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Abstract—Establishing upon the connectivity layer provided
by Internet of Things (IoT) platforms, modern industries are
moving towards management and computation solutions which
enable Artificial Intelligence (AI) services for data intensive
applications. This raises two important challenges: first, the
information carried by data should be refined and prepared for
the various AI algorithms via data processing pipelines and;
second, a distributed orchestration solution for data and AI
computation resources featuring with migration capabilities is
required to support the refining process. In order to address
these challenges, this paper introduces ERAIA, an actor-based
framework which provides a novel basis to build intelligence and
data pipelines. ERAIA facilitates the deployment and migration
of distributed AI computations for heterogeneous and dynamic
IoT scenarios. An implementation description is accompanied by
relevant performance evaluations to demonstrate the flexibility
and scalability of the solution. ERAIA provides an interface to
expand the scope of existing IoT systems as Application Enable-
ment Platform (AEP), which hence accelerates the development
of AI-based IoT solutions.

Keywords-Internet of Things, industrial IoT, complex event
processing, distributed processing, edge computing, artificial
intelligence, machine learning, IoT landscape, reactive systems,
actor model

I. INTRODUCTION

Internet of Things (IoT) is a key enabler for industry digiti-
zation. With the industrialization of IoT, the explosion of data
generated by devices is unavoidable. Hardware development
(such as Tensor Processor Unit (TPU) and Graphics Processor
Unit (GPU)) significantly increase systems’ capabilities for
processing big data and conduct Artificial Intelligence (AI)
computations; nevertheless, frameworks with clear IoT targets
to enhance the computation capabilities of distributed systems
are still rare. This leads to extra demands on an IoT platform
in order to enhance the intelligence computations while:
1) fulfilling latency requirements on AI computations and
data processing for critical use-cases, 2) offering computation
capabilities to provide quick insights through distributed data
resources and, 3) supporting live configuration updates in
dynamic environments.

This paper proposes a novel solution for the computation
related demands in data-intensive IoT applications. ERAIA,
a reactive system1 built using an actor model, intends to
provide a responsive, resilient and elastic system required
by the IoT landscape [1] (from edge devices, to gateways,

1https://www.reactivemanifesto.org/

network infrastructure and data-center). By making use of
all the end-to-end nodes for conducting divided computation
tasks, AI computation and data processing are spread between
components in the IoT landscape. Heavy raw data do not
always need to travel from edge devices to the cloud, and
by providing edge-centric data processing, latency can be
reduced; communication resources, particularly the bandwidth,
is optimized through filtered and processed data, and nodes’
computation utilization is thus increased.

As main contributions, in this work we: a) present common
challenges of horizontal Industrial IoT (IIoT) applications
and solutions (cross-sectors), b) introduce a framework that
simplifies the creation of intelligence and data pipeline for
heterogeneous and dynamic scenarios, c) conduct the internal
evaluation of an implementation that shows the flexibility and
scalability of the solution.

The paper is structured as follows. In Section II, we present
the common challenges that IIoT systems and applications
share, followed by the related solutions. In Section III, the
architecture of the proposed framework, ERAIA, is character-
ized in detail, and in Section IV a possible implementation is
described followed by an internal validation of the solution.
In Section V, we summarize the work and suggest directions
for future improvement, and finally, we conclude this work in
Section VI.

II. CHALLENGES AND RELATED WORK

Starting from the high-level aspects within different IIoT
sectors, this section describes common characteristics and
requirements that need to be satisfied by a replicable IIoT
solution. Before enumerating the challenges, we describe
previous work related to IoT background: a description of
different IIoT sectors and their verticals is provided in [2], [3]
presents a horizontal perspective of IoT applications, while [4]
depicts how industrial applications can be built using common
components with a focus on intelligence.

Our solution aims to enhance IoT platforms and Appli-
cation Enablement Platform (AEP) by enabling capabilities
in all the horizontal categories i.e. Extract, Transform, Load
(ETL), predictions, pattern detection and classification [5],
event detection and notifications, visualization, security and
privacy [6], and Cyber-Physical System (CPS) [7]. The follow-
ing subsections cover challenges specific to the IIoT, which
are not fully addressed by the current state of the art, together
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with proposed approaches to evaluate how these challenges
are tackled.

