if there was one) is lost. The operator “⊕”
(function overriding) combines two functions of the same type
to give a new function. The new functionf ⊕ g is defined at
x is either f or g are defined, and has the valueg(x) if g is
defined atx; otherwise it has the valuef (x).

dom(f ⊕ g) = dom(f ) ∪ dom(g)

x ∈ dom(g) ⇒ (f ⊕ g)(x) = g(x)

x 6∈ dom(g) ∧ x ∈ dom(f ) ⇒ (f ⊕ g)(x) = f (x)

For example,

{“Mary” 7→ v1, “John” 7→ v2} ⊕
{“John” 7→ v3, “George” 7→ v1}

= {“Mary” 7→ v1, “John” 7→ v3, “George” 7→ v1}

For the operationUpdate, above, the value ofst(x) is v? if
x = s?; otherwise it isst0(x), providedx is in the domain of
st0. In Updatewe are only using “⊕” to override one value in
our symbol table function; however, the operator “⊕” is more
general: its arguments may both be any functions of the same
type.

For a symbol table module we would normally define
further operations to look up and delete entries in the table.
For the purposes of illustrating testing, however, we will only
consider the update operation.

If we were not allowed to know the internal structure of
the implementation of the symbol table, this specification
would give us all the information we needed to test that
implementation. At one level this provides a reasonable test
strategy but, as will be demonstrated, if we are allowed
knowledge of the implementation we can construct a more
rigorous test of that implementation.

IMPLEMENTATION AS AN ORDEREDSEQUENCE

We will first consider implementing a symbol table as an
ordered sequence and later as a height-balanced binary tree.
The testing techniques do not have as much to offer for the
simpler, ordered-sequence implementation, but it will serve to
illustrate the ideas involved before moving on to the more
complicated balanced-tree implementation.

Each item in the ordered sequence will consist of a pair of
symbol and corresponding value.

Item
sym: SYM
val : VAL

We also define a constructor function

mkItem: SYM× VAL→ Item

which given a symbol and a value constructs the item con-
taining that pair.

The state is given by

SST
sst: seqItem

ordered(sst)

wheresst is a sequence of items, that is, a function from its
indices (one upto the length of the sequence) to elements of
type Item, and

ordered(s : N 7→ Item) =̂
(∀ i, j : dom(s) • i < j ⇒ s(i).sym<S s(j).sym)

where we are assuming there is some total order (<S) on
symbols. The state is modeled by a sequence of items,sst.
The domain of the sequence, dom(sst), is the set of integers
that are valid indexes into the sequence. The invariant states
that sst is in strictly ascending order on symbols. Initially the
sequence is empty.

sst= [ ]

Before describing theUpdateoperation on this state let us
look at the relation between the ordered sequence model and
the partial function model.

ST-SST
ST
SST

st = {it : ran(sst) • it.sym 7→ it.val}

where the range of the sequence, ran(sst), is the set containing
all the items in the sequence.ST-SST shows how, given a
sequence representation, we can retrieve the partial function
model of a symbol table by, for each item in the sequence,
mapping its symbol to its value.

The update operation on the sequence model is given by

UpdateS
∆SST
s? : SYM
v? : VAL

ran(sst) = ran(sst0) ∪ {mkItem(s?, v?)}

where

∆SST
SST0
SST

The invariant on the states ensures that the final statesst is
ordered; the predicate part ofUpdateSensures that the final
sequence contains the correct values.

The following is a possible implementation written in a
Pascal-like notation. It uses the simple scheme of appending
the new pair to the sequence and then rippling it down the
sequence into the correct place to maintain the ordering.1

1The invariant has been strengthened from that in the original paper which
included the following two conjuncts instead of the conjuncts involving
ordered,

ordered((1..i − 1) ⊳ sst) ∧ ordered((i..#sst) ⊳ sst).



4 IAN J. HAYES

Update(s? : SYM, v? : VAL) :{
sst= sst0 ∧ ordered(sst)

}

sst := ssta [mkItem(s?, v?)];
i := #sst;




Inv : ran(sst) = ran(sst0) ∪ {mkItem(s?, v?)} ∧
1 ≤ i ≤ #sst∧ ordered({i} −⊳ sst) ∧
ordered((i..#sst) ⊳ sst)






while i 6= 1 candsst(i − 1).sym>S sst(i).symdo
begin

swap(sst(i − 1), sst(i));
i := i − 1

end{
Inv ∧ (i = 1 ∨ sst(i − 1).sym≤S sst(i).sym)

}

where
• sa t is concatenation of sequences,
• [mkItem(s?, v?)] is a sequence containing a single item:

that with symbols? and valuev?,
• #s gives the length of a sequences,
• (i..j) ⊳ sst is the sequencesst with its domain restricted

(⊳) to values in the subrangei to j inclusive,
• {i} −⊳ sst is the function from natural numbers to items

corresponding to the sequencesst with i removed from
its domain, and

• pcandq is the conditional “and” operator: it only evalu-
ates its second argument if its first argument is true.

