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Abstract—Signature is one of the most prevailing identity
authorization approaches. It is yet inconvenient to use in real
life in the sense that a majority of existing signature verification
approaches rely on additional digital signing devices. In this
paper, we propose a portable device-free signature verification
system named SilentSign which makes use of acoustic sensors
(i.e., microphone and speaker) embedded in smart devices to
enable secure and convenient signature verification service. The
basic idea is to leverage acoustic signals to measure the distance
variation of the tip of the pen while signing. We carefully design
the signal modulation scheme, develop a phase-based distance
measurement technique, and train the verification model for high
performance and robustness. Compared with conventional digital
signing systems, SilentSign allows users to sign more invisibly
and conveniently. We conduct extensive experiments involving 35
participants to evaluate SilentSign. Results show that SilentSign
can achieve 98.2% AUC and 1.25% EER.

Index Terms—Signature Verification, Acoustic Sensing

I. INTRODUCTION

Handwritten signature verification (or, HSV for short) aims
at verifying whether a given signature is genuine or forgery,
and claiming consent on some obligations [1]. It shows the
considerable significance and wide application in our daily life
such as signing important documents and handling banking
business. However, due to the shortcomings of existing HSV
techniques, handwritten signatures are reported to be forged in
a large number of serious fraud cases. A recent report filed by
JP Morgan shows that fraud associated with paper checks is
ranked first for consecutive years among a variety of payment
methods [2]. This indicates the significance of HSV research.

Depending on the acquisition method, HSV systems can be
classified into two categories, namely, offline verification and
online verification [1]. The former refers to writing one’s name
on paper materials and checks the signature afterward, which
is the most traditional HSV approach. This kind of HSV occurs
in cases where paper documents such as contracts, receipts and
etc. need to be signed. But this lacks the real-time verification
process of the signer and makes the signature easier to be
forged. With the development of hardware, researchers have
proposed some novel HSV technology that makes use of
smart devices to accomplish online verification of signers
and enhance the security of HSV. The underlying principle
is to capture dynamic properties of signing movement, such
as the order of strokes, speed and pressure of the pen in
order to verify the identity of singers, with the help of smart
devices such as digitizer and tablet [3]. The feasibility lies

Fig. 1. SilentSign sends inaudible sound signal from speaker to capture the
vertical motion variation of a pen’s tip during the signing process. Features are
extracted from motion variation and used to train a machine learning model
to verify the signer.

in that a signature is associated with several attributes like
form, movement and variation which show unique patterns
for different people and can be viewed as a person’s identity.
As a result, in online HSV systems, apart from the signature,
the signing process itself can be also utilized for online
verifying the identity of signers, which enhances the security
of handwritten signatures.

Within the scope of online HSV, most prior schemes [4]–[7]
use a digital signing device such as a digitizer or touchpad,
on which users can sign with their signatures with specialized
pens. However, these systems require specialized hardware,
which makes them not applicable in the cases where users sign
on paper materials in daily life. In other words, they can not
provide real-time verification service for offline handwritten
signature scenarios. The latest work [8] takes advantage of
the sensing capability of popular wearable devices, namely,
a smartwatch, to capture the wrist movement via inertial
sensors for signature verification. Compared with prior works
[4]–[7], this novel approach overcomes the shortcomings of
the unavailability of hardware. Nevertheless, it still has the
following shortcomings. Due to the restriction of computing
resources, the smartwatch-based HSV system has to offload
collected data to another computing device, for example, a
smartphone or a tablet. That is, an HSV system needs to
equip with two separate devices. Even with more powerful
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computing capability, the smartwatch-based HSV technique
yet needs another device running applications like electronic
banking services owing to its limited screen size. What is
more, this method requires a signer to wear a device, which
may degrade the user experience.

Consequently, we raise such a question: can we design
an HSV system with only an off-the-shelf device and without
the user wearing or touching any additional hardware? In
this paper, we propose SilentSign, an acoustic-based touch-
free HSV system that can transform any smart device with
acoustic sensors into an online HSV system. SilentSign lever-
ages embedded speaker-microphone pair readily available on
commercial smart devices without equipping any additional
hardware or making hardware modification. It achieves a fine-
grained signature verification objective accurately. The basic
idea is to utilize inaudible ultra-sound to capture the vertical
trajectory of the pen tip during the signing process as shown
in Fig. 1. Then, with image similarity distance as the feature,
we train a machine learning classifiers to determine whether
the signature trajectory is genuine or forged when an unknown
signature comes.

To summarize, we list the following contributions in this
work:

• We propose an acoustic-based HSV method that can be
easily implemented on readily available smart devices. It
can not only supplement real-time signature verification
function for scenarios of signing on paper materials but
also replace specialized hardware in existing online HSV
with a handy device. Compared with similar work [8], it
does not require a signer to wear a additional device.