A. Data management

Enabling intelligence of IoT raises requests to process the
data generated by the sensors for discovering patterns and
extracting knowledge, which hence needs to manage the data
effectively. Among data management topics in heterogeneous
IoT systems, data ingestion, data serving and data process-
ing becomes relevant to extract, understand and expose data
between different entities. Ingesting or serving data can be
done via various protocols, message brokers, or by querying
from databases. Processing together with serving those data
online improves IoT systems’ functionality via transformation,
accumulation, serialization, aggregation and/or compression,
and/or even advanced calculation such as Machine Learning
(ML), which further enriches data utility.

To understand the impact of heterogeneous systems and
how they affect data serving and processing, we identify two
aspects for the evaluation: performing a profiling to understand
the dynamics of the implementation, and measuring the latency
or delay introduced from the application layer.

B. Latency and throughput

For data-intensive systems like IIoT, the latency affects the
processing efficiency of complex algorithms, such as deep
neural networks. Reducing the latency enables the implemen-
tation of real-time applications (i.e. CPS) and provides quicker
delivery to stakeholders of insights extracted from sensor data.

Regardless the improvement of communication and process-
ing hardware, software architectures with clear IoT targets for
efficient orchestration would bring a large benefit in tackling
this challenge. Splitting the total latency and throughput cost
into individual shares attached to the various IoT solution
components provides insights into how they can be further
optimized via resource orchestration.

C. Artificial Intelligence computations

AI methods (e.g. ML) are extensively used for IoT data
analysis to support various smart service use cases.

In IoT, there are strong needs to deploy and run the
algorithms in a flexible way to immediately retrieve insights
from the data streams. Therefore, AI orchestration in IoT
systems has become rather important, which optimizes the re-
source utilization of the systems conformed by heterogeneous
resource-constrained components.

In order to evaluate AI composition, it is important to
examine the footprint requirements, the possibilities to ingest
and expose data using different protocols, and the downtime
when a model is updated or re-deployed in another node.

D. Distributed computing and orchestration

In order to exploit and benefit from the distributed nature
of IoT systems, challenges such as weak scalability and weak
interoperability due to the heterogeneity need to be dealt with.
One way to accomplish this is to employ virtualization tech-
niques, such as docker containers [8]–[10], unikernels [11],

cloud resource containers [12] and other lightweight options
such as node-red [13], [14] or actors [15]. These solutions
play an essential role in managing and orchestrating the
computation capabilities among the distributed components.

To evaluate the efficiency of distribution and orchestration,
it is important to analyze the scalability enabled by the archi-
tecture. Specifically, it can be measured by how the system
is improved when adding more resources to an existing node
(namely scale-up or vertical scaling); and/or how the system
is improved when more nodes are added (namely scale-out or
horizontal scaling).

E. Live reconfiguration

One of the main characteristics of IoT is the dynamism of
the environments and the need to adapt to changes rapidly
while minimizing the impact on the application. The live
reconfiguration challenge covers changes such as protocol
and/or data adaptation, migration or relocation of computation
loads, algorithm changes or ML model updates.

In order to evaluate the impact of the reconfiguration, it is
possible to measure the influence of latency or packets loss
on the application layer.

F. Intelligence and data composition

The IIoT challenges covered in this section can be grouped
under the common umbrella of intelligence and data com-
position. This set of challenges can be tackled by solu-
tions employing intelligence pipelines which handle system
heterogeneity (Subsection II-A), intelligence extraction (Sub-
section II-C) and computation distribution on remote nodes
(Subsection II-D), while providing a quick response (Subsec-
tion II-B) and allowing online changes (Subsection II-E).