CHECKING THE INVARIANT

To test this implementation we will first write a procedure
to check if the invariant holds. This will be used to check the
invariant initially and then after every operation performed on
the symbol table during testing. The invariant on the ordered
sequence is

(∀ i, j : dom(sst) • i < j ⇒ sst(i).sym<S sst(j).sym)

The following code should suffice to check this holds.

k := 1;{
Inv : ordered((1..k) ⊳ sst) ∧ 1 ≤ k ≤ #sst

}

while k < #sstcandsst(k).sym<S sst(k + 1).symdo
k := k + 1{

Inv ∧ (k ≥ #sst∨ sst(k).sym≥S sst(k + 1).sym)
}

if k < #sst then{
sst(k).sym≥S sst(k + 1).sym

}

“report unordered sequence”

The above procedure is written solely for testing purposes.
In this case the testing code is as complex as the update
operation itself. For more sophisticated implementationsthe
invariant check is generally (although not always) simplerand
shorter than an operation. If the invariant check on a data
structure is very simple and efficient then it is a good idea
to leave the check on the invariant in the code when it is put
into operation in order to aid earlier detection of faults that
do occur in operational use. The generality of the specification
language used here precludes automatic generation of the code
to check invariants.

The strategy of checking the invariant after every operation
on the symbol table will catch a violation of the invariant

immediately after the operation that caused it. To aid in
debugging, diagnostic information such as the point at which
the sequence is out of order and the corresponding items,
should be displayed if the invariant check fails.

It is possible that the invariant check fails to detect an
invalid state because there is an error in the invariant check
that “cancels out” the error in the operation. In the majority
of cases, however, we hope that the extra redundancy of the
invariant check will not be of the cancelling out form. Perhaps
using different people to code the testing and the module may
help avoid this problem and make full use of the redundancy
in detecting errors.

If we now run a series of tests on the “ordered sequence”
implementation we should discover that it is incorrect: if the
same symbol is inserted into the table more than once, then
the ordered sequence implementation will leave the first pair
in the sequence when the second pair is inserted. This will
cause our invariant check to fail because there will be will
be two consecutive items with the same symbol whereas the
invariant states that the sequence is in strictly ascendingorder
(no duplicates). The invariant check will fail as soon as a
symbol is inserted a second time. If we followed the advice
given above and displayed the items which caused the invariant
check to fail, it should be obvious that the problem is due to
the duplicate entry.

If we did not perform the invariant check while testing, the
error in the ordered sequence implementation would not be
discovered immediately after the second insertion of the same
symbol. The problem would probably be detected when we
perform an operation that looks up the value associated with
the duplicated symbol. This could happen at a point in the
program far removed from the cause of the problem, and may
not occur until a considerably time after the duplicate entry
has been inserted; locating the cause of the problem could
then be much more difficult. Furthermore, the value returned
on look up could be either the (incorrect) first added or the
(correct) second added depending on the look up algorithm
and the other values stored in the symbol table.

CHECKING THE PRECONDITION

The invariant check in the above example failed because
the implementation was incorrect. In general, the invariant
check can fail either because of an incorrect implementation
or because the testing program incorrectly used the operations
of the module. In the latter case, a failure can be caused if the
precondition of an operation does not hold when the operation
is invoked. In our example,UpdateShas a precondition of true
so the testing program can never use the operation incorrectly.
At this stage let us not try to correct the implementation
of UpdateS, but rather change the original specification to
include the following precondition stating that the symbolto
be updated is not already in the symbol table.

s? 6∈ dom(st0)

Having now changed our specification (a tactic widely used
in practice but not really recommended as the most appropriate
solution in general) it is the test program that is now incorrect



SPECIFICATION DIRECTED MODULE TESTING 5

if it calls UpdateSwith a symbol that is already in the table.
In order to distinguish between a failure of the implementation
and a failure of the test program, we can insist (at least for
testing purposes) that the operations should check that their
preconditions hold and, if not, report an error. For our symbol
table example, checking the precondition that the symbol tobe
inserted is not already in the table can be achieved by adding
the following code at the end of the current implementation.






ran(sst) = ran(sst0) ∪ {mkItem(s?, v?)} ∧
1 ≤ i ≤ #sst∧ ordered({i} −⊳ sst) ∧
ordered((i..#sst) ⊳ sst) ∧
(i = 1 ∨ sst(i − 1).sym≤S sst(i).sym)






if i > 1 candsst(i − 1).sym= sst(i).sym then
“report symbol already in table”

Note that the above check only discovers that the precondition
does not hold after it has modified the data structure. This is
reasonable if all we do on a precondition failure is to print a
message and abort; we should not attempt to carry on testing
any further.

