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Abstract—This paper presents a new human activity recogni-
tion method that uses a camera mounted on a mobile robot. We
assume that the robot’s camera captures images of a person and
recognizes his/her activities based on skeletal and visual features
extracted from the images. A key issue encountered with this
method for activity recognition is that it requires the robot to
position itself so that it has an adequate field of view of the
activities being conducted. For example, if the robot is directly
behind a person while observing that person making tea, it will
be difficult for the robot to distinguish that activity from other
similar activities such as preparing a meal or washing dishes.
Our method employs deep reinforcement learning to control the
movements of the mobile robot that is observing the activities
in order to maximize its recognition accuracy while minimizing
its energy consumption related to its movement. We propose
effective action- and state-space designs that can achieve early
training convergence and highly accurate activity recognition by:
(i) incorporating the confidence of the activity recognition output
when evaluating the quality of the current state (position), (ii)
incorporating the costs of subsequent actions when estimating
values for those actions, and (iii) designing an effective action
space that accelerates reinforcement learning by restricting the
movement space of the robot to the circumference of a circle
with a predefined radius centered on the person.

Index Terms—Activity recognition and understanding, Rein-
forcement learning, Robotics

I. INTRODUCTION

Human activity recognition (HAR) using sensor systems
has been actively studied in the pervasive community, since
HAR has many real-world applications, such as healthcare,
elderly care, and lifelogging. Included in the sensor systems
used for HAR are wearable sensors (e.g., smartwatches) and
environmental sensors (e.g., RFID tags and surveillance cam-
eras). In particular, body-worn inertial sensors have been used
in several studies on recognizing simple activities [1]–[4].
Wearable cameras have also been used in the wearable and
computer vision research communities to recognize complex
activities [5]–[9]. However, constantly wearing a camera to
support HAR in our daily life is not practical, because of the
physical burdens imposed (especially for elderly persons) and
rapid battery consumption.

Due to recent advances in robotics technologies, home
robots are currently coming on to the market, with simple
house-cleaning robots already in widespread use and more
complex humanoid robots gaining popularity. For example,

iRobot’s Roomba1 achieved cumulative sales of 20 million
units as of September 2017 and SoftBank’s Pepper2, which is
a humanoid mobile robot equipped with a variety of sensors
such as a camera and depth sensor, achieved cumulative sales
of 20 thousand units in Japan in early 2017. With robots likely
becoming pervasive in our homes in the near future, using the
sensors mounted on these robots for HAR is becoming feasible
[10]. They provide a mobile platform from which to observe
daily activities when performing HAR, without the physical
burdens that come with wearable sensors. Furthermore, these
robots will need to recognize the daily activities of their
residents in order to implement context-aware services and
improve human-robot interaction.

This study focuses on performing HAR using the camera
found on a mobile household robot. In order to accurately
conduct HAR while a person moves about the house, the robot
should be controlled so that the activity is captured by its
camera from an appropriate position and angle. For example,
assume that a person is making tea in the kitchen. When
the robot is observing the activity from directly behind the
person, it will be difficult for the robot to distinguish it from
other similar activities such as preparing a meal or washing
dishes. In this situation, the robot should move itself to a
position with an adequate field of view in order to improve
recognition accuracy. In contrast, when the person performs a
simple activity such as sleeping, the robot can easily recognize
the activity without changing its position, reducing its energy
consumption. Therefore, we propose a method for HAR that
uses reinforcement learning (RL) to train the movements of
the mobile robot observing the activities.

Our method uses the RL technique known as deep rein-
forcement learning to train a neural network to automatically
control the actions of a robot in order to maximize its
activity recognition accuracy. Specifically, we employ a deep
Q-network (DQN) [11] to do this by moving the robot to
positions that maximize the recognition accuracy of another
neural network that is performing HAR on images captured
by the robot’s camera. In order to facilitate movement control
by the RL network, we extract the confidence scores from the

1https://www.irobot.com/for-the-home/vacuuming/roomba
2https://www.softbankrobotics.com/emea/en/pepper
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HAR neural network for use by the RL network. The HAR
network’s expected confidence score is then used by the RL
network to estimate values for the actions that the robot can
perform.

This study proposes effective action- and state-space de-
signs, along with reward engineering that can achieve early
training convergence and highly accurate HAR, while con-
sidering various issues encountered by mobile robots in the
home environment. We first propose an efficient action space
to reduce the time needed for the deep Q-network to converge
in comparison with when it is provided with an action space
that allows for the robot to move freely throughout the house
while performing HAR. In addition, the robot control method
that we base on this action space permits us to control the
movements of the robot in a way that ensures it does not
hamper the daily activities of the person. For example, when a
person is in the kitchen preparing a meal, the robot positioning
itself too close to the person could interfere with his/her ability
to do so. Therefore, the robot’s movement is controlled so as
to keep its distance from the person and to not enter/stay in
predefined prohibited areas.