A number of studies and proposed solutions partially cov-
ering these challenges have been identified. Young et al. [16]
present an architecture using open source components that
allows building intelligence and data pipelines. Nakamura et
al. [17] propose a solution called Information Flow of Things
(IFoT) that performs distributed processing and analysis of
data streams near their sources based on recipes. Cheng et
al. [18] suggests a solution for on-demand edge analytics based
on the orchestration of docker containers as wrappers of the
different operations. Najdataei et al. [19] introduces a frame-
work which distributes and parallelizes the processing based
on results from a bottle-neck detection algorithm, enabling
continuous data stream processing. Dias et al. [20] provide
an extensive survey for distributed data streams processing
frameworks.

Table I compares the most extensively used solutions which
covering the challenges mentioned above. It gives a snapshot
of the positioning of ERAIA in the landscape of the existing
state of the art IoT frameworks and solutions.

From the data management perspective, existing solutions
target either data ingestion and serving or data processing
with limited data serving. ERAIA integrates data ingestion,
processing and serving to better adapt protocol serializations
and encoding, or to modify the data for easier exposure to
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other services. From the model serving perspective, existing
solutions provide a way to pack up each model (i.e. in a
single docker container) with limited interfaces to execute the
model, using HTTP and/or gRPC. In contrast, ERAIA aims
to provide flexible data integration for ingesting and exposing
the results. Additionally, re-utilization of the libraries along
with the worker package is beneficial for scaling-up. The con-
figuration is done at runtime via an Application Programming
Interface (API) that allows changes in real-time for either data
ingestion/serving or processing of any computation including
AI. With that, the actor-based toolkit simplifies the migration
of the elements from one worker to other different workers.
Section III will provide a specific description of ERAIA’s
architecture.

In addition to the projects in Table I, there are also some
commercial solutions targeting some of these challenges:
a) Foghorn11, a product for IIoT real-time edge intelligence
covering data ingestion and data processing with AI capabil-
ities, b) Keptware12, a product providing IIoT data ingestion
supporting many of the industrial and proprietary protocols,
c) EdgeX Foundry13 and d) Mainflux14, open source projects
providing IoT platforms to the edge. Multiple analyst reports
cover available commercial products in more detail [21]–[23].

III. ARCHITECTURE OF THE SOLUTION

Once the main challenges have been discussed, this section
proposes ERAIA, a solution with the following features: i) a
distributed system that can dynamically expand across multiple
nodes ranging from edge to cloud in the IoT landscape,
ii) a flexible system which can be reused in various sce-
narios and be integrated into heterogeneous infrastructures,
iii) seamless online data ingestion and data processing with
live reconfiguration, iv) highly interoperable with state of
the art protocols, which facilitates the integration with other
solutions and technologies, v) a well-defined API exposed
to other systems (e.g. IoT platforms, AEP) that allows for
application functionality deployment in a distributed fashion.

ERAIA is a reactive system15 and therefore inherits its fea-
tures: responsive, resilient, elastic and message-driven. Built
using an actor model, it provides a decentralized management
system to deploy high performance distributed computations
that can scale up using the resources efficiently, and scale out
with the addition of new nodes.

Figure 1 depicts the architecture of the solution divided in
four categories of components:
external provides the API to compose/decompose the intel-

ligence and data pipeline based on ERAIA, and enables
external applications to interact with the framework.

cluster manager creates and manages a fault-tolerant peer-
to-peer cluster. This component takes the responsibilities

11https://www.foghorn.io/
12https://www.kepware.com/
13https://www.edgexfoundry.org/
14https://www.mainflux.com/
15https://www.reactivemanifesto.org/

Fig. 1: ERAIA architecture with four classes of components
and the different types of interfaces

to distribute and place the workloads using a scheduler
and/or location based policies.

worker is the component that executes the pipeline elements
provided via the external API. It is the component respon-
sible for the data plane, which establishes the connection
to the devices and/or the message brokers.

user interface facilitates the visualization and management
of the system exposed via the API.

The following subsections will provide detailed descriptions
on the system components and how they tackle the challenges
presented in Section II.

