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Abstract—We present a dynamic error prediction system for
industrial production machines. We implemented a flexible data
collection tool to create error warnings for a production line,
which aims to improve the already existing static alarm models.
For industrial machines, there are threshold-based alarm models
set by prior experiences and observations of the operator. For
machines without standardized interfaces and communication
protocols, which are not Industry 4.0 compatible, it represents a
challenge to implement and add a dynamic and opportunistic
system behavior. Machines need to learn from past errors
autonomously and adapt the production properties dynamically.
We implemented a framework that makes production machines
conform to the Internet of Things (IoT) concepts, by making pre-
viously non-IoT enabled resources available to get new insights
into the production processes.
The system component recognition and the database setup is
done fully automatically by our developed system.
We designed and applied a feature-based data drift model in a
real-world industrial setting to determine data deviation between
normal and erroneous work-pieces in real-time to predict upcom-
ing erroneous behavior. The drift analysis flagged and predicted
work-pieces as erroneous several minutes before the pre-defined
machine alarms would have been raised. The resulting flagged
sensors and values can be compared to the system determined
errors to get new insights into the abnormal machine behavior.
For the reduction of downtime, the most valuable immediate
result of the system is the ability to notify the operator earlier
and reduce overall downtime.

Index Terms—IoT, Industry 4.0, Middleware Platforms, Self
Configuring System, Maintenance Prediction, Unsupervised An-
alytics

I. INTRODUCTION

In the modern industrial landscape, there is a vast array
of information that can be gathered from the production
processes, which is never stored or even reviewed as of today.
In industrial settings before the fourth industrial revolution that
is happening right now logic controllers control machines. This
represents a big step for the industry. The programmable logic
controller (PLC) was introduced 1969 and has since become
the standard way to control machines in a production line [1].
Those PLCs control the machines and read out sensor values
to detect errors in the production process. Errors are generally
detected by using pre-defined thresholds, which can be set by
a manufacturer or based on the machine operators experience.
Through the utilization of IoT concepts and implementations,

these static systems can be improve and adapted to become
more intelligent to increase efficiency and stay competitive.

The systems we observe need attention at unknown times
due to mechanical, electrical or external issues, which need
to be resolved manually by a technician. For those errors, the
system has to stop immediately and does not operate until
the error is fixed on location after an inspection of the reason
behind the failure. The summarized downtime consists of the
time until the technician is informed of the failure, the walking
time to reach the machine and the time on the machine to
analyze the error and get it back to working. These kind of
procedures can lead to hundreds of hours of downtime over a
year and multiple machines.

This study aims to predict the system failure for the tech-
nician to be already at the machine site in times of failure or
even prevent the events by contradicting the issue early. Time
from a failure to the system working properly is reduced by
removing the information and walking time of the technician.
Currently, the system has no way of tracking the manufactured
parts and the results of their quality control at the end of the
production process. The possible ground truth that is provided
by the system is time since the the last maintenance, which
work-pieces were produced and the time of fatal errors, which
lead to a machine stop beyond 10 minutes. For the prediction
of the maintenance interval, we assume three phases of the
machine state. The states are (i) working, (ii) not working
and (iii) the phase in between where the upcoming error can
already be diagnosed by analyzing the data values and their
change.

We conducted a pilot study to gather real-time data of a
production machine, using a dynamic iteration to detect all
available variables autonomously. The data is analyzed without
previous knowledge of the machines variables and what it can
provide. We propose a system, that gathers data dynamically
and an opportunistic [2] approach to use different techniques
of data analysis. The system can generate visualizations for
production properties. An outlier detection is used to predict
incoming failures of the machine and boost the accuracy
and reliability of the alarm system. We a usedm to apply a
data drift analysis to detect errors on a data-driven approach.
The approach generalizes on to multiple production machines
with different purposes. The architecture relies on basic signal
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processing techniques for a stable and reliable setup. More
advanced techniques, that might be more tailored to the
specific application cases of the system can easily be added
as we dynamically analyse the feature drift in our model. The
system fulfills the demands of a low cost, scale-able, self-
configuring architecture [3].