If the precondition checks are inexpensive, then it is prudent
to leave them in the code permanently. If they are too
expensive to leave in, then we should at least have the ability to
reintroduce them during the testing of any program that makes
use of the module so that errors in its use of the module are
detected as early as possible. A good rule is to design module
interfaces in such a way that the precondition can always
be checked efficiently. This is an essential requirement for
public interfaces such as operating system calls or widely used
packages; it can help sort out debates about which component
is at fault.

CHECKING THE INPUT-OUTPUT RELATION

Checking invariants and preconditions is not a thorough test
of an implementation; the implementation could be quite dis-
astrously wrong and still maintain the invariant. To thoroughly
check an algorithm we also need to check that it conforms to
the input-output relation of the specification.2

To perform such checking by testing we need to compare
results of two implementations of the same high-level specifi-
cation. To illustrate the technique on our symbol table example
let us assume that we have available a (very high-level)
programming language with maps and operations on maps
as primitives. (In practice, such programming languages are
not generally available; when we consider the more involved
example of testing balanced trees, we will make use of a sim-
pler implementation, namely the ordered list implementation
described above, to provide a cross-check.) The operation to
update a symbol table can be coded in our very high-level
programming language as

Update(s? : SYM, v? : VAL) :
st := st⊕ {s? 7→ v?}

where the state for this implementation is identical to thatin
the original specification.

2Appendix II has been added to explore directly checking the postcondition
for nondeterministic operations.

We now have two implementations,Updateand UpdateS,
of the operation to update a symbol table. The states that
the two implementations work on are quite different—in one
case a mapping and in the other an ordered sequence—so
the two are not directly comparable. In order to perform a
cross-check between the “mapping” implementation and the
“ordered sequence” implementation, we need to implement
a retrieval function that extracts a mapping from an ordered
sequence. We can then compare the extracted mapping to
that from the “mapping” implementation both initially and
after every operation, each operation being performed on both
implementations before the retrieval and comparison test.

The relation between the “mapping” and “ordered se-
quence” states is defined by the retrieval relationST-SST
given previously. The following code will retrieve the output
mappingst! from the input sequencesst?.

ST-SST(sst? : seqItem, st! : ST) :
i := 0;
st! := {};{

Inv : 0 ≤ i ≤ #sst? ∧
st! = {it : ran((1..i) ⊳ sst?) • it.sym 7→ it.val}

}

while i 6= #sst? do
begin

i := i + 1;
st! := st! ⊕ {sst?(i).sym 7→ sst?(i).val}

end{
st! = {it : ran(sst?) • it.sym 7→ it.val}

}

The retrieved mapping can then be compared directly with that
used in the mapping implementation:

if st! 6= st then
“input-output relation check failed”

Any error detected by the comparison may indicate an error
in either

• the “ordered sequence” implementation,
• the “mapping” implementation,
• the ordered sequence to mapping retrieval function, or
• the comparison itself.

The last three should normally be less likely because they
should be somewhat simpler. However, they cannot be ruled
out as possible causes of errors, and if an error is detected
further investigation will be required in order to determine
which of the above is the cause and to find the actual fault.

When we combine input-output relation checks with invari-
ant and precondition checks we get a thorough test mechanism
for operations on the “ordered sequence” symbol table imple-
mentation. It is almost certain that the redundancy incorporated
into the above checks is sufficient to catch any fault manifested
during testing. Furthermore, the fault will have been isolated to
a particular operation and if appropriate diagnostics havebeen
added to the checking code, the cause should be easily found.
However, we are only dealing with a testing strategy and like
all testing it does not exclude the possibility of latent errors:
errors that did not occur on the test cases used but could occur
on other cases. Such latent errors show the inherent weakness
of program testing when compared to program verification.



6 IAN J. HAYES

To reduce the possibility of latent errors left after testing we
should use our knowledge of the implementation to ensure
that it is thoroughly exercised; all parts of the code shouldbe
tested. The selection of test cases is covered in other treatments
of program testing [7] and will not be pursued further here.

HEIGHT-BALANCED BINARY TREES

In the “ordered sequence” implementation the procedures
to test the invariant and retrieve the symbol table are both
as complicated as the operation to update an item. We will
now consider a more involved example in which the invariant
testing and retrieval function are somewhat simpler than the
operations.

