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Abstract—Spirometry is the gold standard to measure lung
functions by estimating the maximum air an individual can
forcefully exhale as quickly as possible. It is used not only
to diagnose lung diseases such as asthma, chronic obstructive
pulmonary disease (COPD) but also to assess the severity of the
pulmonary condition. However, spirometry requires a specialized
device called spirometer, which is mostly available in clinical
facilities and cumbersome to use. Recent works have shown the
feasibility of using smartphone microphone to estimate lung func-
tions from forced exhalation effort sounds. However, maintaining
the fidelity of lung function estimation on smartphones becomes
challenging in unsupervised field environment in presence of
other sounds such as coughs, deep inhalation, regular breathing,
and speech. In this paper, we present ExhaleSense that detects
forced exhalation efforts on smartphones from audio time-series
data, distinguishes high fidelity efforts from poor efforts, and
estimates lung obstruction. By conducting three studies with
211 pulmonary patients and healthy subjects, we show that
ExhaleSense can detect forced exhalation sounds with 96.74%
F1-score and estimate lung obstruction with mean absolute error
as low as 7.57%. ExhaleSense shifts the gear of smartphone
spirometry research from feasibility to ensuring effort quality
towards high fidelity lung function estimation in unsupervised
field settings.

Index Terms—mobile spirometry, pulmonary patient, audio,
data quality

I. INTRODUCTION

Despite significant advances in health care, chronic respira-
tory diseases (CRDs) are the third leading causes of death in
the world for the last 20 years [1]. Chronic respiratory diseases
refer to a group of diseases, primarily chronic obstructive
pulmonary disease (COPD) and asthma, affect the airways, and
cause difficulty in breathing. Spirometry is the most common
way to diagnose the respiratory diseases, which measures
the lung condition by estimating the speed and amount of
airflow of an individual. Spirometry tests are conducted using
a Spirometer in clinical facilities under the supervision of a
skilled technician and can be challenging in low and middle-
income countries1 as the test requires expensive equipment,
human and financial resources, and technical support [3].

To make the spirometry more accessible and cost-effective,
several works such as MobiSpiro [12], SpiroSmart [13],

1More than 90% COPD related death occurs in low and middle-income
countries [2].

SpiroCall [8], SpiroConfidence [10] showed the feasibility of
mimicking the spirometry test on smartphones. For exam-
ple, Larson et al., [13] developed a smartphone application
called SpiroSmart and showed the possibility to measure lung
functions using audio data captured by smartphone micro-
phones. Previous works show the promise and potential of
using smartphone as a consumer-grade alternative to measure
lung condition and make the assessment available anywhere,
anytime. However, when the users perform the spirometry task
on a smartphone at home without clinician supervision, they
oftentimes do not push their effort to achieve their maximum
lung capacity that can produce nonsensical results that are not
representative of their lung health [9]. Moreover, variations
of the interactions between phone and the user at home
also affect the exhalation sounds and assessment quality. For
example, the distance between the device and the mouth and
the device orientation affect the audio quality, which could
yield inaccurate results. Therefore, it is critical to consider
the variation in human device interactions associated with
unsupervised, in-home assessment scenarios to detect the high
fidelity forced exhalation efforts on smartphones.

A few prior researches took steps to assess the quality
of spirometry efforts. Melia et al. [11], detected errors in
spirometry efforts based on the flow-volume curves captured
from a traditional spirometer. Viswanath et al. [10], classified
valid spirometry efforts captured using smartphone in a clinical
setting, given that the forced exhalation sounds are already
segmented. However, while monitoring at home, the forced ex-
halation sound segments need to be pin-pointed in continuous
audio time series data and then, the fidelity of the efforts need
to be assessed by controlling the quality parameters associated
with unsupervised scenarios mentioned above. In this paper,
we present ExhaleSense, a smartphone based approach to
automatically detect forced exhalation sounds in a continuous
audio stream captured by its built-in microphones, assess the
quality of the effort, and estimate the lung condition.