II. RELATED WORK

In an industrial environment, information always needs to
be transmitted reliable, timely and uniform [4]. For this goal,
we need to use a common transmission standard. The network
level needs to allow high speed, high bandwidth and real
time transmission. This layer needs to be assisted by high-
level communication protocols. The applied models need to
be backward compatible to include already existing systems,
which are in live production as of today. We need to find
an intermediate level between the long machine live-cycles
inside the industry and the need to evolve the current systems
to the next level. New technologies such as IoT are pushing
the industry even more towards the smart factory [5]. These
improved factories offer mass customization, flexibility for the
production process and can optimize management decision
making through a higher visibility. These improvements also
generate a large amount of data, which we need to handle
properly. The data needs to be collected and correctly used
to support a proactive maintenance to spare costs and give
new insights into the production management. In addition
to the important aspects of the technological challenges and
standardization challenges, we also need to account for the
aspects of security and privacy protection. The standards for
cyber security for IoT systems are still vague [6] and further
research work needs to be done to guarantee a secure and
responsible handling of the data collected. Methods to verify
and control those systems, which reach complexities beyond
the human ability to monitor system decisions, are necessary.
These smart systems and factories need to be robust and
resilient for disruptions.

For the predictive maintenance, methods were presented to
observe the machine parameters and the product quality at the
end [7]. A study about the technical issues, which the predic-
tive maintenance methods needs to address and the importance
of these issues for people from the industry, was conducted.
The most valuable aspects, rated with the highest priority, were
the ability to monitor the process parameters continuously and
if those range in between pre-defined thresholds. The main
goal is the ability to create a model to predict necessary
maintenance (-intervals) and which parts of the equipment
need to be exchanged, which would make production decisions
easier. Even if the machine parameters for the predictive
maintenance did not show a deviation the system can track
the work-piece outcome and if there are more erroneous parts
than usual. Sensor and quality control data are combined to
achieve a sustainable and intelligent system. The model uses
machine variables that are selected manually and stores only
the selected data, instead of the whole data of the machine, as
it is done for the study we perform.

Systems using log data and applying it onto data streams
were done before. A log data system to collect data from the
running equipment which consists of timestamps, structured
text messages describing the event and the event groups,
where similar events are grouped together was proposed in
previous work [8]. These events are defined by the developer
and consist of the values for variables and system states
he deemed necessary to report. An experienced worker can
use the daily logs to identify critical conditions by manually
browsing through the thousands of log messages. We attempt
to support these experienced technicians with their task by
supplying additional information.

With an evaluation of the existing maintenance records [9]
similarly concludes, that it is possible that these maintenances
often are not focused on the most critical components. The
components are evaluated for their reliability and which com-
ponents slow the whole process by a low reliability. Their
selection for sensors is done by locating and selecting the
sensors for the most important components of the system.
For these sensor values, they apply previous knowledge about
the influence of aspects such as vibration. For every value
which is used as a feature there needs to be a range which is
considered as normal and a spectrum outside the normal range
at which the machine should not be operated dependent on the
importance of the component related to the sensor. If we aim
to use the methods shown in [9] we first need to extract the
important variables for each error from a pool of all variables.

For a pilot study, we accessed an industrial machine for the
data collection. The open platform communications unified ar-
chitecture (OPC UA) standard is the next step of the industrial
communication with PLC machines after the previous OPC
standard. OPC UA is not limited to a specific platform, such as
OPC and uses a standardized service oriented architecture [10].
The main advantage compared to the OPC classic standard is
the communication protocol, which is not bound to windows
machines and the DCOM standard.

For the purpose of the study we gather data of a single
machine from a production line. For the design of the system
aspects of a mixed line production, meaning the sequencing
of products for the mixed assembly lines is considered [11].
The evaluations include the correct sequence, the number of
model types produced on the single line, the deviation of
demands each product has for the machine and the models
time deviation. Each model, which goes through the process,
is dependent on every machine in the product line. For the pilot
study, we will also have to handle a single machine inside a
production line and deal with unrelated machine stops.

For the analysis pure data based methodologies will be
used [12]. Only the machines measurements are analyzed
by the system we design. We only use alarm data after the
process to verify the results. Data-based methodologies include
multivariate statistical analysis, iterative learning and model
free adaptive approaches [12]. For the multivariate statistical
analysis the principal component analysis (PCA) can be used
to reduce the high dimension of data. The variability of the
data is observed using the PCA and different groups of data
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can be visualized to be compared. The statistical analysis is
limited by more complicated non-linear data, which need to be
considered by the data analysis of this work. A more complex
method is the iterative learning approach. Repeated similar
tasks are observed and projected as a dynamic process. For
each individual task the information of previous appearances,
need to be saved for the iterative learning to work. This
requires a well designed storage concept and calculation
performance, since big streams of data are compared to each
other and calculations have to be made in a live setting [12].