• We design a universal machine learning model for signa-
ture verification by combining imaging similarity features
(e.g., SSIM, PSNR and Hausdoff distance) that character-
ize the dynamic pattern of signing trajectories. By such
design, SilentSign achieves favorable performance while
a new user is enrolled without retraining the model.

• Finally, we conduct extensive experiments and evaluate
our system comprehensively. We recruit 35 students and
clerks in our University for experiments and collect a total
number of 1400 recordings of genuine and forged sig-
natures. The evaluation results show that SilentSign can
successfully distinguish genuine and forged handwritten
signature at AUC of 98.2% and EER of 2.37%.

The rest of this paper is organized as follows. We outline the
related work in Sec. II. We provide the required background in-
formation and overview of the architecture in Sec. III. Sec. IV
and Sec. V introduce the techniques used in system design and
verification model construction. We evaluate the performance
of the system in Sec. VI. In Sec. VII and Sec. VIII, we discuss
the remaining problems and future work, and conclude this
paper respectively.

II. RELATED WORK

A. Handwritten Signature Verification
Relying on the data acquisition type, existing methods for

HSV can be divided into two types: offline and online [9].

Offline system uses offline acquisition devices such as a
scanner or camera to obtain static images as input data. The
verification process is done after the writing process. Current
research mainly focuses on the online HSV approach due to
its popularity in today’s marketplace. Online systems usually
rely on dynamic data such as pen pressure, azimuth, altitude
and so on. Pen or arm motion data while signing on the paper
can be captured by various digitizing tools such as digitizing
tablets, special pens and smart wrist [4], [5], [8]. Compared
to the aforementioned works, SilentSign novelly uses acoustic
signals to track the motion of teh tip of the pen as input data.
Moreover, SilentSign has both advantages of online(dynamics
data) and offline(Device-free signing on the paper) systems.

B. Biometric Authentication on Mobile Devices

Biometric behavior or biometric authentication on mobile
and wearable devices is a popular topic in recent years. Various
biometrics such as voice, iris, face and keystrokes, captured by
different sensors on portable or wearable devices, have been
proved to be used for the purpose of authentication [10]–[12].
Other features such as dental [13] and face [14], heart rate [11]
and breath [12] have been used in authentication on mobile or
wearable devices as well. On the other hand, due to the unique
habits caused by the living environment, behavior biometric
is a more trusted feature that can be used for authentication.
VibWrite [10] captures the dynamic motion of a finger when
a user performs a specific gesture on the touch screen to
authenticate its identity. Compared to the aforementioned
methods, handwritten signature as authentication feature has
been used for a long time in history, its proven uniqueness
and application for special occasions is irreplaceable.

C. Acoustic Sensing

Acoustic sensing as a non-contact means of human-
computer interaction has broad application scenarios. Due to
the range spread and the smaller amount of processed data,
sound-based sensing is more advantageous in motion detection
or localization, such as gestures by using mobile and wearable
devices [15]–[17], indoor localization [18], [19]. FingerIO
[15] uses an inaudible OFDM modulated sound frame to
locate the moving of finger by detecting the change of two
consecutive frames. VSkin [16] leverages the structure-borne
and the air-borne sound paths to sense gestures performed
on the surface of the smartphone. BeepBeep [18] measures
the distance between devices by acoustic ranging. [19] uses
a chirp-based ranging sonar achieving the localization error
within 1 m. In this paper, SlientSign combines the phase-based
and frame-based approach by using Zadoff-Chu coded that has
nice auto-correlation properties and the ability to track phase
changes. Leading the advantage of a high refresh rate and
directly correlate with the movement of the pen tip.

III. SYSTEM ARCHITECTURE

A. Considerations

We make the following considerations while designing
SilentSign.
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Fig. 2. The system architecture of SilentSign.

• Sensing Direction: In traditional online HSV approaches,
the dynamics of signatures are captured by a digital
signing device with the data modeled as

S(t) = [x(t), y(t), p(t)...]T , t = 0, 1, 2, ..., n

in which, x(t) and y(t) represent coordinates of the pen
tip at time t, and p(t)... represent other features such
as pressure and azimuth. In a typical English signature,
the x(t) typically grows linearly with small oscillations
on the linear curve, while y(t) changes back and forth
between positive and negative values more frequently
with more obvious oscillation. Therefore, it is feasible
to only consider the vertical movement while ignoring
horizontal movement [20].

• Sensing Accuracy: The sampling rate of a current com-
mercial digitizer is 75 ∼ 200 Hz with an ideal accuracy
about 0.2 mm [21]. Signing is a very delicate action.
Using the digitizer, traditional signature verification not
only captures the pen tip movement but also pressure and
azimuth. Due to the limitation of acoustic sensing, it is
impossible to utilize these properties as the features in
our system. Therefore, at least we need to make the 1d
tracking accuracy as good as the digitizer.