Height-balanced binary trees were invented by Adel’son-
Velskii and Landis [8] to provide a binary search tree with
worst-case insert and delete times ofO(log N), whereN is
the number of nodes in the tree. A binary tree is height
balanced if at every node in the tree the heights3 of its left and
right subtrees differ by at most one. The beauty of a height-
balanced tree is that its worst-case height is at most 45 percent
greater than that of an equivalent perfectly-balanced tree,4 and
insertion and deletion of nodes can be performed by examining
a path from the root to a node, unlike perfectly-balanced trees.
Search, insert, and delete operations can all be performed in
O(log N) time in the worst case, which should be compared
with a worst-case time ofO(N) for these operations on an
ordinary (unbalanced) tree.

The major disadvantage of balanced trees5 is that the algo-
rithms to manipulate them are considerably more complicated
than those for an unbalanced tree. Fortunately, for the purposes
of this paper we do not need to delve into the details of these
operations in order to illustrate the approach to testing them.
The interested reader is referred to one of the many books
on algorithms that discuss operations on balanced trees in
detail. One such book is Wirth’sAlgorithms + Data Structures
= Programs [9]. To give a crude idea of the complexity of
the operations on balanced trees, the Pascal versions given
by Wirth consist of 63 lines for insertion (pp. 220–221) and
92 lines for deletion (pp. 223–225). These figures should
be compared with those for unbalanced trees: 19 lines for
insertion (p. 205) and 18 lines for deletion (p. 211). Not only
are balanced tree operations considerably longer than their
unbalanced tree counterparts, they are, in the opinion of the
author, a good deal more subtle and more liable to erroneous
implementation.

As promised earlier we do not need to look in detail at the
implementation of the operations on balanced trees. What we
do need to look at closely, however, is the state invariant for
a balanced tree. A tree is given by

Tree=̂ Node| nil

3The height of a binary tree is the maximum number of nodes on a path
starting at its root and descending down the tree.

4A perfectly-balanced tree is a binary tree in which at every node the
number of nodes in its left and right subtrees differ by at most one.

5For the remainder of this paper we will abbreviate “height-balanced binary
tree” to “balanced tree”.

That is, aTree is either aNodeor it is the special valuenil,
where

Node
sym: SYM
val : VAL
bal : −1..1
left,
right : Tree

(∀ s : syms(left) • s <S sym) ∧
(∀ s : syms(right) • sym<S s) ∧
bal = height(left) − height(right)

wheresyms: Tree→ P SYMsuch that forn : Node

syms(nil) = {}

syms(n) = syms(n.left) ∪ {n.sym} ∪ syms(n.right)

andheight: Tree→ N such that forn : Node

height(nil) = 0

height(n) = max(height(n.left), height(n.right)) + 1

The trees are both ordered and balanced. A tree is ordered
if at each node in the tree all the symbols in its left subtree
are less than the symbol at the node, which is less than all the
symbols in its right subtree. A tree is balanced if at every node
the difference in heights between the left and right subtrees
is equal to thebal field of the node (which can only take on
values in the range -1..1).

The state of a balanced tree is given by the following.

BT
t : Tree

The relation between a balanced tree and the high-level
specification of a symbol table is given by

ST-BT
ST
BT

st = {node: nodes(t) • node.sym7→ node.val}

wherenodes: Tree→ P Nodesuch that forn : Node

nodes(nil) = {}

nodes(n) = nodes(n.left) ∪ {n} ∪ nodes(n.right)

CHECKING THE INVARIANT

As before, we can write a procedure to check the state
invariant: the tree is both balanced and ordered. A procedure to
check that a tree is balanced follows. It performs a post-order
traversal of a tree, checking that each subtree is balanced and
returning the height of the tree so that the higher level checking



SPECIFICATION DIRECTED MODULE TESTING 7

that the tree is balanced can take place.

Balanced(t? : Tree, h! : integer) :
if t? = nil then

h! := 0
else

{
t? 6= nil

}

begin
var hl, hr : integer;
Balanced(t?.left, hl);
Balanced(t?.right, hr);{

hl = height(t?.left) ∧
hr = height(t?.right)

}

if hl − hr 6= t?.bal then
“report unbalanced tree”

h! := max(hl, hr) + 1
end

We have assumed here that the implementation of our
programming language will trap any assignment of a value
outside the range -1..1 to thebal field of a node; if this were
not the case then a check that thebal field of each node is
in this range should be added to the above procedure. The
procedure to check that a tree is ordered is straightforward
and omitted here.