For our proposed system, we need to implement a feature
selection for a clear visualization of results. We cannot perform
the feature selection by testing different settings and compar-
ing them to a ground truth to evaluate the results, since there
is no ground-truth provided for each work-piece. There are
methods for unsupervised feature selection. A multi cluster
feature selection can be used for the feature selection [13].
This method uses spectral clustering technique to sort the
data. For every cluster, a single sparse vector is calculated.
The sorting algorithm sorts the features of which an amount
should be selected by the maximum entry into the vectors.
This method can be useful for this kind of work but needs to
be changed since the number of clusters is unknown, or can
be defined as the 2 categories (i) running and (ii) stopped. We
aim to implement a system, that can differ between normal
and abnormal behavior. A system can learn from its normal
behavior and then monitor the data differentiation [14]. We
aim to build a robust learning system that does not include
unknown outliers during the learning process. An important
aspect and necessary step to proof any kind of analysis done
is the ability to detect statistical meaningfulness. Statistical
meaningfulness is a quality criterion for time trends [15].
We aim to calculate important statistics to determine the
meaningfulness. The coefficient of determination, which can
reach from zero to 100 percent and measures the quality
of the fit for a linear regression model, which is fitted to
the data. As a second variable, they calculate the p value,
which is used in most statistical significance tests. To get
the p-value they calculate the two-tailed Students t statistic,
which can be related to a p-value if the degrees of freedom
are known. They determined 65 percent as a minimum value
for the coefficient of determination to be relevant for further
significance consideration by the p-value. This percentage was
gained by a threshold, which is suggested to be crossed by the
predictive power of the linear regression.

III. SYSTEM STATE AND GOAL

We propose the a self-configuring system which automates
most used processes with less human steps necessary 1.

We aim to extend the already working manufacturing system
of the observed industrial plant. As of now, the system we
aim to observe for the pilot study is capable of sending
alarms to an operator when machine errors appear. We are not
aware of the amount and format of variables, which we can
read from the PLC. Our goal is to implement a zero-config,
plug and play system. Independent of the machine that the

setup gets connected to, the data transmission needs to start
automatically. No installation effort is put to the operators.
Therefore, we aim to use the announcement properties of
the OPC UA server on the production machines. The address
space is traversed and every variable which includes readable
sensors or programs information values will be saved in a
newly instantiated database table at system start time. For
each variable, its name, data path inside the machine and
datatype are saved and can be linked to the data for later
investigation. Using this big amount of data, we aim to predict
an upcoming error more accurate and earlier as the current
system does by observing single variable thresholds. We will
use all sensor readings to predict any alarm. Therefore, we
make the following assumptions we aim to validate during
the pilot study:

• An upcoming system alarm of the currently used thresh-
old system can be predicted earlier using a data driven
approach.

• The data driven approach can give more detailed infor-
mation about the errors occurring in the system.

In Figure 2 we visualize what we expect our system to
achieve. Use all information supported by the machine for
all possible system errors to evaluate and boost preexisting
systems. The figure shows exemplary the current systems
usage of a threshold system by observing specific variables for
specific alarm. The system we implement observes all possible
variables on their influence on to specific alarms.

IV. METHOD FOR AN ERROR PREDICTION IN AN
UNKNOWN INDUSTRIAL SYSTEM

To predict an upcoming alarm we use all readable variables
to create features for the prediction, since there is no previous
knowledge about variable importance or purpose. We calculate
a percentage drift between each work-piece and its successors.
We combine the drift for all features into a general system
deviation variable. Using the system deviation variable, we
compare each work-piece entering the machine to its prede-
cessors and evaluate the magnitude.

A. Feature selection

We defined features from the variables to compare the work-
pieces to each other. To achieve a high generalization we used
the most common statistical features of the time and frequency
domain [16]. The usage of a window function for the feature
construction was evaluated. We decided to split the data by
the work-piece information for the comparability over the
time. Every work-piece of the same type should show similar
feature ranges. We create a set of features for every work-piece
passing through the machine. The numerical values provided
by the system can be used directly to calculate features. For
non-numerical variables, we used a hash function to make the
calculation possible.