B. Overview

SilentSign system architecture is shown in Fig. 2. The smart
device transmits and records inaudible sound with the built-
in speaker and microphone. By measuring impulse response
and phase changes of received signals, it tracks the movement
of a pen tip in the vertical direction. Since the trajectory is
a sequence of 2-D vectors, we can regard it as a gray-scale
image. We extract traditional image similarity features from
two types of trajectory data, genuine and forged, to train an
SVM classifier. Moreover, SilentSign consists of two usage
stages, namely, signature enrollment and signature verification.
In the former stage, the users supply enough number of
signatures as the template samples. In the authentication stage,

Fig. 3. The overview of a sample acoustic sensing system.

the user just requires to sign his/her signature in the sensing
range and the system conducts verification.

In the authentication phase, the user just requires to sign
his/her signature in the sensing range of SilentSign to track the
pen movement. SilentSign extracts response and phase change
which we mention in the enrollment phase. The features are
extracted by comparing input data and stored data and then
fed into the trained SVM classifier for final verification.

IV. SYSTEM DESIGN

A. Acoustic Sensing
There are the following considerations during designing the

acoustic sensing part of SilentSign.
1) Current digitizers have a sampling rate of 75 ∼ 200 Hz

and a tracking accuracy of 0.2 mm. To achieve better
verification accuracy, the performance of our acoustic
sensing system should be close.

2) Due to the multipath effect, received echoes are reflected
from multiple objects. Thus, we need to differentiate the
path corresponding to the moving pen from others.

3) For better user experience, we transmit and record in-
audible sound.

To meet these requirements, we design an acoustic sensing
system as shows in Fig. 3. It consists of three major compo-
nents including signal generation, signal reception and distance
measurement. The signal generation component is responsible
for generating inaudible modulated ultrasound signal. The sig-
nal reception component receives reflected sound signals from
surrounding objects via microphone, and then synchronizes
the sender and receiver. The distance measurement compo-
nent demodulates the received signals to extract the distance
variations between the smartphone and moving pen tip. This
component consists of three steps, namely, estimating different
impulse responses, estimating the phase change and formatting
the impulse response. We shall describe each component in a
detail as follows.

B. Transmit Signal Generation
A phase-coded pulse is usually used in radar applications.

Giving a pulse, it can be divided into N bit sequence denoted
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as S = {s[1], ..., s[N ]} with each bit coded with different
phases. Finding a specific code with excellent resolution
is criteria due to the unlimited number of possible phase
codes. A manageable solution is to find a code with a
good autocorrelation function. In this paper, we choose 127
bits Zadoff-Chu coded (ZC sequence), because of its ideal
periodic autocorrelation function properties. Furthermore, [16]
has proved 127 bits ZC sequence can track moving object with
an average movement distance error of 3.59 mm and 3 KHz.
These properties are very close to the digitizer.

To generate an adaptive inaudible ZC transmit signal, we
first modulate raw 127 bits ZC sequence (ZC127bits) into
17 ∼ 23 KHz. Then we apply the frequency domain inter-
polation on ZC127bits by padding zeros in the middle of the
ZC127bits in frequency domain until the length of sequence
reach 1024 bits. After this processing, we get interpolated
ZC sequence (ZC1024bits) which the bandwidth of the result
sequence is about 6 KHz at the sampling rate of 48 KHz. Then,
we modulated the interpolated ZC sequence into the passband
by multiply the real part and imaginary part of ZC1024bits

with a carrier. The carrier frequency is 20.25 KHz. Finally,
the frequency of transmit signal SZCT is in the range of
17.29 ∼ 23.25 KHz.

For synchronizing the sender and receiver, we add 24000
zeros followed by ZC1024bits in the very beginning of SZCT .
In the latter part of this section, we will explain how it works.
Generated transmit signals can be saved as a WAV file then
played by the speaker of the smartphone. The microphone
starts recording while the speaker is playing the sound. After
receiving the reflected signals, we first use an adaptive energy-
based synchronization approach to synchronize the sender and
receiver. Then, we demodulate the received signals by down-
converting passband signals into baseband ones.

C. Processing of Received Acoustic Signal

Traditional sonar systems can synchronize the sending and
recording operations of the signal. After starting the recording
operation, the sonar concurrently manages the buffering of the
received signal and calculates the distance of the reflected
path. Synchronization of the sender and receiver provides a
reference for the delay between the sending and receiving
time of initial pulse through line-of-sight (LOS). Without syn-
chronization, the delay between initial pulse and first received
pulse may not accurately present the time interval of pulse
travel through LOS, which will cause deviation to subsequent
distance measurement. Due to the compatibility issue of the
android operating system, it is difficult to synchronize speaker
and microphone.