A. The deployment and infrastructure

The deployment, together with the infrastructure, need to
be considered when dealing with the heterogeneity of the
components, in order to provide interoperability while support-
ing scalability. The proposed solution provides the following
enriched capabilities: i) it supports multi-platform environ-
ments (e.g. amd64, arm and arm64), ii) it is easily deployable
and packageable, iii) it builds up distributed peer-to-peer
computation, iv) it dynamically reconfigures the computation
within the cluster, v) it has no restrictions for virtualization
technologies (e.g. docker images, unikernels, Virtual Machines
(VMs)). Furthermore, it supports two deployment modes: a) a
standalone mode whereby all the required components run in
the same deployment package, b) a distributed mode whereby
each component runs on different deployment packages among
remotely distributed nodes.

B. The interfaces

The proposed solution provides three different types of
interfaces as shown in Figure 1:
northbound API exposes the system capabilities by facili-

tating the integration with existing IoT platforms. Fur-
thermore, it enhances the capabilities of the AEP by on-
boarding AI solutions, based on a distributed deployment
involving components ranging from small gateways to
data centers (e.g. HTTP, gRPC, or a message bus);

control plane used to configure, manage and keep the cluster
alive (e.g. TCP/IP);

data plane used for the processed and transformed data from
users and applications initiated or terminated exclusively
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TABLE I: Comparison of main features

DATA
SERVING

DATA INGESTION DATA PROCESSING MANAGEMENT

Name Multi-
protocol

IoT
protocols

Transform. AI-capable Interfaces Config. Distributed

ERAIA X X X by code external
libraries∗

REST API
and/or UI

at runtime X

DATA IN-
GESTION

Apache
NiFi2

X X limited by libraries - REST API
and/or UI

at runtime with
zookeeper

Apache
Storm3

- X limited multi-
language

Samoa or
S4

Jar package at
deployment

with
zookeeper

Apache
Spark

Streaming4

- X - Spark
Engine

by code multi-
language

API

at
deployment

X

DATA
PRO-
CESSING

Apache
Flink5

- connectors - by code - multi-
language

API

at
deployment

with config-
uration

Apache
Spark6

- connectors - by code X multi-
language

API

at
deployment

X

MODEL
SERVING

Apache
Samoa7

- - - by code Apache
Storm

Java API at
deployment

limited

Kubeflow8 - - - - external
libraries∗∗

REST API
and/or UI

at
deployment

with
kubernetes

Clipper9 - HTTP - - Python
libraries

CLI at
deployment

with
kubernetes

Seldon10 - HTTP/gRPC - - external
libraries∗∗

CLI at
deployment

with
kubernetes

∗ included when packaging the framework, shared.
∗∗ included when packaging the application, not shared.
2http://nifi.apache.org/, 3http://storm.apache.org/, 4http://spark.apache.org/, 5http://flink.apache.org/, 6http://spark.apache.org/, 7http://samoa.apache.org/,
8https://www.kubeflow.org/, 9http://clipper.ai/, 10https://github.com/SeldonIO

on the worker components (e.g. temperature and humidity
sensor values sent using a MQTT broker).

C. The protocols and communication

The communication components of the framework are es-
tablished based on the underlying communication protocols
selected and used in the data plane. The API is able to
dynamically define and update the communication protocols
that are used.

The data plane is managed by a reactive streaming data
library which provides high-performance connectors for most
of the available IoT protocols (and systems) that can be easily
integrated with our solution: AMQP16, Kafka17, MQTT18,
HTTP, CoAP19, LWM2M20 or storage systems such as Mon-
goDB21 and Elasticsearch22. It also allows for integration

16http://www.amqp.org/
17https://kafka.apache.org/
18http://mqtt.org
19http://coap.technology/
20http://www.openmobilealliance.org
21https://www.mongodb.com/
22https://www.elastic.co/products/elasticsearch

of heterogeneous and brownfield23 devices into the same
platform.