In order to estimate values for subsequent actions, we have
designed a state space that contains the following information:
(i) The confidence of the activity recognition results from
the HAR neural network. Incorporating this confidence value
into the state allows the RL network to determine when a
position change is necessary. (ii) Obstacle information for the
robot’s immediate surroundings. This allows the network to
learn how to avoid household objects and occluding objects
when performing HAR. In addition, we introduce a simple
format for encoding the obstacle information for the deep Q-
network. (iii) Costs for the different actions that the robot can
take. For example, when there is an obstacle on the robot’s
right, the robot will need to go around that obstacle when
moving to the right, which results in a higher cost for that
action.

To the best of our knowledge, this is the first work on HAR
by a mobile robot using deep RL. In the rest of this paper,
we first review activity recognition studies using embedded
sensors and cameras. We then describe our proposed method
for activity recognition by a mobile robot and evaluate our
method in a virtual environment.

II. RELATED WORK
In the pervasive computing community, previous studies

have recognized human activities using sensors embedded in
indoor environments, such as RFID tags and switch sensors
installed in the environments [12]–[14]. Furthermore, in the
pervasive and wearable computing communities, wearable
sensors such as body-worn accelerometers and microphones
have been used to recognize human activities by capturing
postures, sounds, and repetitive motions that are characteristic
of the activities [1], [15]–[18].

Due to recent advances in deep learning technologies,
activity recognition studies using first-person images captured
by wearable cameras have been actively studied in the ubi-
comp, wearable, and computer vision communities [7]–[9].

Moreover, several studies have focused on HAR for robot-
assisted living. Vieira et al. [10] implemented a real-time
application for human daily activity recognition by a robot that
uses a Dynamic Bayesian Mixture Model (DBMM) for activity
recognition. Their robot is able to localize, navigate, detect
obstacles, follow a person, and recognize human activities in
an indoor environment. Piyathilaka et al. [19] proposed a HAR
method that uses 3D skeleton features generated from a robot’s
depth camera with a joint weight model.

Similar to our study, several studies have also attempted to
optimize a camera’s position when monitoring human activi-
ties. Bodor et al. [20] analytically optimized the position of a
mobile surveillance camera for monitoring walking persons by
maximizing the visibility of the walking path. Schroeter et al.
[21] optimized the observation pose for a mobile camera used
in indoor living environments by focusing on light sources as
well as obstacles. They minized the issues caused by glare
and shadows from light sources by introducing the light’s
representation. Kessler et al. [22] tried to observe humans
unobtrusively by positioning the robot using a method based
on particle swarm optimization. Ishara et al. [23] controlled
the position of a mobile camera in order to capture the entire
skeleton (i.e., positions of body parts) of the person being
observed. In contrast, our study controls a mobile robot in
order to directly maximize its HAR accuracy through the use
of RL.

III. ACTIVITY RECOGNITION METHOD

A. Preliminaries

In this study, we evaluate the proposed method using the
HoME Platform virtual environment [24], because a control-
lable environment is needed to evaluate our RL-based method.
Such virtual environments are able to realistically animate the
movements of humanoid characters using a skeletal animation
model in various household settings and can produce a stream
of realistic images captured from a camera position and angle
of the user’s choosing. We can use this platform to simulate
the daily-life activities of a person by having our humanoid
character perform a variety of activities in the environment
with the character’s position set to the appropriate location
for each activity (e.g., sitting on a sofa in the living room
or preparing a meal in the kitchen), with the humanoid
character walking between locations when transitioning from
one activity to the next. We assume that the skeletal animation
models are captured from actual persons using a mocap system
in advance.

The mobile robot is then simulated by controlling the
camera position and angle based on the size and movement
specifications of the robot we are modeling. The mobile
robot used for our virtual environment is designed as follows
based on a commercially available humanoid robot (Softbank
Pepper) in order to facilitate real-world implementation. (i)
The camera is mounted on the robot’s head at a height of 1
m facing to the front. (ii) The movement speed and rotation
speed of the robot are 0.83 m/s and 34.26 deg/s, respectively.
(iii) The resolution of the camera is 512 by 512 pixels and the
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frame rate is 24 fps. Fig. 1 shows example images captured
by the robot of a person in the virtual environment.