1) Adaptive Energy-based LOS Detection: To solve this
problem, we add 24000 point of zero at the very beginning
of SZCT . 24000 points last 0.5 second that makes sure the
recording operation of the microphone before transmitting the
pulse. This allows the microphone to receive first pulse com-
pletely. Since our acoustic sensing system base on monostatic
sonar, speaker and microphone is fixed on the smartphone
which means we have already known the length between

speaker and microphone. In other word, we know the length of
LOS and travel time between sent first pulse and received it.
Then, after we found first pulse of LOS, we use it as reference
of start time by simply adding fixed delay. Fix delay is based
on the distance of speaker and microphone.

To locate the first pulse, SilentSign adopts an adaptive
energy-based LOS detection technique to find a precise LOS
path. We add ZC1024bits in the following 24000 zero points.
Raw 1024 bits ZC sequence has a high auto-correlation gain.
Once the recording is started, we perform the cross-correlation
function IR(t) = ZC∗

R(−t) ∗ZC1024bits(t) to obtain impulse
response, where ZC∗

R(−t) is the conjugation of received
baseband signal. Fig. 4 shows the impulse response of ini-
tially received pulse, due to the ideal periodic autocorrelation
properties of the ZC sequence. The auto-correlation of the ZC
sequence has a low auto-correlation side lobe level, and the
first peak is the LOS path.

After applying the cross-correlation function, the next step
is to precisely find the position of the LOS peak. For this
purpose, we use an adaptive energy-based algorithm to find
the rough starting point of the LOS path. We assume that the
remaining noise power follows the Gaussian distribution. μ(t)
and σ(t) are the average power and its standard deviation at
time t. We denote the amplitude of the IR by a discrete series
IR(t) and use a sliding window of width W to calculate the
average noise power. μ(t) and σ(t) are calculated by

μ(t) =
1

W
A(t) + (1− 1

W
)μ(t− 1)

σ(t) =
1

W
B(t) + (1− 1

W
)σ(t− 1)

where

A(t) =
1

W

W+t∑
k=t

|IR(k)2|

B(t) =

√√√√ 1

W

W+t∑
k=t

(|IR(k)|2 −A(k))2

μ(0) = 0 and σ(0) = 0, A(t) is the accumulated power,
and B(t) is the overall standard deviation of signals within
a sliding window. A rough starting point of IR(t) can be
determined if the following relation hold.

|S(t)|2 > μ(t) + λ1σ(t)

where λ1 is a constant which is independent of the noise
level. We empirically set W and λ1 as 1024 points and 18,
respectively. As shown in Fig. 4, the red line is a rough starting
point, and the peak is within the next 1024 points in the
LOS path. Finally, we apply a maximum function to find the
exact position of this peak. LOS path is a baseline of the
following distance measurement. After adding a fixed delay
to the position of the LOS path, we use this position as the
starting point of the impulse response.
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D. Distance Measurement

1) Differential IR Estimations: In modern sonar systems, a
sonar transmitter typically sends a known training sequence.
Sound signals propagate through the air, meet objects within
the detection range, and then reflect back to the receiver in
a very short time interval. During this process, the signal
is reflected back from multiple different length paths that
lead to discrepant time delay and the received signal is
a mixture of all paths. To separate different paths at the
receiver, we use the cross-correlation function to estimate the
Impulse Response (IR). For tracking the moving object, we
can locate the changing channel path due to the movement of
the object by subtracting the IR between two adjacent time
periods. After synchronizing the sender and receiver, we first
demodulate the received echoes into baseband signals denoted
by SZCR(t) with a low-pass filter. The Impulse Response
(IR) can be estimated by using the cross-correlation function,
IR(t) = S∗

ZCR(−t)∗SZCT (t). Each peak in the IR estimation
indicates one propagation path at the corresponding delay. If
the pen tip starts to move, the magnitude of propagation path
changes, and then we can achieve these changes by apply
subtraction of impulse response between two time’s intervals
as follows:

ΔIR = IRt∼t+W−1 − IRt+W∼t+2W−1

Furthermore, to save computational cost, we use a standard
energy threshold-based algorithm to detect the event when the
pen tip starts to move. If the pen tip moves, the position of a
maximum point in the ΔIR is the distance between the pen
tip and smartphone. However, since the window size is 1024,
the frame refreshing rate is about 46.875 Hz, which is below
that of digitizers (75 ∼ 200 Hz). To increase the refreshing
rate, we shall incorporate the estimation of phase change in
the following section.