For balanced trees, the invariant checking is far less compli-
cated than the operations; it is more akin to the complexity of
the operations on the simpler unbalanced trees, requiring only
straightforward tree traversal algorithms. The great value of
the invariant check is that if an operation otherwise works
correctly but manages to corrupt the data type invariant,
the fault will be detected immediately after the operation
rather than at some indeterminate time in the future when
an operation tries to access the corrupted part of the data
structure. Not only is the detection in this latter case well
after the fault, it may be on an operation other than the one
that caused the corruption; other than detecting that thereis
an error, one has been given little help in diagnosing the fault.

Given this invariant check procedure, our testing can now
check that the invariant holds initially and then after each
operation during testing. The invariant checking above re-
quiresO(N) time versus theO(log N) time for the operations
themselves. Hence it is not sensible to leave the invariant
check in the program after testing. After all, the point of
using balanced trees was to take advantage of their worst-
caseO(log N) performance; if we were to leave the invariant
check in the code the performance would always beO(N)
and hence worse than the unbalanced tree which, while being
O(N) worst case, is onlyO(log n) average case.

The invariant check given above is a far more stringent
test that the state of a module is consistent than any that
can be carried out purely from knowledge of the high-level
specification, even if one is given a retrieval function to extract
the abstract state. It is possible that the implementation could
be incorrect in a way that does not affect the high-level
correctness. For example, the implementation may correctly
maintain an ordered tree but it may be incorrectly balanced.
In this case the operations would appear to work correctly but
in some cases would not be as efficient. Such a fault could only
be detected externally by timing operations and would require

the testing to generate a badly balanced tree. With knowledge
of the internal operation of the algorithm in the invariant check
it is far less likely that an incorrect implementation wouldgo
undetected.

CHECKING THE PRECONDITION

As with the “ordered sequence” implementation, a pre-
condition check can be incorporated into the implementation
using balanced trees. This will detect any incorrect use of
the operations by the testing program. For balanced trees a
simple constant-time check (which should be left in the code
permanently) can be incorporated into the update operation.
As this is quite simple to do, but to explain requires detailed
knowledge of the update operation on balanced trees, we will
not elaborate the precondition check for balanced trees here.

CHECKING THE INPUT-OUTPUT RELATION

As with the “ordered sequence” implementation, we need
to check that the input-output relation is satisfied. For this ex-
ample we will not assume that we have available a very high-
level programming language with mappings as primitives. In
order to cross-check the input-output relation we need a second
(simpler) implementation of a symbol table. Fortunately, we
have just that in our “ordered sequence” implementation. To
perform the cross-check we need a retrieval function that
extracts an ordered sequence from a balanced (ordered) tree.
The relation between ordered sequences and ordered trees is
given by

SST-BT
SST
BT

{node: nodes(t) • node.sym7→ node.val}
= {it : ran(sst) • it.sym 7→ it.val}

Extracting an ordered sequence from an ordered tree can be
achieved by the following tree traversal algorithm.

TreetoSequence(t? : Tree, sst! : seqItem) :
if t? = nil then

sst! := [ ]
else

{
t? 6= nil

}

begin
var lsst, rsst : seqItem;
TreetoSequence(t?.left, lsst);
TreetoSequence(t?.right, rsst);

sst! := lssta [mkItem(t?.sym, t?.val)] a rsst
end

The sequence retrieved byTreetoSequenceis compared to
the sequence maintained by the “ordered sequence” implemen-
tation after each operation is performed (on both implemen-
tations). The code for the comparison is straightforward and
has been omitted here.

A note of warning is required here. In the example above
there is a unique representation (as an ordered sequence) for
every distinct abstract symbol table. This is not necessarily
the case. For example, if the representation used unordered



8 IAN J. HAYES

sequences there could be a number of possible representations
of a single abstract symbol table. In such cases the code for
the comparison needs to determine if the two representations
correspond to the same abstract object (abstract equivalence)
rather than if the two representations are identical.

For the height-balanced binary tree example, the procedures
required to use the testing techniques outlined in this paper
require only a fraction of the time necessary for a programmer
to develop the somewhat more sophisticated balanced tree
operations. The extra time is well spent in terms of increasing
one’s confidence in the correct operation of the algorithms,
but furthermore the techniques are likely to actually save time
if there are errors in the operations: the testing will isolate
the errors quickly and provide useful diagnostics to aid in
debugging.

DISCUSSION

When implementing abstract data types in a programming
language with facilities to support them (for example, Modula
modules, Ada packages, or Clu clusters) the invariant check
and retrieval procedures will both have to be part of the
module as they need access to the internal data structure,
which should not be accessible externally. This will probably
imply that the person responsible for the module should write
these when writing the module (although as mentioned earlier
there are good reasons for having a separate person write
them). In practice this probably represents a reasonable line
of demarcation between the module writer and tester as these
functions provide everything that the tester needs from the
module internals to apply the testing techniques.