For simplicity, we simulate the task of indoor positioning
of the robot and human within the virtual environment by
obtaining their positions using HoME platform’s API, since
the focus of this study is on controlling the mobile robot’s
movement during HAR using RL. For methods for acquiring
robot and human positions in real environments, refer to
[10], [25], [26]. We also assume that a floor map including
information about the locations of obstacles is given.

Fig. 1: Example images captured by a robot in a virtual
environment

B. Overview
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Fig. 2: Overview of the proposed method
Figure 2 shows an overview of the proposed method. In

RL, an agent learns in an environment by trial and error
(exploration and exploitation) using feedback based on its own
actions and experiences. As shown in Fig. 2, when starting at
the state St at time t, the agent (robot) determines its action
(movement) At using its deep Q-network. As a result of the
action, the position of the robot’s camera changes, and images
are captured by the camera at that new position. The human
skeleton Kt+1 is then detected in those images [27], which is
used to generate a new state St+1 and is used by the HAR
neural network (NN) to estimate a new human activity class
Ht+1. Along with the skeleton information Kt+1, the portions
of the images that correspond to the locations of the user’s
hands are also fed into the HAR NN, enabling us to capture
information about the objects used in the activities. The HAR
NN also outputs the confidence of its estimate (Ct+1), which
is used to estimate a value for the agent’s current state.
C. Reinforcement Learning for HAR

The goal of the agent in general RL is to find a policy that
maximizes its expected future rewards. In this study, we train
the agent to find a policy that maximizes its HAR accuracy.
To do this, we compute the confidence of the output from
the HAR network and incorporate it into the current state.
The deep Q-network [11] in the agent learns a Q function of
policy π that takes as its input an agent’s state and action, and
maps them to probable future rewards as follows: Qπ(s; a) =

E[Rt+1|St = s;At = a], where Rt+1 shows the reward at
time t + 1. The agent then uses this Q function to select an
action that maximizes the expected discounted sum of future
rewards3. In our case, an action corresponds to a movement
by the robot with the agent determining its next action once
every 3 seconds in our implementation.

When training the deep Q-network, the network is updated
to correct the difference between its expected reward and the
observed reward to adjust its weights as follows:

(1)

Q(St, At)← (1− α) ·Q(St, At)︸ ︷︷ ︸
old value

+α

· (Rt+1 + γ ·max
a

Q(St+1, a))︸ ︷︷ ︸
learned value

,

where α shows the learning rate and γ ∈ [0, 1] is a discount
factor. Therefore, the network is trained by using stochastic
gradient descent to minimize the following loss:

(Rt+1 + γt+1 max
a′

Qθ(St+1, a
′)−Qθ(St, At))2,

where γt+1 is the discount at t + 1, θ are the parameters of
an online Q-network used for selecting an action, and θ are
the parameters of a target network, which is a periodic copy
of the online network which is not directly optimized.

Next, we explain the NN used for HAR; give details about
our designs for the action space, state space, and reward; and
describe the deep Q-network used for determining actions.
D. Neural Network Used for HAR
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Fig. 3: Architecture of the neural network for HAR

The input of the HAR NN is comprised of skeleton in-
formation extracted from the raw camera images (Kt) along
with a cropped image from each of the hand positions detected
using the skeleton information (It). First, we extract skeleton
information from several consecutive camera images using the
OpenPose library [27]. This skeleton information is a set of
coordinates for each image that describes the position of 25
of a person’s body parts (e.g., positions of the head, right
hand, left hand, etc.), with several consecutive images used
to capture the motion of those body parts over time. In our
method, the x- and y-coordinates are both normalized to the
range [-1,1] and the coordinates of occluded body parts are
regarded as missing values. Images from the hand positions
detected in that skeleton information are then cropped so that
each image is centered on one of the hands, with a null image
used when a hand is not detected. Note that the cropped images
are extracted only from the last of the consecutive images in
order to reduce the computational cost.

3A future reward is discounted by using a discount factor [0, 1].
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The structure of the HAR network used in this study is
shown in Fig. 3, which is based on a long-short term memory
(LSTM) network, a type of recurrent NN used for time-
series analysis [28], and a pre-trained convolutional neural
network (CNN) for object recognition (VGG-16 [29] without
the output layer). VGG-16 was chosen over other state-of-the-
art networks due to its simplicity and low loss rate, combined
with the fact that it still performs almost as well as the other
networks on public datasets. The input for this network is the
skeleton information from each 2-second window of images
(512x512) along with the cropped images (64x64) from each
detected hand position described above, with the skeleton
information and cropped images fed into the LSTM and CNN
layers, respectively. The output of the LSTM and CNN layers
are then concatenated and processed in densely connected
layers. Finally, an output layer with H nodes outputs the
predicted probabilities for each of the H activity classes,
with each node outputting a class probability for one class.
We employ the Rectified Linear Units (ReLU) function as
the activation function for the nodes in the LSTM layers,
the ReLU function as the activation function for the nodes
in the densely connected layers, and the softmax function
as the activation function of nodes in the output layer. The
NN also outputs the confidence of its estimates, which is
used to estimate values for subsequent actions, as follows:
Ct = maxi P (Hi|Kt,Kt−1,Kt−2, ..., It), where Hi is the i-
th activity class.