2) Estimation of Phase Change: Once the moving path
is detected, we calculate the path coefficient of the moving
path to improve the refreshing rate. Finally, by measuring the
phase change of the path coefficient, the distance variation
of a moving pen tip can be calculated by incorporating the
phase change. Path coefficient illustrates how the amplitude
and phase of the given path change with time. The formula to
compute path coefficient formula as following:

ht[ni] =

NZC−1∑
l=0

SZCR[t+ l] ∗ S∗
ZCT [(l − ni) mod NZC ]

where NZC is 1024, the length of ZC sequence, ni is the
position of the maximum point in the ΔIR which we will
explain in the last section. For computational cost-saving,
we only calculate the path coefficient of the moving path.
Differential IR Estimations indicate which path is related to
moving pen tip, Given the tracked phase change information
of this path, the change of distance can be calculated by using
the accumulated phase as follows.

di(t)− di(0) = −
∑t

i=1 Δθii−1

2π
∗ λc

where λc is the wavelength of sound λc = c/fc and

Δθtt−1 =
Qht

Iht

− Qht−1

Iht−1

We combine low sampling rate IR response estimation with
distance change, and then by calculating the maximum point in
IR estimation result, the distance variation is a two-dimension
array as shown in Fig. 5.

3) Format IR Estimations: Since the initial moving point is
uncertain, for the better training, we format IR estimation by
the following step. We first scale the value of IR estimation
to 0− 1 to build a good model.

IRnorm(t) =
IR(t)−min(IR)

max(IR)−min(IR)

Then, we use the following algorithm to remove the beginning
point not associated with the detection of the movement
and find the moving start point as the center of the array,
IRformated is the training sample for the following discussion.

Algorithm 1: IR Estimation Format
Input: IRnorm

Output: IRformated

1 col = 0; row = 0;
2 center = 0;
3 colSize = ColumnSizeOfIR(IRnorm(:)(0));
4 while sum(IRnorm(:)(col)) == 0 do
5 col ++
6 end
7 [value, row] = max(IRnorm(:)(col));
8 IRformated = [zeros(colSize− row); IRnorm(1 :

row + colSize, :)]

V. AUTHENTICATION MODEL

A. Feature Extraction
Traditional similarity features such as Structural sim-

ilarity (SSIM), Peak signal-to-noise ratio (PSNR), Mean
squared error (MSE), and Hausdorff distance has been widely
used for measuring the image similarity [22], [23]. There-
fore, in our system, we calculate the above four features,
generate a four-dimension similarity feature vector (S =
{SSIM,PSNR,MSE,HAUSDORFF}) from two scaled
and formatted IR response IRA, IRB . Depending on whether
these two types of IR are generated from the same genuine
signature dataset, we label feature vector as genuine or forged.
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Fig. 6. Model training Design

B. Model Training

1) Training Dataset Enrollment: During the enrollment
phase of the training dataset, the user provides a reasonable
number of signatures to calculate feature vector F . Based on
vector’s labels, our training data can be classified into two
sets including Genuine Signature VS Forged Signature, and
Genuine Signature VS Genuine Signature.

2) Training Phase: For each experimenter, we randomly
select 15 genuine signatures as reference signatures denoted
by Ri where i represents the index of experimenters. The
remaining signature samples are denoted as Gi. His/Her forged
signatures denote as Fi. During model training, we first
calculate similarity vectors Si

G between each pair of signatures
Gi and Ri, then label them as genuine. Meanwhile, we also
calculate similarity vectors Si

F between each pair of signature
in Gi and Fi, then label them as forged. The training dataset
consists of the above two types of samples. After that, we feed
the training samples into classifiers to train verification models
which decides whether a new input signature is genuine or
forged. The training phase is shown in Fig. 6. In traditional
signature verification system, a user needs to enroll certain
number of genuine signatures as templates and retrain the
system. In contrast, our system can be applied to a newly
registered user with less retaining. This is because the trained
classifier finds thresholds deciding genuine or forged for later
used in the verification process. During the system design, we
explore four different classification models, including Logistic
Regression (LR), Naive Bayes (NB), Random Forest (RF), and
Support Vector Machine (SVM), to select an optimal one and
achieve better verification performance. We shall detailedly
demonstrate the comparison of different models in Sec. VI-B4.

C. Signature Verification

In the verification phase, each new user needs to register
his/her signatures in the system first. In this way, the system
shall store their signatures as templates in the database and
label him/her as genuine. When a non-registered person signs,
SilentSign will compare the obtained signatures with the stored
signatures, calculate similarity vectors, and pass them into a
trained classifier to decide whether the signatures are genuine
or forged.

0 5 10 15 20
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Fig. 7. 1-D tracking errors with
normal pen & Apple pencil.

Fig. 8. Acoustic Sensing Range.