B. Feature drift

We observe a concept drift [17] to raise possible errors.
This drift is observable for unexpected data changes. Using

2020 IEEE International Conference on Pervasive Computing and Communications (PerCom)

120



Fig. 1. The system architecture consists of the human steps and the automatic steps. The human steps that are necessary are to enter the database credentials
to allow the controller to connect and write to the database chosen. The controller is plugged into the network and powered on (V-A). After the boot the
network is scanned for OPC UA servers and the database is checked for already existing connections to any of the found servers by another controller. A
connection is established with an unobserved server and the address space gets traversed for readable nodes (V-B). Numerical nodes can be used for the
construction of features and analysis such as regression, which can be provided graphically to machine controller if any nodes show positive or negative
trends. After data (V-C) is gathered for a short time period the system determines the machines normal behaviour and sends an alarm if multiple values start
to show unusual behaviour (VI-B).

Fig. 2. On the left the current method of using thresholds for different alarms
is shown. For a temperature alarm, the temperature is observed for a too high
value. On the right side, all variables available are used for a classification.
With this method, we aim to predict mistakes earlier and get more insight
into the error itself. A temperature error can for example also be caused by
measurement failures caused by different aspects of the system, such as the
electrical current which can lead to faulty measurements.

the features, we calculate a percentage drift between each
value and its successors. The drift for all features is combined
into a general system deviation variable. When this deviation
system variable peaks, an alarm is sent to monitor the system
for an incoming failure or faulty outputs. We calculate each
features drift percentage using a window function over the
previous work-pieces. A window function with the size n is
used to calculate the percentage drift of a feature for the value
at position i. The window defines the amount of data point,
which we need to calculate the drift variable. The window
size should be smaller than the supposed concept drift [18].
We calculate the drift of the data for every feature and work-
piece driftij :

value[i]− average(value[i− 1] : value[i− 1− n])

average(value[i− 1] : value[i− 1− n])
(1)

The window size for this evaluation is exemplary selected as
10. The window size must be chosen according to two aspects
which can be seen in Figure 3. A too short window has two
downsides. In Figure 3, using a smaller window, the data
points 0 to 15 are weighted stronger and get flattened with
a bigger window. For a rising or falling edge, a small window
will show the drift to a lesser extent than a bigger window.

For a bigger window size, the downsides are the necessity of
the window size variables before the method can be used. An
extending window for the window size from the beginning can
be used, but this results in the downsides of a short window
for the beginning values. A bigger window does show a drift
after a rising or falling edge for values even when the values
remain static afterwards as shown for the data points between
35 and 41. For the method to analyze the drift, peaks in the
drift curve are important to recognize relevant changes.

Fig. 3. An evaluation of the window size. A saw-tooth function with some
added noise is used to visualize the difference of the window sizes. A window
of length 10 and 1 were used to visualize the influence on the signal depending
on the window size. For the small window size, long time trends are not
observable, as can be seen from sample points 30 to 35, where we cannot
detect the falling edge as a drift. Only jumps between two successive data-
points can be recognized.

The calculation as presented in (1) is used on all features
and results in the matrix Driftij :

drift11 drift12 ... drift1n drift1n
... ... ... ... ...

driftn1 driftn2 ... driftnn driftnn

(2)

We can work with the drift matrix by selecting the rows
or columns separately or iterating for calculations. For every
column of the Driftij matrix we calculate the outliers by
using a threshold for the maximum tolerable deviation. We get
the threshold by calculating the n-th distance of each work-
piece and features measured in standard deviations [19]. We
use three times the standard deviation distance from the mean
to detect only strong outlier. Features inside a dataset can show
drifts due to sensor measurement errors or a high variance
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between the work-pieces. For each work-piece, we can sum the
amount of features exceeding the defined maximum threshold
to get the work − piecei.deviation:

1 if drifti1 > threshold+ ..+ 1 if driftij > threshold
(3)

For all work-pieces, the average and standard deviation are
calculated. If a new work-piece is produced and the deviation
exceeds the average plus 3 times the number of deviations an
alarm can be sent. The work-piece represents an outlier to the
previous production process and we can inspect the system for
the underlying reasons.

V. REAL WORLD PILOT STUDY FOR DATA
COLLECTION AND ANALYSIS

For the proposed system, we created an implementation for
testing and verifying the approach and its assumptions. We
evaluated and selected hardware for the set-up according to
the needs. We created a system capable of a plug and play
function at the machine site in the factory, which starts to
gather data without further configuration. The system runs
machine independent as long as an OPC UA server is installed
to access the data. We designed the system to run maintenance
free during the data collection intervals.