To train and evaluate the performance of ExhaleSense, we
have conducted three independent studies in collaboration with
Brigham and Women’s Hospital (BWH), one of the largest
teaching hospitals of Harvard Medical School, totaling 211
participants including chronic pulmonary patients and healthy
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controls. In the first study, we have collected data from 131
subjects (91 patients and 40 healthy) in a usability lab at
Samsung Research America (SRA) where we have recorded
forced exhalation sound on Samsung Note8 smartphones. The
ground truth lung function measurements were captured by an
FDA approved portable spirometer, called GoSpiro [15]. We
have conducted the second study in BWH with 70 participants
(60 patients and 10 healthy) where each subject was supervised
by expert clinicians to perform the test on a hospital-grade
spirometer. The participants were also requested to blow their
exhalation into the phone. In the third study conducted in
BWH, we have collected data from 10 participants who were
given the medicine as a test to collect controlled deterioration
of their pulmonary condition and the smartphone spirometry
after each dose of medication. In all three studies, we also
collected lung health estimates from spirometer as a gold
standard ground truth. An example of our tests is depicted
in the left side of the Figure 1.

Fig. 1: Subject holding the phone and performing the forced exhalation as fast
as possible on a smartphone microphone (left) and using a clinical spirometer
(right)

Experiments on the above dataset show that our model can
detect can detect forced exhalation with 96.74% F1-score and
estimate the lung obstruction bio-marker called FEV1/FVC
ratio with 7.57% mean absolute error with respect to the gold-
standard spirometers. We further collected usability data from
the participants to compare their spirometry experience with a
smartphone and a spirometer. Our experiment reveals that the
patients show higher preference on using smartphone spirom-
etry over the portable spirometer and the clinical spirometer.
Our approach makes the next stride to bridge the gap between
the feasibility of the smartphone spirometry and the reality of
its deployment in patient community.

In short, our contributions are the following:

• Automatically detect forced exhalation sound on a smart-
phone with 96.74% F1-score to pinpoint a forced exha-
lation segment in an audio time series data.

• Assess the quality of the effort and present explainable
quality metrics for smartphone spirometry informed by
American Thoracic Society guidelines.

• Present three independent studies with chronic pulmonary
patients and show methods to rigorously annotate pul-
monary audio dataset to develop reliable models.

• Estimate lung obstructions by considering both initial
one second features and whole forced exhalation segment
features to with 7.57% mean absolute error (MAE).

• Compare the usability of the phone spirometry with
respect to a hospital grade spirometer and a connected
portable spirometer.

II. BACKGROUND AND RELATED WORKS

A. Traditional Lung Function Measurements

Spirometry is the most widely used standard test to measure
lung function. A Spirometer is a device with a mouthpiece
hooked up with a big machine. Patients need to insert the
spirometer tube into the mouth and attach a nose clip during
the test. It measures flow rate of air as it passes through a
mouthpiece. During the test, participants takes a deep breath
and then exhales the air as fast as possible and as long
as possible (right picture of the Figure 1). The spirometer
measures the speed and volume of the airflow and computes
several lung function metrics. Three of the most widely used
lung function measures are the following:

• Forced Vital Capacity (FVC): This is the amount of air
an individual can exhale quickly forcefully after a deep
inhalation.

• Forced Expiratory Volume in one second (FEV1): This
is the amount of air expired during the initial one second
of the forced exhalation.

• FEV1/FVC ratio: This is the ratio of FEV1 and FVC
values. This is the most common lung bio-marker that
indicates the presence of airflow obstruction in chronic
lung patients such as COPD and asthma. In this paper,
our model predicts this number based on forced exhale
data captured on a smartphone microphone.

B. Pulmonary Assessment Using Mobile Devices

Mobile sensor-based pulmonary assessment methods [4],
[5], [8], [13] are more related to our work. Juen et al.
[5] and Cheng et al., [6] demonstrated that monitoring of
natural walk during daily activities using the smartphone
inertial sensors could be useful for predicting lung function
in cardiopulmonary patients. Infante et al., [7] investigated the
use of cough sound recorded by a smartphone for the screening
and diagnosis of pulmonary disease.