We trained the network to minimize the cross-entropy be-
tween the distribution of the ground truth and the distribution
estimated by the softmax output layer, employing backprop-
agation using Adam [30], which enables us to automatically
adjust the learning rate, with the pretrained VGG-16 layers
frozen during training. It was trained for 25 epochs using a
batch size of 64 and an initial learning rate of 0.001. Fig.
4 shows the performance of this HAR NN as we change the
viewing angle of the camera (agent) (see the Evaluation section
for details on how this network was trained). As shown in these
results, the recognition accuracy (macro-averaged F-measure)
degrades when the activity is observed from behind. Note that
this experiment was performed in an empty environment (i.e.,
no obstacles).
E. Design of the Action Space

d
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arightaleft

person
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Fig. 5: Action space in
the proposed method

As was mentioned earlier, an
overly complicated action space can
hinder network convergence. To
simplify the action space, we pro-
pose having the robot follow the per-
son at a given distance with its front
camera facing the person so that
the person is captured at the cen-
ter of the camera’s images. There-
fore, as shown in Fig 5, the move-
ment space available to the deep Q-
network (robot) is restricted to the
circumference of a circle centered on the person with a radius
of d. Consequently, the actions that the robot can take are

(a) Observation an-
gles

70

75

80

85

90

95

100

-150 -120 -90 -60 -30 0 30 60 90 120 150 180

A
c
c
u

ra
c

y
 

(%
)

Observation angles (deg)

(b) Macro-averaged F-measures for different angles

Pre
pa
rin
g M

ea
l

Ma
kin
g T
ea

Ma
kin
g J
uic
e

Wa
shi
ng
 Di
she

s

Re
ad
ing
 Bo
ok

Us
ing
 Sm

art
ph
on
e

Ta
lkin

g o
n S
ma
rtp
ho
ne

Ea
tin
g M

ea
l

Wa
tch
ing
 TV

Bru
shi
ng
 Te
eth

Wa
shi
ng
 Fa
ce

Sle
ep
ing

Predicted label

Pre
pa
rin
g M

ea
l

Ma
kin
g T
ea

Ma
kin
g J
uic
e

Wa
shi
ng
 Di
she

s

Re
ad
ing
 Bo
ok

Us
ing
 Sm

art
ph
on
e

Ta
lkin

g o
n S
ma
rtp
ho
ne

Ea
tin
g M

ea
l

Wa
tch
ing
 TV

Bru
shi
ng
 Te
eth

Wa
shi
ng
 Fa
ce

Sle
ep
ing

Tr
ue

 la
be

l

Confusion matrix

0.0

0.2

0.4

0.6

0.8

1.0

(c) Confusion matrix for 0 degrees

Fig. 4: The performance of the HAR NN. The distance
between the person and camera is set at two meters. The
HAR model was trained on five sessions of training data
and tested on five sessions of test data for each participant
with the results shown averaged over all participants. See the
Evaluation section for more details.
restricted to three general actions; astay (stay), aleft (go left),
and aright (go right). When the aleft or aright action is
selected, the robot moves along the circumference of the circle
for 0.35 meters (10 degrees). After the robot arrives at the next
position, the deep Q-network determines the next action. Note
that when the person is walking to change his/her location (the
movement speed is faster than sw), the robot suspends the RL
and HAR processes and simply follows the person.
F. Design of the State Space

The agent’s state, St, captures information about the cur-
rent status of the agent and environment, such as skeleton
information observed from its current position, and is used
by the agent when determining which action to take next. At
each time t, St is constructed by concatenating the skeleton
information of the person Kt, the confidence of the HAR
network Ct, and the obstacle information from the local
environment Ot. The skeleton information, Kt, is composed
of the x- and y-coordinates normalized to the range [-1,1]
of each body part. The confidence Ct helps the deep Q-
network to estimate a value for its current state, since Ct
directly represents the current ambiguity of the HAR network’s
output. The obstacle information Ot helps the deep Q-network
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estimate how the local environment will affect its ability to
perform HAR, since obstacles between the robot and the
person that are taller than the height of the camera can interfere
with HAR.