A. Hardware Implementation

We tested the setup on a live production line at a production
facility. We decided to connect the pilot setup to a production
machine in a running production process. The machine already
uses alarms, and activates an emergency light when certain
variable thresholds are breached. We can use these alarms
to evaluate our automatically created alarms. The machine
observed is placed inside a production line with preceding
processes. A conveyor belt transports the material to the
machine. The production program used is running on a PLC.
The data was read by using the OPC UA protocol. For the
purpose of the study, all accessible variables provided by the
machine were gathered. No previous selection was conducted
and the available variables were automatically traversed to get
all readable data. Using this approach, we can extend the setup
to multiple machines and production lines, since the process
is configuration free.

For the implementation at the machine site we used an
industrial Raspberry Pi 3, the NetPi by Hilscher [20]. A
necessary expansion for this study, which the NetPi provides,
are additional industrial Ethernet ports on top of one standard
Ethernet port. The industrial Ethernet ports can be used as
a PROFINET IO-Device, Ethernet/IP adapter or EtherCAT
slave. For the hardware installation, we placed the NetPi inside
the switch cabinet of the machine. The data is stored locally
and the system could be configured to write the collected data
into a database.

B. Communication model

The communication between devices takes a key role for
our design. For extendibility, a clear communication standard

needs to be set. The transmission between machine and
controller needs to be exactly defined. Each part of the system
has to be able to be globally identified. Especially due to the
unknown format and amount of data, no data with unsure
origin is allowed into the system. Any production machine in a
production line needs to be uniquely identified. The machine
needs an IP address and unique MAC ID to get connected
inside the network. The MAC ID is used by the whole system
to identify the machine inside the network, since IP addresses
are able to change. Each machine has an unknown number of
variables and is connected to a single controller (the NetPi).
To identify each variable inside the machine it needs a unique
ID. For the system, the combination of variable ID and the
machines MAC ID clearly identifies every variable globally.
The variable needs a data type for the correct storage inside
the database and temporary on the controller. We installed the
database on a central server. For each possible client for the
server, rights for accessing the database and necessary tables
have to be set. The controller accesses the database by its
IP address. For each machine a table inside the database is
generated opportunistically, which inherits all values of the
machine. This design is used for a set up with a machine
using numeric, boolean or string as a data type. For the
capabilities of storing images and videos, we would need to
extend the system. For the practicality and possible size of
these functions, run-time tests are necessary.

We implemented the system, which is currently capable of
reading data from an industry machine, saving the data to
a database and visualizing the results of the data analysis.
Every step of this process is done automatically with the only
necessary input of the database IP. The controller is able to be
plugged into any network with a running industrial machine
with installed OPC UA and known database server. This allows
us to extend the system inside the factory. We only need to
clone the controller and put it inside the network and it will
connect to an unobserved OPC UA server if one exists inside
the network. The selection of data variables of the machine
will be done dynamically by the system. The base sequence
of the events of the system is according to Figure 4. The
communication sequence is a linear process. The machine side
should have the ability to communicate each possible variable
to the controller. The controller requests all possible variables.
If no complete list is available by the machine the controller
needs to browse through the data structure of the machine to
get the information needed. The controller should check the
database for an already existing table or file, which is identical
to the naming scheme of the current machine. If a table exists,
the gathered values are written into the table instead of creating
a new one.

For this approach, security concerns have to be considered
when the system is extended in scale, considering network
attacks or the possibility of the database being accessed by
manipulated data values. For the pilot study, we used a closed
network, which only inherited the industrial machines and
the database with no possibility of an outside connection.
The machine networks are also separated by using Docker
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Fig. 4. The the connection between the NetPi controller and the OPC
UA server is established dynamically. The connection to a not already
monitored machine in the network is established. A connected controller sets
a connection flag inside the machines database. A new introduced controller
will not connect with already observed machines. The controller establishes
a connection to a new OPC UA server and browses the server to get all
available data variables. After all variables are received, a table is generated
on the database server. The Machine server sends the data for subscribed
variables periodically to the controller, when a variable change took place
during the interval. The data are synchronized to the database when the local
storage size reaches a pre-defined value.

containers [21] for different tasks. One container runs the
functionalities towards the industrial machine and writes the
data locally. The second container collects the locally stored
data and sends it periodically to the database. This way we
can control that the machine is not directly connected to any
network.