The author has used the techniques described above to test
an implementation of B-trees [10]: balanced multi-way trees
suitable for secondary storage databases. B-trees are more
complicated data structures than height-balanced trees, and
the algorithms to manipulate them have a number of special
cases that can easily lead to errors in implementation. In the
testing of the B-tree implementation, the techniques described
above were able to isolate two errors (one omission and the
other a swap of variable names) and to give good hints as
to the nature of the fault; in this respect the invariant check,
which for the B-tree is involved but not difficult to implement,
was particularly useful in detecting faults as soon as possible
after their prime cause. The use of these techniques certainly
increased the author’s confidence in the correctness of the
final implementation—especially that the algorithms actually
implemented B-trees rather than some other (strange) variety
of multi-way tree.

Another technique that can be used in testing programs is
to check assertions, such as loop invariants, at execution time.
This could be useful if a fault is detected in an operation of an
abstract data type but the cause is not obvious. Unfortunately,
expanding such assertions is non-trivial; in some cases the
code to check a loop invariant can be more complicated than
the original loop. The tactic of testing at the abstract data
type level seems to provide the most benefits for the amount
of effort involved; coding up assertions can be left to aid in
debugging when a non-obvious error is detected, although it

is probably better to go back to the original reasoning about
the program and find the fault there.

The testing procedures should not be discarded once a
module has been tested; they will be useful to anyone respon-
sible for making changes to the module (where introduction
of errors is more likely due to lack of understanding). The
invariant check procedure is of more general use if data are
kept on permanent storage devices. It can be used to check the
consistency of the data after a hardware or software failurehas
occurred. It cannot guarantee the correctness of the data, but it
can find inconsistencies which imply the data are incorrect and
it can ensure that the data are in a state suitable for running
the system.

APPENDIX I
NOTATION

A. Definitions and Declarations

Let x, xk be identifiers andT, Tk sets.
LHS=̂ RHS — Definition of LHS as syntactically equivalent

to RHS.
x : T — Declaration of identifierx of type T.
x1 : T1; x2 : T2; . . . ; xn : Tn — List of declarations.
x1, x2, . . . , xn : T =̂ x1 : T; x2 : T; . . . ; xn : T.

B. Logical Symbols

Let P, Q be predicates andD declarations.
¬ P — Negation: “notP”.
P ∨ Q — Disjunction: “P or Q”.
P ∧ Q — Conjunction: “P andQ”.
P ⇒ Q — Implication: “P implies Q” or “if P thenQ”.
∃ x : T • P — Existential quantification: “there exists anx of

type T such thatP”.
∀ x : T • P — Universal quantification: “for allx of type T,

P holds”.
∃ x1 : T1; x2 : T2; . . . ; xn : Tn • P — “There existx1 of type

T1, x2 of type T2, . . . , andxn of type Tn, such thatP
holds.”

∀ x1 : T1; x2 : T2; . . . ; xn : Tn • P — “For all x1 of type T1,
x2 of type T2, . . . , andxn of type Tn, P holds.”

C. Sets

Let S andT be subsets ofX; t, tk terms;P a predicate; andD
declarations.
t ∈ S — Set membership: “t is an element ofS”.
t 6∈ S =̂ ¬ (t ∈ S).
S⊆ T =̂ (∀ x : S• s∈ T) — Set inclusion.
S⊂ T =̂ S⊆ T ∧ S 6= T — Strict set inclusion.
{} — The empty set.
{t1, t2, . . . , tn} — The set containingt1, t2, . . . , andtn.
{x : T | P} — The set containing exactly thosex of type T

for which P holds.
(t1, t2, . . . , tn) — Orderedn-tuple of t1, t2, . . . , tn.
T1 × T2 × · · · × Tn — Cartesian product: the set of alln-

tuples such that thekth component is of typeTk.
{x1 : T1; x : 2 : T2; . . . ; xn : Tn | P} — The set ofn-tuples

(x1, x2, . . . , xn) with eachxk of typeTk such thatP holds.



SPECIFICATION DIRECTED MODULE TESTING 9

{x1 : T1; x : 2 : T2; . . . ; xn : Tn | P • t} — The set of values
of the termt such that given all thexk of typeTk, P holds.

{D • t} =̂ {D | true • t}.
P S — Powerset:P S is the set of all subsets ofS.
F S — Finite subsets ofS.
S∪ T =̂ {x : X | x ∈ S∨ x ∈ T} — Set union.
S∩ T =̂ {x : X | x ∈ S∧ x ∈ T} — Set intersection.
#S — Size (number of elements) of a finite set.