The closest related works are those that aim to develop
smartphone-based spitometry sensing methods. Larson et al.
[13] developed a system called SpiroSmart that can measure
lung function using a smartphone device. SpiroSmart requires
a user to hold the phone at arm’s length, breath in their full
lung volume, and forcefully exhale at the phone microphone
until the exhalation of the entire lung volume. They achieved
a mean error of 5.1% on the prediction of standard lung
function measures. The following work by Goel et al. [8]
developed a system to reliably estimate (mean error of 6.2%)
pulmonary function measures from a user’s exhalation sound,
through a call-in service on any phone using the standard voice
telephony channel for transmitting the sound of spirometry
effort. Another works called SpiroConfidence [10] attempted
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to categorize valid spirometry test from invalid efforts using
machine learning algorithms on blowing sound data captured
using a smartphone microphone. Smartphone spirometry still
remains highly susceptible to poorly performed efforts because
of the variations in the effort.

Challenges with phone spirometry: First, the system needs
to detect the right segment of the forced exhalation in spirom-
etry from a continuous audio timeseries. Second, variation of
distance between mouth and the device should be addressed.
Third, the exhalation requires significant effort from the user
and the lack of proper guidance can invalidate the results [10].
Therefore, estimating the quality of the blowing and guide
the user to perform the blowing correctly is crucial to have a
reliable measurement on mobile devices in uncontrolled field
settings. Fourth, the model needs to handle device orientation
variation to increase robustness and ease of use.

Novelty of our approach: Our approach handles the above
mentioned challenges and move the concept of mobile sprime-
try one step closer to the user space. We detect blowing
exhalation sound to guide best quality spirometry maneuver on
a smartphone. We evaluate our approach for both clinical and
non-clinical dataset and show that our model can accurately
assess the lung condition. We further evaluate the usability of
our system with pulmonary patients by comparing it with a
portable spirometer.

III. STUDY DESIGN, DATA COLLECTION AND
ANNOTATION

We have conducted three independent studies with three
different cohorts of pulmonary patients in two different US
locations in USA. We have collected data from 211 subjects,
including chronic pulmonary patients and healthy subjects
using Samsung Galaxy Note8 smartphones and Galaxy Gear
Sport smartwatch. In the first two studies, we have collected
several forced exhalation sounds from the participants from a
one minute protocol. Participants were instructed to force their
exhalation as long as possible and as quick as possible with
multiple repetitions and comfortable breaks in between two
efforts. The patient could stop doing the maneuvers if they feel
uncomfortable at any moment. Based on their pulmonary con-
dition and lung capacity, the duration of the forced exhalation
sounds is expected to vary. In the third study, participants were
given several doses of a bronchoprovocative medicine as a test
to collect controlled variation of the pulmonary conditions.
We have collected hospital-grade spirometry data along with
forced exhalation sounds after each dose of the medication.
This dataset is collected at BWH hospital, and all the above
studies are approved by corresponding Institutional Review
Boards (IRB). Participants were requested not to smoke or
take medications several hours before the data collection. In all
the studies, there were two smartphones - one for the patient
to record the patient data, another for the study coordinator
to label the start and end of each task (e.g., smartphone
spirometry that includes multiple repetitions).

1) Study-I: Lab Study Using Connected Portable Spirome-
ter: We have completed several iterations through pilot studies

Fig. 2: Study setup for the mobile sensor data collection.