In this paper, we assume that the robot has a floor map that
contains information about obstacles in the local environment,
with the information encoded as shown in Fig. 6 (a). The
circle centered on the person is equally divided into NO
regions and the existence of an obstacle within an area is
binary encoded (i.e., 0 or 1). Using this information, the agent
can learn a movement policy that takes into account possible
camera occlusion by obstacles. In addition to obstacles that can
possibly occlude the camera, the obstacle information Ot also
encodes information about obstacles that lie directly on the
circumference of the circle, since such obstacles will block
the movement of the robot. These obstacles are also binary
encoded as shown in Fig. 6 (b). Note that while the movement
space available to the deep Q-network (robot) is restricted to
the circumference of the circle, we can program the robot to
temporarily deviate from this area to bypass obstacles lying in
its path when the deep Q-network has decided to move toward
an obstacle.

Moreover, in order to facilitate the selection of an appro-
priate following action, Ot contains information about the
costs of the possible following actions (aleft and aright). For
example, in the case of Fig. 6 (b), an obstacle exists to the
robot’s left and so the robot must go around the obstacle if it
selects aleft, which increases the cost of this action. In order
to represent such variations in the costs of actions, we include
the estimated costs of the robot movements (i.e., movement
distances) for aleft and aright into Ot. The algorithm used to
calculate the route from the current position to a destination
is available in the supplementary materials4.
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Fig. 6: Examples of obstacle encodings

G. Design of the Reward
The reward Rt is computed from the HAR result (Ht);

the movement distance of the previous action (dm), which
represents the energy consumed for the previous action; and
the travel distance between the positions of the robot and
person (drp) as follows: Rt = A(Ht) − (ep · dm + (drp/d)),
where dm is the movement distance of the previous action,
ep is a hyperparameter related to the energy consumption of
movement, and A(Ht) indicates whether the HAR output is

4http://www-mmde.ist.osaka-u.ac.jp/∼maekawa/paper/supple/
supplementary information for percom2020.pdf

correct and is computed from the HAR result Ht at time t
formulated as follows:

A(Ht) =

{
1, if the agent can predict the activity correctly
0, otherwise

Furthermore, we introduce drp, which is computed using
Dijkstra’s algorithm (see the supplementary materials4 for
details), in order to penalize situations where there is an
obstacle between the robot and person or where the robot
is situated in a different room from the person (i.e., non-
line-of-sight). In such situations, the travel distance between
the positions of the robot and person becomes longer than d
because of the obstacle or walls. Otherwise, drp is close to d.
H. Deep Q-network

The deep Q-network used in this study consists of three
densely connected layers with eight nodes and an output
layer with three nodes. We employ the ReLU function as
the activation function for the nodes in the densely connected
layers. The number of nodes in the output layer corresponds
to the number of actions, with each node in the output
layer outputting the class probability of its corresponding
action. The optimizer used for training is RMSProp [31]. To
efficiently train the network, we used the following state-of-
the-art RL techniques based on [32].

1) Categorical DQN: The original DQN algorithm employs
the Q function to represent the expected reward. Instead of
directly estimating the expected reward, Bellemare et al. [33]
learned the distribution of rewards, permitting us to consider
the variance of rewards and the multimodality of the reward
distribution. In particular, the reward distribution is represented
as a histogram in their implementation.

2) Multi-step RL: The original DQN algorithm employs a
1-step reward to generate training data. One alternative is to
use forward-viewing n-step rewards to accelerate the training
[32], [34] as follows: R(n)

t ≡
∑n−1
k=0 γ

(k)
t Rt+k+1, where γ(k)t

is the discount for a reward k steps in the future, defined as
γ
(k)
t =

∏k
i=1 γt+i.

3) Double DQN: In the original Q-learning algorithm, the
same Q function is used for selecting and evaluating actions
(online and target networks; Eq. 1), resulting in overestima-
tions. Double DQN copes with this issue by decoupling the
selection from the evaluation [35].

4) Prioritized Experience Replay: The original DQN algo-
rithm stores an agent’s experiences (St, At, Rt+1, St+1), i.e.,
transitions, into a replay buffer, which is used to update the
deep Q-network on a batch of experiences randomly sampled
from the buffer. This sampling can be prioritized to accelerate
learning. More specifically, a transition with a high TD error5

is prioritized, which means that transitions that deviate from
our estimates are prioritized.