D. The intelligence and data composition
The intelligence and data composition refers to the pro-

cess of on-loading intelligence computations by creating and
configuring a series of computations on the ingested data
resources. To make such process flexible and re-configurable,
the composition is based on a set of intelligence processor
units, configured as a set of distributed and organized flow
of computations forming the intelligence and data pipeline.
Given the decoupling of control and data plane, each of the
communication endpoints are initiated or terminated on the
processor units, and not on the manager component. This
allows for each of the processor units to be deployed on
different worker nodes without impacting the communication.
Therefore, it facilitates a rapid migration and redeployment
of the individual units, fulfilling the requirements of a vivid
environment. Based on this, we define:

1) The Intelligence and Data Pipeline (IDP): an end-to-end
data pipeline composed of one or more individual execution
units called Intelligence Processor Units (IPUs);

23legacy devices and protocols with or without possibilities to be updated
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Fig. 2: Intelligence Processor Unit (IPU) decomposition

2) The Intelligence Processor Unit (IPU): the atomic unit
used to compose the pipeline, which can be distributed among
workers deployed in the IoT landscape, where each unit
conducts computations for certain partitions of the whole AI
task. The IPU is depicted in Figure 2.

An IPU consists of several blocks:

source is the data ingestion block: inlet encloses the data
from the connector library (e.g. MQTT library) to an
object. Subsequently, decode converts the data based on
the serialization, and exposes it as the expected data type
(e.g. received data from the topic X at the MQTT broker
Y with JSON+SenML).

map provides Complex Event Processing (CEP) mechanisms
in conjunction with defined intervals that control the
output flow (i.e. accumulate, sum, minimum, maximum,
first, last, standard deviation). For example, accumulate
each element received during a 10 second interval, and
provide the list to the next block.

transform executes a generic or AI function (e.g. enhance
data semantics by metadata annotation, rule-based rea-
soning), or ML functions (e.g. deep neural networks and
Bayesian models). This block is compatible with external
libraries (and/or tools) for creating customized ML or AI
functions.

state manages the persistency of data required for some al-
gorithms on consecutive executions. For example, output
data from the previous execution can be used as an input
to the current execution.

sink is the data serving block: encode converts the data
based on the expected serialization. Subsequently, outlet
packages the data to be sent by the specific connector. For
example, send data to the topic X in the Kafka broker Y.
An interval parameter throttles the outgoing data flow.

Figure 3 shows an example of the intelligence and data
composition: (1) sensor data is sent to a message broker; (2) a
processor receives, cleans and accumulates sensor data every
minute; (3) another processor receives the accumulated data,
applies a function to compute the value required to control an
engine and sends the output to the message broker; (4) another
processor receives the accumulated data, applies a regression
model to predict future state and forwards the result to another
message broker; (5) an actuator device receives the output
from (4) and applies it to the actuator of an engine; (6) data is
received by an external entity (e.g. for reconfiguration and
optimization, visualization, or intelligent consumers); and
(7) alternatively, sensor data could be sent directly to the IDP..

Fig. 3: Intelligence and data composition with a pipeline of
four IPUs distributed across two different workers

IV. STUDY ON IMPLEMENTATION

In this section we present one specific implementation of
ERAIA based on the architecture described in the previous
section. ERAIA employs a reactive system actor model and it
is implemented on the Java Virtual Machine (JVM) and akka24.
It can be seamlessly integrated with: 1) akka-cluster, provid-
ing a decentralized peer-to-peer cluster, 2) akka-persistency,
simplifying the recovery after failure, 3) akka-streams, en-
abling asynchronous, non-blocking, and backpressured stream
processing, and 4) Alpakka, a reactive enterprise integration
library.

The transformation functions can be implemented using
either compiled (e.g. Scala or Java) or interpreted (e.g. Python)
programming languages. Scala, a functional programming
language in Java, is used as the default since ERAIA’s
implementation is done in Scala 25. Python26 is used for its
access to an extensive number of AI libraries and to facilitate
their deployments by data scientists and data engineers.

A. Performance evaluation

We have conducted an evaluation of the previously de-
scribed implementation, based on the following experiments:
i) a software profiling analysis to measure the execution time
of the processor units, ii) the scalability of the system in
terms of the maximum number of supported devices and data
rate, and iii) an analysis of the migration of processor units
to quantify the impact of moving a processor unit from one
worker to another.