C. Gathered Data

The resulting dataset consists of a table with a column for
each variable sampled at 10 Hz. The data types vary for each
column. The dataset includes values for sensor variables, such
as temperature or vibration and information about the running
PLC program, such as program name or product type name
and system alarms. The data amounted to around 1.5 GB daily,
which summed up to 90 GB over two month. Reading from
an informative line of strings it can be determined whether
or not the machine is stopped and thereby, when a single
parts production starts or ends. This makes it possible to
differentiate between each work-piece form the same product
group for a separate analysis. We split the data into frames
for each type and an additional type, stopped, where the data
between the work-pieces are saved. For easier tracking, we
added the number of the work-piece for the prototype study.
We enumerated all work-pieces as well as the stops, for easy
sorting of which work-piece was the following and succeeding,
on top of the already existing timestamp. There is a stop
between two work-pieces for every instance of the pilot study.
We enumerated the stops separately for the work-piece types.
Work-piece number X is followed by stop X inside the data.
For the comparison of similarity between the correct signal
and a new incoming signal different metrics, such as the root
mean squared error (RMSE) or median absolute error (MAE)

can be used [22]. From a optimal curve, the statistical features
for every variable and product type can be calculated 5. We
can uniquely identify each product type by its data value curve
using a classification. As evaluation, we used the data values
for a classification of the product types. A J48 decision tree
was used for classification with a tenfold cross validation. The
result was the correct classification of 21020 instances out of
21413, which is an accuracy of 98.2 percent. Inside the data
set were 17 different product types as classes.

For every product type and variable measured from the

Fig. 5. The average curve for a product type and a single feature. The orange
line marks the average position of the signal with the standard deviation for
each position around it in the dark blue color. We generated the curve using
254 instances of the work-piece.

machine an optimal data curve can be derived. For each
product type, we selected all work-pieces that do not deviate in
length from each other. By analyzing all product types only an
average of 1.1 percent deviate in length from all other work-
pieces of the same product type. Any other work-pieces are
similar in length with a maximum deviation of one second. The
average curve is calculated by the average of each work-piece
for each value of the time series. The average is surrounded
by the standard deviation as can be seen in Figure 5.

D. Regression

We use a linear regression of grade one to detect trends
inside the data. Every feature is observed separately. The
results for the regression and its r-squared value differ between
analyzing the whole data set or segments of data and product
types. We applied the setup to each variable and a subset of
variables using the PCA. With the regression analysis, we aim
to find trends.
We use this linear predictor to analyze the statistical features
constructed. These predictions can be compared to manually
set thresholds or thresholds defined by system crashes. An
optimal system will not show any deviation. As a validation
method, it is not possible to test the result against a ground
truth. There needs to be a measure for change of a raw data
column or feature over time, which shows deviation from
previously measured values. In the first step, we performed
a regression on the two-month data set. The data were right
through optical inspection chaotic and the regression does have
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a low coefficient of determination (r-squared) if used on itself.
For the work-piece dataset, the r-squared has a value of 0.08.
We interpreted that the model does not project the variability
around the mean of the data well.
To analyze the data further and explain several peaks, we add
the pause timing. Every stop, which exceeded one hour, we
used to split the data into segments. As a result, the data is
split into three segments from one continuous data stream of
the recording period. For the regression of the three segments,
we get r-squared values of 0.1 for segment one, 0.31 for
segment two after the long break and 0.27 for segment three.
This already shows an improvement to the setup without any
segmentation.
For multiple variables, the values for various statistical values
are within different ranges for different product types. This
leads multiple variables to be of no use for any kind of
regression. Product types alternate between each other in a
mixed production, which is normal for this production line.
By separating the product types, we can observe and analyze
trends for each type. The average coefficient of determination
for each segment, when the product types are used separately
are 0.39 for segment one, 0.50 for segment two and 0.63 for
segment three. The regression results for all segments are
better at representing the data if we split for the segment
and product type. This shows that the machine stops strongly
influence the production machine. The machine, in these times,
can cool down and many variables are reset to the status
identical to directly after maintenance. For long time trend
analysis, this poses a problem because it can mask an actual
significant trend. It would be necessary to separate for the
product type. Due to the short windows of a single type
compared to the long time analysis, this makes the regression
approach difficult. To observe the trend for each product type
with a high enough r-squared value the slope needs to be
tracked and when the overall slope for all product types shows
the same tendency it can be concluded, that the machine does
deteriorate over a long time.