5) Dueling Networks: To directly represent the values of
states independently from actions (V (s)), Wang et al. [36]
proposed an architecture that separately learns state values
and action advantages. Here, the advantage is defined as

5A Temporal Difference (TD) error shows the difference between the
estimated Q value and the actual Q value.
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A(s, a) = Q(s, a) − V (s). This network architecture is
composed of a stream used to evaluate state values and a
stream used to evaluate action advantages, which are merged
by a special aggregator to output Q(s, a).

6) Noisy Nets: The original DQN algorithm employs the ε-
greedy strategy, which has a probability ε that the next action is
selected randomly in order to introduce a form of exploration.
Fortunato et al. [37] expanded on this by introducing a noisy
linear layer into the NN to achieve exploration by the network.
I. Avoiding Obstacles

Here we explain several heuristics introduced in our method
to avoid obstacles. Assume that there is an obstacle on the
circumference of the circle on the robot’s right, and the deep
Q-network outputs aright. However, because of the obstacle,
the robot cannot move to the right. In this case, the agent
temporarily pauses control by the RL process, detours around
the obstacle to a position beyond it on the circumference
of the circle, and then restarts control by the RL process.
When there are no unobstructed points beyond the obstacle on
the circumference of the circle, the robot simply ignores the
action. The navigation method of the robot is further described
in the supplementary materials4.

IV. EVALUATION
A. Data Set and Environments

TABLE I: Activities performed in our experiment and objects
used in each activity

Activity Objects
Preparing Meal Pan, spatula, knife and vegetable

Making Tea Can of tea, teacup and kettle
Making Juice Blender

Washing Dishes Dish and sponge
Reading Book Book

Using Smartphone Smartphone
Talking on Smartphone Smartphone

Eating Meal Knife and fork
Watching TV Remote control

Brushing Teeth Toothbrush
Washing Face N/A

Sleeping N/A
Walking N/A

TABLE II: Participants in our experiment

Participant A B C D E
Height [cm] 168 173 162 155 173

Age 30s 20s 30s 50s 20s
Sex M M F F M

We evaluated our method using the virtual home envi-
ronment described in Section III-A. The movements of the
humanoid characters used in the virtual environment were
generated based on human activity data collected using the
Perceptron Neuron mocap system6, recording the coordinates
of 25 body parts of each participant (e.g., the right hand,
left hand, head, etc.). We collected the mocap data with
each participant conducting ten sessions of activities. They
performed the activities listed in Table I in an arbitrary order,
with each session containing instances of each activity. Each

6https://neuronmocap.com/

of these sessions was conducted in either an actual home envi-
ronment or in our laboratory. The humanoid characters used in
the virtual environment were created using the MakeHuman7

toolkit. A separate humanoid character was created for each
participant according to their physical characteristics (listed in
Table II).

(a) Environment A (b) Environment B (c) Environment C

(d) Environment D (e) Environment E

Fig. 7: Virtual environments used in this study
Furthermore, the virtual objects used by their characters

in the virtual environment were created to each have their
own unique appearance. These humanoid characters were then
animated using the mocap data in the virtual houses shown
in Fig. 7, with each participant performing activities in their
own corresponding environment (e.g., Participant A performed
activities in Environment A). Each activity was performed
at an appropriate location in the house (e.g., preparing meal
was performed in the kitchen), with the walking activity
used to move the humanoid characters to different locations
throughout the house. The duration of each virtual session was
about 15 minutes while the average duration of each instance
of activity was about 45 seconds.
B. Evaluation Methodology

We first trained a neural network for HAR. The HAR
network that was used for each test participant was trained
using the test user’s five sessions of training data augmented
with each of the other participants’ ten sessions of data, since
network training requires a substantial amount of training data.
The training data used for the HAR networks was generated
by animating the humanoid characters in an empty virtual
environment (i.e., no obstacles) and recording their actions
from twelve different angles using the camera on our virtual
robot.

We trained the deep Q-network for each environment using
its user’s five sessions of training data. The deep Q-network
was trained for 100 episodes. Note that the order of activities
performed was randomized for each training iteration.

To evaluate the effectiveness of the proposed method, we
prepared the following methods.
• Proposed: The proposed method.
• Naive: This method does not employ RL. In place of

movement control by RL, the robot simply tracks the
person so that the person is captured at the center of the
camera image while keeping a distance d.

• NaiveAct: This method employs RL with a more complex
action space than that used by the proposed method. In

7http://www.makehumancommunity.org/
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this method, the robot is allowed to move freely (forward,
backward, left, and right in increments of 0.35 meters;
stay; and rotate left/right in increments of 10 degrees)
while maintaining a minimum distance d.

• W/o confidence: This method employs RL but does
not use the confidence values from HAR in the state
information.