1) Evaluation setup: Figure 4 shows the infrastructure
setting for the evaluation. It employs VMs (cXmY), which are
deployed on Openstack (KVM Hypervisor) in a private cloud
located in Lund, Sweden. The rest of the IoT components,
RaspberryPi based devices (rpi3-arm/arm64) and Intel UP
(up-amd64), are located in our labs in Stockholm, Sweden.
For all platforms and architectures, the workers run in docker
containers for a seamless deployment. Table II summarizes the
characteristics of the hardware used.

In addition to the hardware used for ERAIA’s implemen-
tation, several VMs are used to provide additional services:
a device generator and several message brokers. The device

24https://akka.io
25Just-In-Time (JIT) compilation is used for the Scala functions.
26using Java Embedded Python (JEP), https://github.com/ninia/jep
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Fig. 4: Infrastructure for the performance evaluation

generator is employed to emulate devices and expose the
values of data generated by those devices in the specified
communication protocol. Also, an API is provided to cre-
ate/remove devices, which can currently support the following
communication protocols: AMQP, HTTP, Kafka, CoAP and
MQTT. For the evaluations, the impact of the virtualization
layers is neglected, as demonstrated in [24]. Given that the
evaluations have low I/O operations, their impact is neglected
as well, as demonstrated in [25].

TABLE II: List of hardware used in the evaluation

Name Processor Arch. Num.
CPUs

RAM
[GB]

Num.
Threads

Power
[W]1

c1m1 1 1 7686 8.75
c2m2 Intel Xeon amd64 2 2 15748 17.5
c4m8 E5-26xx 2 4 8 63614 35
c8m16 8 16 128115 70

rpi3-arm ARM armv7l 4 1 13655 2
rpi3-arm64 Cortex-A53 aarch64 4 1 6638 2

up-amd64 Intel Atom
x5-Z8350

amd64 4 8 61502 4

1 Thermal Design Power (TDP) used as reference. For cXmY,
powerprocessor/CPUs is used
2 Within our data center, multiple types of processors are used. Selected
E5-2628L as reference with 70W and 8 cores

2) Software profiling: This evaluation provides a dynamic
program analysis to measure the duration of the stages in the
processor unit, depicted in Figure 2. The evaluation results
deliver information regarding how the implemented solution
behaves across varying platforms, CPUs, and memory. The
total or processing time of a processor is defined as:

tprocessing = tsource + tmap + ttransform + tstate + tsink

where tsource, tmap, ttransform, tstate and tsink are the
timings of the IPU blocks described in Section III-D.

It is worth mentioning that tprocessing is not the delay
introduced by the IoT application employing the intelligence
pipeline, since it only refers to the IPUs. Extra delay could be
caused by the connectors, network or message brokers. This
is covered in more detail in Subsection IV-A4.

In order to measure the time cost for the execution of multi-
ple processor units during the profiling analysis, an outbound
interface is used to expose them periodically. The overhead

introduced by the interface is neglected for the purpose of this
evaluation. Data is collected during a period of 20 minutes per
platform and communication type. During this period, a device
sends data every 100ms. 27

Figure 5 shows the impact of different communication
and processor types employing a transformation function that
forwards the message, either in Scala ({x: Map[String,
Any] => x}) or Python (output = input). Using a
message broker (i.e. AMQP, Kafka or MQTT) with Scala,
the internal delay is around 1ms; in contrast, using the
same message broker with Python processors, the time can
vary between 60ms and 75ms. In Scala, the transformation
function introduces low value delays (2µs) due to its compiled
code, compared to the 60ms delay for Python. When using
Python, the transformation includes i) time cost of Python
interpreter and ii) time cost for converting data types from
Scala to Java and then from Java to Python.

As observed for both processor types, the protocols HTTP,
HTTP-bus28 and CoAP have a larger tsink compared to the
message brokers. This is due to the synchronous requests to
the corresponding servers. The same result also applies to
tsource for HTTP. HTTP-bus achieves a low tsource given that
the HTTP server runs in the processor unit by itself. CoAP
achieves a low tsource because the Observe mechanism is used,
and the request is not included in the time measurement.

Figure 6 shows the tsink for some of the data serving
protocols that ERAIA supports. For the HTTP, tsink includes
the HTTP request time; for the LWM2M, it includes the time
cost for mapping the original value to the IPSO object; and
for MQTT-SenML, it includes the time cost for converting
to a non-optimized SenML encoder. For any other case, it is
assumed that a JSON encoder is used.