VI. ANALYSING THE FEATURE DRIFT FOR ERROR
PREDICTION

For the error prediction, we do not use the information we
can achieve by optical inspection or findings during the manual
visualization process. This allows us to apply the model on
further machines with less manual work. We can use any
statistical features from the time and frequency domain for
the drift calculation. For the example presented, we kept the
amount of projected features small for an easier visualization
of the results. We used the mean and the variance of the data
stream as the two features of the test setup for general usage
with all numerical data. An exemplary data exempt can be
seen in Figure 6 for one of the features.

A. Variable Drift

For the windowed data we get the values of percentage
deviation for each sample for a feature in Figure 7. For all
features, these values were calculated. For most features, a

Fig. 6. A statistical feature calculated from the data. The feature is calculated
using the average per work-piece for the variable of a sensor measurement of
the machine. Every single value, one exemplary marked red is compared to
its preceding n values and its percentage of change is measured.

small drift for the most work-piece was observable. Each
feature drift showed peaks at different times. To compare the
values to each other, normalization was used. This had to be
done due to the different value ranges. In example, one feature
we observed with values ranging from 2.0 to 3.0 and dropping
to 0.8 for a work-piece. Another feature ranged from -346 to
-348 and dropped for the error to -365. The drift for feature
one would be 0.68 and for feature two 0.05. For a normalized
calculation the drift for example two can be observed to be
much bigger, since the actual range of the values is 19 and
the normalized values are 0 to 0.11 for the normal values
and 1 for the erroneous value drifts by the factor 19 and
will be recognizable compared to the 0.05. The method was
tested for the data with and without normalization and the
results achieved are comparable. To keep the approach as
general as possible normalization should be used for a general
implementation.

Fig. 7. Each sample in the graph displays the difference of the sample on
this position to the 10 succeeding samples. The marked sample is the result
for the marked sample of Figure 6. The figure shows a drift for more then
1 which means a change of the value of more than 100 percent for multiple
work-pieces of the feature. This can be attributed to the overall variance of
the features and this feature in particular. If the single feature would be used
to set up an alarm based on this threshold, multiple false errors would have
been sent.
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B. Drift Magnitude
We analyze the deviation for all features and variables. As a

threshold for the identification as an outlier, we selected a drift
of more than 50 percent. There are features that are changing
often due to their regular behavior and are by themselves not
meaningful for any form of classification. These single outliers
result in the wrong detection of errors when used as a single
measure to detect an error. For each work-piece, we conducted
a count of outliers to evaluate the amount of deteriorating
features for each point in time. The count of outliers for all
work-pieces before the alarm is projected in Figure 8. To
evaluate a clear change in the data, an unusual high amount of
deteriorating features has to be recognized. We calculated the
mean of the number of strong value changes and the median
absolute deviation from the counted features. We use the factor
of plus or minus three for the median absolute deviation to
recognize any data as an outlier [23]. As a result, we identify
several work-pieces before the alarm, which are behaving
unusual, as critical. The alarm could have been predicted from
this point in time and a warning can be sent based on the
algorithm. In the current machine, a system value triggered
a threshold based alarm, which was set based on pre-defined
limitations of the machine. The alarm informed on a later point
in time as the actual start of the deviation. The following work-
pieces after the alarming drift appear to have a low number of
drifting features since the faulty measurements are compared
to previous erroneous behavior. A technician can investigate

Fig. 8. For every feature we calculated, when the feature has a drift higher
than half of the variable range (50 percent drift or more). The sum of features
that exceed the threshold are counted and projected in this figure. On average
over the work-pieces, we observe for this graphic 3.9 features show a drift of
over 50 percent. The median absolute deviation for the data is 1.2. The red line
shows the limit for the maximum deviation that is allowed before an alarm
is sent. The earlier outliers for single features as in the feature of Figure 7
are not mistaken for errors. A high amount of features starts deviating half an
hour before the machine alarm was sent. For the exemplary alarm, a warning
could have been sent out earlier for a short manual checkup instead of a long
repair interval.

the error afterwards to get information in detail. The name
of the features that were responsible for the earlier recognized
drift error and its underlying system variable are available. The
system saves all information the OPC UA server supports.
The variable number can be matched to the variable name.
All variables that caused the alarm to trigger are observed and
conclusions can be drawn.