Fig. 3: Data annotation using FigureEight Inc crowdsourcing platform [17]. It
shows the waveform visualization, and selection of audio segment that has a
forced exhalation sound in a audio time series. It also shows that the platform
gives ability to zoom-in and zoom-out the signal for further confirmation, and
also to listen just the selected audio segment rather than listening the whole
audio for confirmation. Moreover, the annotator could delete the annotation,
if they find that the annotation was not correct after zoom-in or listening the
selected segment.

and mock-ups to make the study rigorous in terms of data
quality and variability, and then, conducted it by partnering
with a recruiting firm who provided access to pulmonary
patients. We have collected data from 131 subjects. Among
them, 91 are chronic patients (Male 41, Female 50), including
69 asthma patients, 9 COPD patients, and 13 with both
conditions. The average age of the patients was 42.93±19.49
years. Among the remaining 40 healthy subjects, 26 were
male, and 14 were female. The ages of the subjects range
from 14 to 82 years.

In this study, we used an FDA2 approved, Bluetooth
Low Energy (BLE) connected, portable spirometer to collect
groundtruth FEV1, FVC, and FEV1/FVC ratio data. The
spirometer was connected to a smartphone app, and the
smartphone app could be able to assess the quality of the effort
done by the participant. If the effort was not good enough, we
asked the participants to perform the test again with greater
effort. Moreover, we requested participants to perform the
spirometry test on the spirometer up to three times so that
we can choose the best effort from them as a groundtruth
data. We also collect cough sounds, ‘Aa....’ vowel sound from

2Food and Drug Administration
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Fig. 4: Data annotation using Audacity [16] environment.

our participants which is out of the scope of this paper. The
whole session is audio recorded including the instructions and
exit interviews where we have collected usability questionnaire
data.

2) Study-II: Clinical Study Using Hospital-grade Spirome-
ter: We have conducted the second study in BWH hospital
in Boston with an independent cohort of pulmonary patients.
This study consisted of a total of 70 participants, including
25 asthma patients, 25 COPD patients, 10 chronic cough
patients, and 10 healthy controls. Similar to the Study-I, we
have collected smartphone phone spirometry, coughs, ‘Aaa...’
vowel sound data, hospital grade spirometry in a pulmonary
function test lab, and usability questionnaire. The whole audio
session is captured as a continuous audio timeseries data.

3) Study-III: Methacholine Challenge Test in Hospital: The
methacholine challenge test is a standard bronchoprovocation
test that helps diagnose asthma patient [14]. Methacholine is
an inhaled drug that causes mild narrowing of the airways in
the lungs, like asthma. At the beginning of the test, we have
collected baseline spirometry test data using hospital-grade
spirometer where the patient took a deep breath and blow their
breath through the spirometer as hard as possible and as fast
as possible, and we collected ‘Aaa...’ sound, voluntary coughs,
speech, and spirometry (forced exhalation) on phone using
Samsung Note8 smartphone. Then the participants inhaled
methacholine medicine for five consecutive doses with a break
of around 3-4 minutes. After each dose, we again collected the
same set of data. If the patient’s FEV1 value reduced below
20% after any of the doses (which means significant deteri-
oration), the test was stopped. In the end, the patients were
given bronchodilator medication to help their lung function
recover. We have collected methacholine challenge test data to
incorporate data with worsening lung condition and recovery
from the deterioration into our model.

A. Data Annotation

Supervised machine learning models need high quality
labeled data. We have two types of groundtruth data - (1) an-

notated forced exhalation audio segment and (2) lung function
parameters (FEV1/FVC). We have collected the first type of
ground truth from the hospital. Given the volume of the audio
data collected in these studies, we have annotated the data
in two ways - through (1) crowd-sourcing and (2) pulmonary
researchers.

1) Crowd-sourced annotation: Traditionally, reliable pul-
monary digital biomarkers and symptoms are annotated by
expensive, expert medical practitioners, and health researchers.
In the era of big data, crowd-sourcing for data annotation is
proven to be a scalable inexpensive approach. We annotate
approximately 44 hours (20 min x 131) of audio data using
FigureEight Inc [17], a professional and secure crowd-sourcing
platform specialized in annotating audio data. We conducted
the annotation study with 12 randomly selected annotators in
two phases. On average, each contributor had more than 9
months of experience with this platform. To obtain good qual-
ity annotations, the data annotators were further provided with
extensive training materials on pulmonary sound annotation
along with researcher-annotated sound samples.