Figure 7 shows the total time cost for executing a Scala
processor unit and its impact on different platforms and archi-
tectures. All the time costs for the VMs (cXmY) have similar
levels given that the same CPU is used constantly during the
evaluation. There is a small increase on the rpi-arm64 and up-
amd64, approximately 2ms and 1ms respectively compared to
the VM; meanwhile, the rpi-arm has a bigger penalty of 10ms.

3) Scalability: It can be defined in two ways: 1) scale-up or
vertical scaling, which refers to the impact of the performance
when there is an increase in the memory size and/or number
of CPUs, and 2) scale-out or horizontal scaling, which refers
to the impact of performance when further nodes are added.

Given the distributed architecture of the solution, an approx-
imation of the scale-out capabilities could be defined as:

capacitytotal =

numworkers∑
i=0

capacityworkeri

To analyse the scale-up capabilities of the system, an
outbound interface is used. During the execution of the ex-

27Outliers are removed after standardizing the variables and using an

absolute threshold of 3 for the z-scores z =
x− µ
σ

and |z| > 3

28An HTTP-bus refers to a HTTP server running inside the processor unit,
while HTTP refers to an external HTTP server
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Fig. 5: Processing times per communication type and processor type on a VM with 8 CPUs and 16GB RAM (c8m16)

Fig. 6: tsink comparison for CoAP data forwarded to different
output communication types using Scala processor

periments, a monitoring device sends annotated data every
second, whose processors units are adding a timestamp29

and additional information to the packet30, and then storing
the information into a database. All the other devices have
only forwarding processors units associated. The execution
of the experiment is based on a periodic increase of the
number of devices in a given time period. The following
values are used: devices-step=50, max-devices=5000, timeout-
step=2min. The devices generating data have the following
characteristics: communication-type=MQTT, interval=100ms,
data-encoding=JSON, packet-size≈40 bytes. Three device
generators and three MQTT brokers are deployed in order to
simulate a high load31.

Values are collected until the established maximum number
of devices is reached or the worker component terminates. The
maximum values presented in Table III reflect the number of
devices when the packet loss is above the threshold of 5 %
over a period of 30 seconds, or the delay is above 1 second27.

Table III and Figure 8a present the scale-up capabilities of
the workers. As expected, the lower the CPU and memory, the
lower the number of devices that is supported. Furthermore,
it is interesting to notice the relation between the number
of threads and the number of devices: there is a direct
proportionality between memory and number of threads, since

29all workers are synchronized using Network Time Protocol (NTP)
30transform: {x: Map[String, Any] => {x + ("t1" ->

System.currentTimeMillis, "r1" -> "cXmY", "n1" ->
x("n0"))}}

31The MQTT brokers are used on a round-robin basis for load-balancing.

the thread structures are allocated in memory32.
Figure 8b shows the normalized packet rate values based

on the power consumption of the processors (described in
Table II). It is noticeable that the low-power processors (i.e.
rpi3-amd* and up-amd64) have a better normalized packet rate
compared to the ones running in the data center.

TABLE III: Scale-up capabilities

Platform Threads Max.
Devices

Rate
[103pkts/s]

Throughput∗
[Mbps]

rpi-arm 13 655 168 16.8 5.4
rpi-arm64 16 638 221 22.1 7.1
c1m1-amd64 7 685 251 25.1 8.0
c2m2-amd64 15 748 804 80.4 25.7
up-amd64 61 502 2 162 216.2 69.2
c4m8-amd64 63 614 3 168 316.8 101.4

∗equivalent throughput given the maximum number of devices

4) Migration of processor units: This analysis shows the
delay and packet loss introduced by the migration of the
processor units from one worker to another. To approximate
the delay at the application layer, the device generator sets a
timestamp when the packets are built (marked as t0), and then
the processor unit sets a timestamp when the transformation
function is executed (marked as t1). The delay is defined as:

t1 − t0 = tsinkgenerator
+ tbroker + tnetwork

+ tsourceprocessor + tmap

During this experiment, one processor unit migrates from
one worker to another every minute, while one monitoring
device with the same characteristics as the one used for scal-
ability sends data every 100ms. Figure 9 depicts a migration
covering workers c1m1, c2m2 and c4m8 respectively. The
packet loss and delay results are based on a moving window
of 100 samples, and the output is smoothed by re-sampling
the data every second. The result shows a small impact on the
packet loss of ≤ 1%, which corresponds approximately to the
loss of one packet.