TABLE I
AN EXEMPLARY DATA SET FOR THE CLASSIFICATION. USING THE

OBTAINED INFORMATION, WE ASSIGN CLASS LABELS TO THE DATA.

Feat. 1 Feat. n Drift Magn. Time to failure Incoming Error
0.1 0.1 5 Good Good
0.1 0.3 6 Good Good
0.1 0.1 5 -5 Incoming
0.1 0.2 16 -4 Incoming
0.1 0.1 15 -3 Incoming
0.2 0.2 5 -2 Incoming
0.8 0.1 5 -1 Incoming
0.8 0.1 6 Alarm Bad

C. Advantages and Categorization

We observe the alarms our system sent and compare the
information to the threshold-based alarm. We could detect
system sent alarms earlier. The time saved for the detected
alarms was on average 15 minutes, which could be enough
to be on location at the moment of occurrence. Especially for
detected electrical or sensor measurement errors, this method
would have saved production time. These kinds of errors
take an experienced worker seconds to recognize as a fault
and only need to be checked as OK on a terminal for the
production to resume. Additionally, these kinds of errors could
be examined through the system variables. The temperature
sensor surpassed the threshold reached for an exemplary
temperature error. All previous variables, which caused the
flag by our system where connected to the electrical current
and other sensors changing in behavior. We can conclude that
the temperature did not cause the actual error, but different
erroneous behavior of the machine. We can use the time
between the first detected work-piece by the drift method and
the work-piece, which the threshold alarm system flagged to
create labels for each work-piece. We can apply the labels
different to the work-pieces depending on the method we want
to use for prediction of the future. We can label the data as
can be seen in table I. The first attempt is to analyze between
good values and starting from the first deviation in number of
work-pieces to the error. We call this method time to failure.
For the second method, we mark previous values as good and
the work-pieces between the data deviation start and alarm are
marked as incoming error. The assigned labels can be used to
implement a probabilistic model to train a prediction method.
The certainty of these predictions can be used to support the
decisions by either the technical experts or the management
on whether or not to act on a prediction [24].

With these assigned labels, we can create profiles for each
error and analyze if an identical machine behavior leads
to identical errors. For the most common error, which we
detected 14 times during the test period, we could detect a
characteristic change inside the data 11 times before the alarm.
For this specific behavior, we can use a classifier on the data
stream to detect these characteristic changes over multiple
work-pieces. A further data collection and more instances of
different sparse errors can be used to train a classification
system. This system can send warnings earlier using the data
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features and the drift magnitude if the error is recognizable
from the data stream.

VII. CONCLUSION AND FUTURE WORK
For the classification, we created the inevitable and needed

labels for the data. Using our system, we assign these labels
on the fly during the data recording. They are dependent on
alarms and the analysis of the data drift. To analyze the data
drift is a novel approach to apply labels to unlabeled data.
We can train a classification using these labels and depending
on the classifier, predict the probability for a system failure.
The system is used as of today, to send warnings when a
drift magnitude error. An alarm needs to be checked by a
technician after the reception. We can input importance of
the alarm for a probability model to react and send an alarm
depending on the certainty for the error. At the end of the pilot
study, the amount of machine errors was low, because of the
low error rates machines have in optimized industrial settings.
From the recorded errors, we can see that data values deviate
before the actual alarm. For an actual measure of accuracy
for the classifier, this is not enough data, because for every
error occurring, there is no test and train set, but only sparse
occurrences. For the analysis of the classification, more data
can be gathered and the data drift can be used to apply labels
to the data. For the errors observed so far, we can conclude
that the alarms triggered by the threshold system react later to
a deviation compared to the alarms triggered by implication
inside the data. The goal we set to inform the technician before
the alarm happens is possible. The alarms so far are set due
to thresholds for specific sensor values. Any alarm observed
in the unimproved system, could have been detected using
different values or especially a combination of variables and
their features. The implementation of a probabilistic model for
the alarm detection can reduce the downtime. A live analysis
system, as proposed by this work, will reduce downtime costs
and support a better understanding of the machine behavior
in the future. Based on our drifting feature approach, it is
possible to analyze unlabeled data streams and compare them
to the expected behavior. This provides an unsupervised way
to identify changes in the machine produced process data
and react accordingly. The developed system is a zero-config,
opportunistic one, thus it generates the whole processing and
analyzing chain just by plugging it in. This is a tremendous
improvement in usability and efficiency as no experts are
needed that install and maintain the system nor to interpret
its data.
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