D. Relations and Functions

A relation is modeled by a set of ordered pairs. Hence
operators defined for sets can be used on relations. A function
is a relation with the property that for each element in its
domain there is a unique element in its range related to it.
As functions are relations, operators defined for relationsalso
apply to functions. LetA and B be sets;S a set of the same
type asA; R, R1 andR2 be relations betweenA andB; f be a
function; andx, xk, y, yk be terms.

A ↔ B =̂ P(A× B) — The set of relations fromA to B.
A 7→ B =̂ {f : A ↔ B | (∀ a : A; b, b′ : B • (a, b) ∈ f ∧

(a, b′) ∈ f ⇒ b = b′} — The set of partial functions
from A to B.

A → B =̂ {f : A 7→ B | dom(f ) = A} — The set of total
functions fromA to B.

x 7→ y =̂ (x, y).
{x1 7→ y1, x2 7→ y2, . . . , xn 7→ yn} — The relation that maps

x1 to y1, x2 to y2, . . . , andxn to yn. It is equivalent to
{(x1, y1), (x2, y2), . . . , (xn, yn)}.

f (x) — The functionf applied tox.
dom(R) =̂ {a : A | (∃b : B • (a, b) ∈ R)} — The domain of

definition of a relation (or function).
ran(R) =̂ {b : B | (∃ a : A • (a, b) ∈ R)} — The range of a

relation (or function).
S⊳ R =̂ {a : A; b : B | (a, b) ∈ R ∧ a ∈ S} — Domain

restriction.
S−⊳ R =̂ {a : A; b : B | (a, b) ∈ R ∧ a 6∈ S} — Domain

subtraction.
R1 ⊕ R2 =̂ (dom(R2)−⊳R1)∪R2 — Relational (or functional)

overriding.

E. Numbers

N — The set of natural numbers (nonnegative integers).
Z — The set of integers (positive, zero and negative).
m..n =̂ {k : Z | m ≤ k ∧ k ≤ n} — The set of integers

betweenm andn inclusive.

F. Sequences

Let X be a set;S be a sequence; and lowercase variables be
terms.

seqX =̂ {S : N 7→ X | (∃n : N • dom(S) = 1..n)} — The set
of finite sequences whose elements are drawn fromX.

#S — The length of sequenceS.
[ ] =̂ { } — The empty sequence.
S(i) — The ith element in the sequenceS.
[x1, . . . , xn] — The sequence{1 7→ x1, . . . , n 7→ xn}.

[s1, . . . , sn] a [t1, . . . , tm] =̂ [s1, . . . , sn, t1, . . . , tm] — Con-
catenation.

ran([s1, s2, . . . , sn]) =̂ {s1, s2, . . . , sn} — Range of a se-
quence: the set of items in the sequence; ran([ ]) =̂ { }.

G. Schema Notation

Schema definition:

SCH
a : A
b : B

predicate

A schema groups together some declarations of variables and
a predicate relating those variables. A schema can be used
as a type, in which case for a variables of type SCH its a
andb fields can be referred to bys.a ands.b. The following
conventions are used for variable names in those schemas
which represent operations:

Subscript “0” State before the operation.
Undecorated State after the operation.
Ending in a “?” Inputs to the operation.
Ending in a “!” Outputs from the operation.
A schema S may be included within a schemaT, in

which case the declarations ofT are merged with the other
declarations ofS (variables declared in bothS andT must be
the same type) and the predicates ofS andT are conjoined.

APPENDIX II
CHECKING NONDETERMINSITIC OPERATIONS

This appendix did not appear in the original paper but
numerous people have suggested that it should have.

Consider the following nondeterministic operation that re-
moves any symbol and value pair from a nonempty symbol
table.

RemoveAny
∆ST
s! : SYM
v! : VAL

st0 6= {} ∧
(s!, v!) ∈ st0 ∧
st = st0 \ {(s!, v!)}

Because the entry to be removed is chosen nondeterministi-
cally, the scheme outlined for deterministic operations isnot
adequate. That scheme relied on running both the abstract and
concrete implementations and comparing the results, but with
a nondeterministic operation it is perfectly valid for the two
implementations to remove different entries.

An approach that copes with nondeterminism is to imple-
ment code to check the postcondition of the abstract operation,
and apply it to the states retrieved before and after the
operation. To do this we

• retrieve and save the state of the system before the
operation,

• call the implementation of the operation,



10 IAN J. HAYES

• retrieve the updated state of the system after the opera-
tion, and

• check that the postcondition of the operation is satisfied
by the inputs to the operation, the outputs actually pro-
duced, and the retrieved before and after states.