Sound annotation interface: First, we segment the entire
recording session into protocol task segments based on the
timings annotated on the study coordinator’s smartphone. We
segmented those tasks into 1-minute chunks to improve the an-
notation quality and minimize annotator fatigue. We uploaded
the anonymized and segmented data in a secured platform
to crowd contributors with the Non-Disclosure Agreement
(NDA).

Phase 1: Listening-based annotation: To help the crowd
contributors understand and identify specific events of interest
in an audio segment (event occurrence annotation), we pro-
vided the definition and examples corresponding to each sound
event of interest (i.e., forced exhalation on the phone, cough,
breathing, speech). The annotation interface shows a progress
bar of the audio with time information. The interface enables
annotators to play or pause the audio to listen, and mark the
onset and the offset of each event by clicking on two respective
buttons.

Phase 2: Visualization-based annotation: After the first
phase and pulmonary researcher’s expert review of the annota-
tion reveals that only listening was not good enough for high
quality pulmonary sound modeling as the annotation accuracy
was low. Therefore, we introduced waveform visualization of
the audio to improve the accuracy. It is because different
pulmonary events (e.g., cough, spirometry) have different
waveform patterns. Additionally, reviewers ranked the crowd
contributors based on their accuracy and selected the most
accurate contributors for the next iteration. We also updated
the instructions based on the feedback collected from the
crowd contributors. In a waveform visualization, the horizontal
axis indicates the time and vertical axis indicates the audio
amplitude of the sound. We also provided several examples of
how to annotate, review, modify, and delete the onset and the
offset of an annotated event. The annotation interface had the
feature to zoom-in and zoom-out of the waveform for better
pinpoint the onset and offset of pulmonary sounds (Figure 3).
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Fig. 5: Audio processing pipeline from sensing to forced exhalation detection to lung function estimation.

Quality of crowd-Sourced annotations: Researcher’s review
after the first phase of iteration (without waveform visualiza-
tion) revealed that the crowd-sourced contributors annotated
cough events with 72.2% accuracy, and forced exhalation on
smartphones sounds with 90% accuracy. The speech annota-
tion was reasonably accurate during the first phase.

Whereas the accuracy of pulmonary symptoms annotation
improved significantly after the second phase of iteration. The
cough annotation accuracy increased to 95.32%, and forced
exhalation sound annotation accuracy becomes 91.07%. To es-
tablish that the learning effect does not confound our findings,
we ran the annotation with the waveform visualization and
updated instructions with a randomly chosen control group of
four crowd contributors who did not have previous exposure to
this dataset or annotating any pulmonary events. Researcher’s
review of their annotation shows that the control group
annotated cough events with 92.27% accuracy and forced
exhalation sounds with 92.7% accuracy. We demonstrated that
the waveform visualization significantly helps to improve the
quality of crowd-sourcing annotation for all the categories of
pulmonary events.

Furthermore, all the forced exhalation sound annotations
were visualized, listened, and verified to ensure that the
ground-truth data are high quality and reliable.

2) Domain Experts’ Annotation: Our team has domain
expert researchers who have around 10 years of experience in
analyzing pulmonary signals. They have further visualized the
data annotated by the crowd annotators and adjusted the onset
time of the forced exhalation events. This is very critical for
the FEV1/FVC estimation model development since the flow
from the initial one second is the most important portion of the
whole forced exhalation event. If the start time of the forced
exhalation is not annotated correctly, the resulting estimation
will be highly unreliable.

We use crowd-sourcing for annotating the 131 subjects’ data
from the Study-I. Since the volume of the remaining data
from Study-II and Study-III are smaller, our domain experts
have performed highly reliable annotation using audacity audio
annotation platform shown in Figure 4. It is to note that domain
experts have visualized the audio signal as a waveform and a
spectrogram in synchronization, and then listen the sound to
confirm the start and the end of a forced exhalation event in
the sound signal. The robust annotation and rigorous review
protocol produce the labels for smartphone spirometry which
are reliable to develop our model for the detection of forced

exhalation sound and estimate lung function based on the
detected sound.