VI. PERFORMANCE EVALUATION

A. Acoustic Sensing

1) Tracking accuracy in 1-D: We first evaluate the accu-
racy of distance estimation with SilentSign implemented on
SAMSUNG galaxy note 8. During the evaluation, we attach a
ruler of 50 cm on the top of an A4 paper on which we draw a
line along with the scale of the ruler to get the ground truth.
When we move a pen from a starting position along the line,
SilentSign makes use of the speaker and microphone in Note 8
to track the distance change between the pen and smartphone.
The ground truth is the length of the line measured by the
scale of the ruler. As we use A4 papers in our experiments,
the overall testing distance is about 29.7 cm.

In distance estimation, as we use the LOS path as the
baseline to measure the following distance, a compensation
factor requires to be added to the resultant distance. This
is because the initial pulse detected is not the sending time
of acoustic signals. Instead, it is the receiving time of the
first echo component. Consequently, we need to add the time
of flight (TOF) of LOS as a compensation factor, which is
essentially a time shift between the sender and receiver. This
factor is determined by the distance between a speaker and a
microphone. According to our measurements, it is 0.7 cm for
SAMSUNG galaxy note 8. We also compare distance estima-
tion performance with different pens. By repeating the above
measurement for 400 times, we can obtain the Cumulative
Distribution Function (CDF) of distance estimation errors as
shown in Fig. 7. As we can see, SilentSign achieves average
errors of 4.09 mm and 4.20 mm for normal pen and Apple
pencil, respectively. The 90th percentile errors are 9.64 mm
and 9.80 mm which are similar to traditional digital signing
devices.

2) Tracking Range: Since the speaker and microphone have
the directionality property, we evaluate the tracking range
of smartphones in this section. The area of A4 paper is
21 cm × 29 cm, we first divide the paper into 609 square
blocks (each block has 1 cm length and width). Then we place
the smartphone above the centerline of the landscape paper.
Second, we draw a circle in each area. If SilentSign acoustic
sensing system detects the pen movement within the sensing
range, the path corresponding to the pen position will change,
the initial value appears in the different impulse responses.
We continually check every 609 block and mark it when it
has an initial value in the different impulse responses. The
experimental result is shown in Fig. 8. Darker area means more
sensitive. Since the microphone and speaker of the mobile
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phone are directional, the closer to speaker and microphone,
the narrower the lateral range that can be detected. From
our observation, the best sensing region is a 7 × 11 cm2

rectangle (the region surrounded by red dashed line in Fig. 8),
and the distance between this square and smartphone is 11
cm. Compared to the commercial signature pad (e.g., Wacom
STU-300, the signing range is 2.5 × 9.9 cm2 [24]), our
7 × 11 cm2 signing range is larger and enough for signature
verification and avoiding user signing beyond the sensing area.
Therefore, we use this region as signing range in the following
experiment.

B. Signature Verification

1) Data Collection Setup: We recruited subjects to collect
genuine and forged signature data. The subjects were asked to
sign their names within the signing range on the iPad Pro
by using Apple pencil. In their signing process, we place
the smartphone above their signature position and turn on
the SilentSign app to sense the movement of the pen tips.
Although our signing range is relatively large, we did not
specifically indicate that the signature must be written in the
center of the signing range. As a result, the position of each
signature of each participant relative to the mobile phone will
randomly move. But the following evaluation results show that
this random relative movement did not affect the verification
accuracy. Moreover, we conduct our data collection in the
rich-noise lab to challenge our system. On the other hand, for
collecting forged signatures, we record the screen by using the
IOS screen record function. A subject who plays the role of
a forger can imitate other subjects with genuine signature by
watching recorded signing video. To protect personal privacy,
we make a guarantee to each participant that their signature
data will not be made public and will only be used in the
experiment.

2) Data Collection: In our experiments, we recruit 35
participants including males and females at different ages and
with different nationalities from our university. We collect
these samples over one month to prove that the performance is
time-invariant. The whole data collection experiments include
the following two steps.

• Step 1: collecting Genuine Signatures. In this step, we
collect genuine signatures from 35 subjects. Each of them
is required to provide 20 signature samples. Before they
sign, we will place the phone above the signature signing
range like Fig. 1. In the meanwhile, we turn on the
acoustic sensing app to track the pen movement in the
vertical direction and record sign trajectory through the
screen recording function. Finally, we collect 700 genuine
signatures from 35 subjects.

• Step 2: collecting Forged Signatures. In this step, we
collect the forged signatures of 35 subjects. Each of them
is required to imitate 20 samples of a forged signature. We
randomly select 5 genuine signatures from other 5 users.
Each subject imitates these 5 genuine signatures, and
every genuine signature is repeatedly imitated 4 times.
Before signing, we play the recorded video of these

signatures, and each subject was asked to practice the
signatures until before he/she becomes skilled. Finally,
we collect 700 forged signatures from 35 subjects. Each
subject contains 20 forged signatures, and these signa-
tures are created by other 5 subjects.