As an example, consider checking the balanced-tree imple-
mentation against the ordered sequence level abstraction.For
the sequence abstraction the postcondition of theRemoveAny
operation is

mkItem(s!, v!) ∈ ran(sst0) ∧
ran(sst) = ran(sst0) \ {mkItem(s!, v!)}

We assume that the procedureRemoveItem(s, it, t) returns
the sequencet consisting of the sequences with item it
removed. The following code suffices to check theRemoveAny
operation.

error := false;
TreetoSequence(t, sst0);
/ ∗ Call the implementation∗ /
RemoveAny(s!, v!);
/ ∗ Check the invariant holds∗ /
Balanced(t, h);
TreetoSequence(t, sst);
/ ∗ Check the postcondition holds for the

retrieved sequences∗ /
if mkItem(s!, v!) 6∈ ran(sst0) then

error := true;
RemoveItem(sst0, mkItem(s!, v!), sst1);
if sst 6= sst1 then

error := true




¬ error ⇔
mkItem(s!, v!) ∈ ran(sst0) ∧
ran(sst0) = ran(sst) \ {mkItem(s!, v!)}






The above checks not only that the entry removed was in
the sequence retrieved before the call toRemoveAny, but that
the only change to the sequence retrieved after the call to
RemoveAnyis the removal of that entry. Note that we have
assumed the existence of the procedureRemoveItemoperat-
ing on sequences, which unlikeRemoveAnyis deterministic.
RemoveItemhas an additional parameter which is the item to
remove, which in this case is the item returned byRemoveAny.
Of course, as before, errors in the implementation of the
above code, the proceduresTreetoSequence, or RemoveItem
may invalidate the testing process.

The above only covers the case when the relationship
between the implementation state and the abstract state is
a (retrieve) function, i.e., there is a unique abstract state
for any implementation state. If the relationship is not a
function there may be multiple abstract states corresponding
to a single implementation state. For example, if we use
unordered sequences in the above example, then there are
many possible unordered sequences for a given tree, and the
above code is invalid ifTreetoSequencereturns an arbitrary
sequence with the same elements as the tree. For practical
testing purposes it is simpler to strengthen the invariant on the
abstract state to ensure that there is a unique abstract state for

each implementation state, and hence for the above example
used ordered sequences rather than unordered sequences.

ACKNOWLEDGEMENT

I would like to acknowledge the support of IBM (U.K.)
Laboratories during the time in which this work was done.
I would also like to thank the reviewers for some useful
suggested improvements to the paper and K. A. Robinson for
helping sow the seeds of the idea presented here and for his
help in preparing the revised version of this paper. The work
of C. B. Jones on data refinement forms the formal basis and
main inspiration for the testing techniques described here.

REFERENCES

[1] C. B. Jones,Software Development: A Rigorous Approach. Prentice-
Hall International Series in Computer Science, 1980.

[2] A. L. Ambler, D. I. Good, J. C. Browne, W. F. Burger, R. M. Cohen,
C. G. Hoch, and R. E. Wells, “Gypsy: A language for specification and
implementation of verifiable programs,”ACM SIGPLAN Notices (Proc.
Conf. Language Design for Reliable Software), vol. 12, no. 3, pp. 1–10,
Mar. 1977.

[3] G. J. Popek, J. J. Horning, B. W. Lampson, J. G. Mitchell, and R. L.
London, “Notes on the design of Euclid,”ACM SIGPLAN Notices (Proc.
Conf. Language Design for Reliable Software), vol. 12, no. 3, pp. 11–18,
Mar. 1977.

[4] J. Gannon, P. McMullin, and R. Hamlet, “Data abstractionimplementa-
tion specification and testing,”ACM Trans. Program. Lang. Syst., vol. 3,
no. 3, pp. 211–223, July 1981.

[5] J. R. Abrial, “The specification language Z: Basic library,” Programming
Research Group, Oxford University,” Internal report, 1982.

[6] C. C. Morgan and B. A. Sufrin, “Specification of the Unix filing system,”
IEEE Trans. on Software Engineering, vol. SE-10, no. 2, pp. 128–142,
March 1984.

[7] B. Beizer,Software Testing Techniques. Van Nostrand Reinhold, 1983.
[8] G. M. Adel’son-Velskii and Y. M. Landis, “An algorithm for the

organization of information (English translation),”Sov. Math. Dokl.,
vol. 3, pp. 1259–1262, 1962.

[9] N. Wirth, Algorithms + Data Structures = Programs. Prentice-Hall,
1976.

[10] R. Bayer and E. M. McCreight, “Organization and maintenance of large
ordered indexes,”Acta Informatica, vol. 1, no. 3, pp. 173–189, 1972.