32From kernel/fork.c: maxthreads = mempages / (8 * THREADSIZE
/ PAGESIZE)
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Fig. 7: Comparison of the ttotal for multiple platforms

(a) Packet rate [103pkt/s]

(b) Normalized packet rates with processor consumption
[103pkt/s/W ]

Fig. 8: Packet rates supported by different platforms and
architectures

V. SUMMARY AND FUTURE WORK

This paper describes the architecture of ERAIA, whose
implementation has been successfully employed in different
use-cases [26] and scenarios [27]. ERAIA exposes a simple
API that allows composition of data management pipelines
with support for real-time information and intelligence ex-
traction. It offers the possibility to distribute computation
based on specific IIoT application requirements such as power

Fig. 9: Packet loss and delay during migration of a processor
unit between workers

consumption, bandwidth, latency, availability of computational
power or dedicated hardware, availability of data source,
security and privacy of data, etc. The solution integrates
open source components and expands their functionality by
enabling execution within actors. In the future, we will work
on a number of features and improvements leading to the
productification of ERAIA. As a brief mention:

Life cycle management of ML models: It covers a distributed
management of the models within the framework to allow the
processors running the models to be stopped, started, updated
and migrated to other workers.

Robustness features: It covers the improvements of the
control plane, in terms of the distribution and redundancy
of the manager components, the persistency of the worker
deployments to support advanced failures, and the interconnec-
tions among workers through improved cluster management
capabilities.

State replication improvement: It covers the improvement
of state management for the processors, enabling advanced
data pipeline composition and advanced migration capabilities
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between the different actors, beyond the local environment.
Processor scheduling capabilities: It aims to explore

how the processor units could self-optimize their placement
within workers to improve certain Key Performance Indica-
tors (KPIs), such as context-aware data and tasks scheduling
solutions [28].

VI. CONCLUSION

In this paper we introduce ERAIA, a new framework that
supports scaling, handles heterogeneity, and provides intelli-
gence and data composition. The proposed solution targets two
of the main challenges of Industrial IoT (IIoT) applications,
namely the orchestration of data and computational resources
and the refining and preparing of data for intelligence ex-
traction. We present how ERAIA, our actor-based frame-
work enabling intelligence and data pipelines, addresses these
challenges, together with a detailed architecture description,
an implementation and a performance evaluation, proving its
capabilities on a series of hardware platforms covering the IoT
ecosystem.

We identify future directions and functionality to better
serve the IIoT application ecosystem. Although focused on
the IIoT, our solution could easily be integrated into other
IoT platforms to provide extended features for the Application
Enablement Platform (AEP) in a distributed manner.

REFERENCES

[1] Machnation, “Worldwide Embedded and Intelligent Systems Forecast,
20182022: Data Transformation and the Journey of Data Across the
Internet Landscape from the Physical to the Digital,” 2018. [Online].
Available: https://www.idc.com/getdoc.jsp?containerId=US43690318

[2] R. A. Martin and A. Soellinger, “The emerg-
ing iic verticals taxonomy landscape,” 2016. [On-
line]. Available: https://iiconsortium.org/news/joi-articles/2016-June-
The-Emerging-IIC-Verticals-Taxonomy-Landscape.pdf

[3] A. Shukla, S. Chaturvedi, and Y. Simmhan, “RIoTBench: An IoT
benchmark for distributed stream processing systems,” Concurrency
and Computation: Practice and Experience, vol. 29, no. 21, p.
e4257, 2017. [Online]. Available: https://onlinelibrary.wiley.com/doi/
abs/10.1002/cpe.4257
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