• W/o cost: This method employs RL but does not incorpo-
rate the costs of the following actions (i.e., the expected
movement distances) into the state information.

• DQN: This method employs RL but does not use the six
state-of-the-art RL techniques described in Section III-H.

We evaluated the above methods using the macro-averaged
F-measure calculated for the per frame estimates from the
HAR networks when run in each environment using that
environment’s user’s five sessions of test data. The hyperpa-
rameters used in this study are listed in Table III.

TABLE III: Hyperparameters

Hyper-
parameter Value Description

d 2 m distance between the person and robot

NO 10 number of regions into which the circle
centered on a person is divided

ep 10−1 energy consumption per 1 meter of movement
sw 1 m/s threshold speed used to define walking

C. Results

1) Recognition Accuracy and Reward: Figure 8 shows the
reward curves for the RL based methods. As shown in these
results, in many cases the reward increases much earlier for
Proposed than it does for NaiveAct and DQN, showing the
effectiveness of the proposed method. While this evaluation
was conducted in virtual environments, an important future
application of a HAR system such as this is in real-world
environments. In such cases, the convergence speed is a very
important aspect of training, since it can be costly for the
agent to perform exploration and exploitation in a real-world
environment.

Meanwhile, Fig. 9 shows the evolution of the movement
distances of the robot (which are related to energy use) when
performing HAR. Note that these distances do not include the
robot’s movement when it is following the person as he or
she walks between the activity locations. In many cases the
movement distances for Proposed converge earlier than the
distances for W/o confidence, NaiveAct, and DQN. As was
mentioned above, convergence speed is an important aspect
of training in our task.

Figure 10 shows the average distance moved during in-
stances of each activity class during testing. Because the cir-
cumference of the circle centered on the person is about 12.5
meters, these distances translate into an average traversal of
about 100 degrees of that circle for each activity. As shown in
the figure, the movement distances for “reading book,” “using
smartphone,” “talking on smartphone,” and “watching TV” are
relatively long. All of these activities are performed while
sitting on a sofa, so the robot cannot recognize these activities
from behind the person. In contrast, the movement distances
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Fig. 8: Comparisons between proposed and the other methods
in terms of reward curves plotted for 50 episodes of training

for “washing face” and “brushing teeth” are relatively short,
because the robot can observe the characteristic body move-
ments and postures for these activities from many angles. Also
note that the average movement distance for “sleeping” was
inflated by the results from Environment D, where the robot
moved an average of 6.5 meters during instances of “sleeping.”
This was due to the bedroom in Environment D being smaller
than the bedrooms in other environments, which led to the
robot mistakenly entering neighboring rooms as it attempted
to traverse the circle. Excluding Environment D, the average
distance moved during “sleeping” was only 2.5 meters.

Figure 11 shows the macro-averaged F-measures for HAR
for each of the methods in each of the environments during
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Fig. 9: Comparisons between proposed and the other methods
in terms of the evolution of total movement distances [m] over
50 episodes of training

testing. As shown in these results, Proposed achieved the
highest overall HAR accuracy. In particular, Proposed out-
performed Naive by about 5-10%, showing the importance
of adjusting the observation angle during HAR. Note that the
accuracies shown here are somewhat poorer than those shown
in Fig. 4, because the evaluation for Fig. 4 was done in an
environment with no obstacles.

2) Effectiveness of Reinforcement Learning: As is illus-
trated in Fig. 11, Naive, which does not use RL, performs
more poorly at HAR because it does not control the robot’s
movement in order to improve the robot’s view of the activities
being conducted. For each of the methods being evaluated,
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Fig. 10: Average movement distance by Proposed for each
activity class during testing
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Fig. 11: Macro-averaged F-measures for HAR during testing

the robot arrives at the locations where it performs HAR
by following the person being observed, meaning that HAR
typically starts with the robot behind the person. Fig. 12 breaks
the results down to F-measures per activity for Proposed,
Naive, and NaiveAct. Here we can see that even activities
like “washing face” and “brushing teeth” that have character-
istic body movements are recognized more poorly by Naive,
since there is still an advantage to improving the viewing
angle during recognition for these activities. Moreover, the F-
measures for activities such as “watching TV” and “talking on
smartphone” that are performed on the couch are even more
impacted by Naive’s inability to adjust the observation angle,
resulting in much poorer performance when RL is not used. As
for the activities “making tea” and “washing dishes,” their F-
measures are poor because these activities were confused with
each other. This may be because the robot could not capture
distinguishing actions or objects due to the kitchen counter.