3) Signature Verification Setup: To evaluate the perfor-
mance of genuine signature and random forged signatures,
genuine signature and skilled forged signatures is one of the
main study topics of any signature verification system. The
meaning of a random forged signature is that signature is
created without any knowledge. By evaluating this, we can
understand whether our system is robust, preventing random
signature pass through. Skilled signatures are created with a
certain level of training on the genuine signature of the claimed
user [8]. As a result, we consider three testing cases to evaluate
the verification model of SilentSign. Note that in our dataset,
for each subject u, there are 20 genuine signatures denote as
Gi and 20 forge signatures denote as Fi.

• Case 1: distinguishing between genuine signatures and
skilled forgeries (denoted as ‘SF’).

• Case 2: distinguishing between genuine signatures and
random forgeries (denoted as ‘RF’).

• Case 3: distinguishing between genuine signatures and
both types of forgeries (denoted as ‘ALL’).

All genuine signatures in case 1, case 2 and case 3 are
randomly selected from u’s Gi, and the 15 forged signatures
are randomly selected out of the Fi of u. We select 15 subjects
(not including u that we first selected) as a random forger,
and then randomly select 1 genuine signature out of his/her
Gi for each of those subjects (we have total 15 samples as
RF). Finally, we randomly select 15 signatures out of all the
signature samples (we have a total 15 samples as ALL).

After labeling signatures, we then calculate the similarity
vector between genuine signature and SF, genuine signature
and RF, genuine signature and ALL, and fed to a trained
classifier for verification. The experiments associated with case
1, case 2 and case 3 have been repeated 50 times. Moreover,
we change random seed in each iteration to keep our system
generalizable. Final results are the average ones summarized
by all iterations. We compare the performance of different
classifiers, namely, LR, NB, RF and SVM as mentioned in
Sec. V-B2.

Similar to the works [8], [25], we adopt two main metrics
to quantify the performance of SilentSign, namely, area under
curve (i.e., AUC) and equal error rate (i.e., EER). AUC is
defined as the area under the receiver operating characteristic
curve (i.e., ROC). The higher it is, the better the system works.
EER is the point on the ROC curve that corresponds to an
equal probability of miss-classifying a positive or negative
sample. The lower its value is, the better the system performs.

4) Performance of different models: Fig. 9 shows the AUC
and EER of four different classifiers. All classifiers perform
good, and the SVM model outperform others: AUC = 98.6%
and EER = 1.7% in SF, AUC = 96.7% and EER = 1.5%
in ALL, AUC = 98.2% and EER = 1.3% in RF. We believe
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Fig. 9. AUC & EER for different classifiers.
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Fig. 10. AUC & EER for different reference signatures.

the nature of the features we used is the reason why SVM
classifier achieve the best results. The features used are the
similarity value between reference and questioned signatures.
Genuine signatures are more likely to achieve high similarity
value than forged signature. Moreover, the ranking of the
SVM classifier for the three tasks is as follows. ALL have
the best performance followed by RF, and SF is the worst.
These results just satisfy our intuition that skilled forgeries
are mostly similar to the genuine signature since the distance
variation is almost the same. In the following results, we use
the SVM model as the final classifier for signature verification
and continually evaluate the verification accuracy of the SVM
model.

5) Required number of reference samples: In this section,
we evaluate the impact of required number of reference sam-
ples. We keep the number of subjects the same and increase the
number of reference samples ranging from 1 to 10 for each
subject gradually. A trained SVM model is used to classify
three tasks we mention in section VI-B3. Fig. 10 shows the
AUC and EER for a different amount of reference samples. As
the number of reference samples increases, the scores improve
rapidly from AUC=42.1% and EER=13.6% using a single
reference signature to AUC=97.4% and EER=1.2% using 3
reference signatures. And the best score achieves at task RF,
while the number of reference signature is 9, the AUC is
98.9% and EER is 1.3%. From our observation, even if 3
reference signatures seem to be enough, increasing reference
signatures amount leading to a robust and secure system.

6) Required number of training subjects: In this section,
we evaluate how many training subjects are enough to achieve
good performance. For this purpose, we train our models with
varying amounts of subjects, starting with 5, adding 5 subjects
each time as a training set, the rest are testing set, until the
number of testing subjects reaches 30. For example, we have
35 subjects in total. We first randomly select 5 subjects, their
genuine and forged signatures as training samples, and the rest
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Fig. 11. AUC & EER for different number of training Subjects.

TABLE I
AUC & EER FOR DIFFERENCE SIGNATURE COMPLEXITY

AUC (%) EER (%)
SF ALL RF SF ALL RF

Simple 83.1 85.9 85.5 18.9 16.8 16.7
Medium 88.8 91.9 94.4 11.5 6.9 3.1
Complex 93.8 92.4 96.1 3.4 4.2 3.8

of 30 subjects as testing samples. Next, we randomly select 10
subjects as training subjects and 25 as testing subjects. We run
the training and testing operations one after another until the
number of training subjects reaches 30. In order to ensure that
our experiments are not interfered with by abnormal samples,
our evaluation has been repeated 25 times. The average AUC
and EER are shown in Fig. 11. When the training samples
increase, the performance becomes better. The best score
achieves at task RF, while the number of training subject is
30, the AUC is 98% and EER is 5.3%.