Figure 11 shows that the F-measures for Proposed, which
employs state-of-the-art RL techniques, are higher than those
for DQN in Environments D and E. In contrast, Fig. 13 which
shows the average movement distance of each method for each
environment, shows that the movement distances for DQN are
generally much shorter than those for the other methods in
Environments D and E. Based on these results, it appears
that DQN attempted to get high rewards by saving the energy
related to movements in these environments.

3) Effectiveness of the Action Space: As shown in Fig. 11,
NaiveAct, which allows the robot to move freely, performs
more poorly at HAR than Proposed despite its higher degree
of freedom. The unrestricted movement in NaiveAct results
in many choices of actions for the RL network, which then
requires more episodes to train and converges more slowly
than Proposed (see Fig. 8). In addition, Fig. 13 shows the
average movement distance of NaiveAct for each environment,
showing significantly longer movement distances for NaiveAct
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Fig. 12: Macro-averaged F-measure for each activity class during HAR
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Fig. 13: Average movement distances for each environment

than for Proposed. Based on these results, we believe that our
action space is suitable for efficient activity recognition.

4) Effectiveness of Activity Recognition Confidence: As
shown in Fig. 9, Proposed converges much earlier than W/o
confidence in Environments C and D. Because Proposed
leverages information directly from the HAR network (i.e.,
HAR confidence), it can easily determine its policy using that
information, accelerating the convergence of the RL network.
On the other hand, W/o confidence must learn the concept
corresponding to HAR confidence indirectly from the skeletal
information, which requires many more iterations of training.
Overall, these results show the usefulness of using the HAR
confidence as an input.

5) Effectiveness of Costs of Next Actions: As shown in
Fig. 9, Proposed converges earlier than W/o cost only in
Environment B. This is likely because the cost information of
each action is somewhat easy to predict from other input (i.e.,
obstacle information), meaning that W/o cost could learn a
concept similar to the cost information within a few iterations
of training. Comparing these results to those in the previous
subsection, it is apparent that providing the confidence in-
formation from HAR to the RL network is more beneficial
than providing the cost information for actions. This may be
because the confidence information is useful for estimating a
value for the current state that is difficult to accurately estimate
using the other input.

V. DISCUSSION

A. Limitations

One primary limitation of this study is that we assume that
the robot only has simple movement functions. Therefore, our
experiment considered only single-story houses and assumed
that all the doors in the houses were always kept open. As
a part of our future work, we plan to consider a robot with
more advanced movement functions that include opening and
closing doors and climbing up and down stairs.

TABLE IV: Macro-averaged F-measure [%] for HAR when
deep Q-networks are trained in another environment

Test
Env. A Env. B Env. C Env. D Env. E

T r
ai

n

Env. A – 72.18 64.43 72.43 69.32
Env. B 73.90 – 69.17 69.05 70.34
Env. C 78.38 80.48 – 65.88 68.63
Env. D 78.56 81.28 70.57 – 71.73
Env. E 76.68 79.48 67.47 65.93 –

B. Deep Q-network Trained in Another Environment

In our experiment, the deep Q-networks used were en-
vironment dependent (trained using data collected in the
environment of interest). Here we investigate the performance
of environment-independent deep Q-networks that avoid the
need to train a network in the environment of interest. Table
IV shows the F-measures for HAR when we use deep Q-
networks trained in each environment to conduct HAR in each
of the other environments. Surprisingly, in many cases the F-
measures for the networks trained in different environments
were almost as good as those of the environment-dependent
models (Proposed in Fig. 11) and likewise still outperformed
Naive in many cases. While some environmental conditions
such as the size of the rooms and the positions of obstacles
deteriorate the performance of the models in different environ-
ments, the agent seems to be able to learn general movement
strategies that can be used in any environment (e.g., changing
positions when the confidence of HAR is low), because of the
simplicity of our proposed action space.

VI. CONCLUSION

This study proposed a new activity recognition method
based on camera images captured by a mobile robot in the
home. To maximize the activity recognition accuracy, our
method employs deep reinforcement learning to control the
movement of the robot while reducing the energy consumption
related to that movement. We evaluated our method in virtual
environments and confirmed its effectiveness. As a part of our
future work, we plan to extend our method to maximize the
activity recognition accuracy for multiple residents in a single
house. In addition, we plan to deal with privacy issues related
to our method. For example, we can restrict the robot from
entering particular rooms and/or change its distance from the
observed person depending on the estimated activity class.
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and T. Starner, “Recognizing workshop activity using body worn micro-
phones and accelerometers,” in Pervasive 2004, 2004, pp. 18–32.

[17] M. Blum, A. S. Pentland, and G. Tröster, “Insense: Interest-based life
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