7) Impact of signature complexity: We also evaluate
whether the signature complexity influences performance. To
do this, we first define three complexity levels of signatures
by ’Simple’, ’Medium’ and ’Complex’. If a signature contains
less than 4 letters, over 10 letters, or in between, its com-
plexity is defined to be ’Simple’, ’Complex’ or ’Medium’,
respectively. For each level, we select 3 participants with
signatures meeting the criteria for verification. The result is
showed in Table I. As we can see, with signature complexity
gets higher, the AUC increases and EER decreases, indicating
the improvement of system performance. It’s recommended
that using a signature of medium complexity and above.

8) Impact of number of forger imitators in training:
SlientSign is intrinsically a non-retrain system for forgers
since their signatures are difficult to be obtained in real-
world application scenarios. But it is possible to collect data
from forger imitators who could be our friends, colleagues, or
recruited participants, to improve the authentication ability of
our system. Thus, a question should be answered that how the
system performance could be affected by the number of forger
imitators in model training. In response, we randomly divide
all the participants into three groups, namely, legitimate users,
forger imitators, and real forgers. We train binary classification
models with data from the legitimate user and forger imitators
and test it with data from the remaining participants (i.e., real
forgers). As we can see, when data of more forger imitators
are used, the system performance can be enhanced. When the
number of forger imitators in the training stage reaches 10,
the AUC and EER get around 96% and 4%, respectively.
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Fig. 12. AUC & EER under different number of forger imitators included in
model training.
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Fig. 13. the performance of SilentSign when the smartphone is placed at
different positions.

9) Impact of the smartphone position: We finally evaluate
the impact of smartphone position on verification performance.
As shown in Fig. 13(a), we move the smartphone from the
original position P0 along four directions for 10 cm and place
it at four different positions (P1 ∼ P4). Then we request
two participants to perform genuine signatures and forged
signatures respectively as described in Sec. VI-B for 10 times
at each position. Based on the collected samples, we run the
verification process with samples in P0 as reference signatures
and get the results as shown in Fig. 13(b). As we can see,
the smartphone position indeed affects system performance.
When it is moved away from the original position P0, the
already trained system degrades But for different positions,
the impact varied. When the smartphone is moved horizontally
(P1 and P2), the performance has smaller decrease; while for
vertical movements (P3 and P4), the performance degradation
is more obvious. The underlying reason is vertical movements
cause changes in relative orientations between signing activity
and the smartphone. This further affects the measurement of
vertical movement which is used as a key feature.

VII. DISCUSSION AND FUTURE WORK

In this part, we mainly discuss the limitations and future
work of SilentSign.

A. The impact of relative orientation

Although we have verified with experiments that SilentSign
is not sensitive to signing positions within the sensing area,
it is to be pointed that this holds true when the device does
not move as shown in Sec. VI-B9. Essentially, SilentSign is
sensitive to the relative orientation between signing a pen
and the device. If the device is moved vertically or rotated
relative to the sensing area, the system performance will be

negatively affected. This is because the orientation determines
the relative movement between signing activity and the device,
which in turn affects the echo signals. This is one of the lim-
itations of our system. We envision that this can be improved
by extracting orientation-independent features and collecting
training data from several orientations in the future work.

B. The impact of lack of forged signatures

As aforementioned, the signatures of real forgers can not
be obtained in real-world application scenarios, which causes
performance degradation as shown in the evaluation. Although
adding data of forger imitators into training can improve the
performance, it keeps stable in terms of AUC and EER even
when more forger imitators’ data are used. To gain further
optimization and fulfill the higher requirement in certain
scenarios like banking services, it is feasible to design a more
advanced verification model by making use of deep neural
network which is more powerful to extract deep features. We
leave this as one of our future work.

VIII. CONCLUSION

In this paper, we propose an acoustic sensing-based hand-
written signature verification method which can be imple-
mented on handy smart devices such as smartphone and
tablets. Compared with the common touchscreen-based HSV
system, our method has a lower hardware requirement and
can be applied in scenarios of signing on paper materials to
supplement real-time signature verification. Our approach is
a purely software-based solution and only uses a speaker and
microphone which are basic components of most commodity
devices. By extracting intrinsic patterns of signing movements,
our well-designed system SilentSign can achieve satisfactory
signature verification performance in terms of metrics of AUC
and EER. Although it still has limitations in practicability
and robustness, we believe that this is a promising technology
deserving further research.
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