IV. MODEL DEVELOPMENT

Audio processing pipeline (shown in Figure 5) to develop
the model includes audio sensing, preprocessing, feature com-
putation, forced exhalation detection and quality verification,
and finally, lung function estimation. We describe each com-
ponent below.

Audio sensing: we have collected audio data using Samsung
Galaxy Note8 with 44100 Hz sampling frequency without
any compression. The audio is captured in stereo mode.
Therefore, sound events are captured by both channels. We
have instructed the patient to hold the phone comfortably
close to their mouth and blow their maximum breaths into
the phone. We did not impose any restriction on how the
patient would hold the phone, and also the distance between
the phone and the mouth was based on participants comfort. It
was intentionally done to mimic the real-world scenario when
the patient would be doing the same test at home without any
supervision. We observe that sometimes our participants were
holding the phone horizontal to the ground and sometimes in a
tilted position. Therefore, due to the variation of the orientation
of the phone, one channel could capture high intensity sound
then the other channel. For example, Figure 7 shows that the
same forced exhale sound is captured by both channels and due
to orientation variation, one channel captures the sound better
than the other. Moreover, the intensity of the audio sensed by
the smartphone microphone will also vary due to variation of
distance between the mouth and the smartphone.

Audio pre-processing: To handle the variation of the dis-
tance between the mouth and the device, we have normalized
the signal from 0 to 1 using Equation 1 which makes the
forced exhale sound more prominent in the audio time series
data. If X = [x1, x2, ..., xT ] of duration T seconds of data
from a particular channel, then we normalize X as

Xnormalized =
X −min(X)

max(X)−min(X)
(1)

Signal normalization is used to handle the variation of distance
between the mouth and the smartphone that causes variation in
amplitude in the sound signal. Furthermore, we have computed
the root mean square (RMS) of the normalized signal from
each channel and selected the channel that has the highest
RMS value to handle the variation in device orientation.
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(a) Low distance, high similarity (b) High distance, low similarity

Fig. 6: Similarity between the template (blue) and the current forced exhalation (orange) from a smartphone spirometry effort.

Fig. 7: Two channel audio captured during one forced exhalation maneuver
for mobile spirometry. Root Mean Square (RMS) value for the blue channel
is greater than the RMS value for the orange channel.

Based on American Thoracic Society and European Res-
piratory Society (ATS/ERS) [20] guideline, one forced exha-
lation for pulmonary function test should last between 5 to
6 seconds. Therefore, we segment the audio into 6 second
overlapping window with a 300 millisecond shift. Since the
forced exhalation sound has a unique shape in the time-domain
audio waveform, we compute the envelope to capture this
unique signature to detect its presence in the audio timeseries
data. To ensure that the envelope is less affected by signal
jitters, or other sharp noises, we compute the percentile based
envelope rather than root mean square (RMS) based envelope.
Therefore, we further segment the six seconds window into
10 milliseconds frames and compute 90th percentile over each
frame to derive the envelope of a forced exhalation sound.

Fig. 8: Feature importance in detecting forced exhalation from other sound
such as deep inhalation, cough, speech, and A-vowel sound.

Audio feature extraction: We compute both temporal and
spectral features from each 6 second window by framing the
window into 100 ms frames. Moreover, we also compute statis-
tical features from the envelope signal. We compute statistical

features such as mean, standard deviation, skewness, kurtosis
of zero crossing rate, energy, spectral centroid, mel-frequency
cepstral coefficients (MFCC), relative density, spectral flux,
spectral rolloff, spectral entropy, spectral spread, and chroma
features from each audio segment. Audio features other than
envelopes are computed using PyAudioAnalysis [18] Python
open-source library. Total 156 features are extracted from each
window.

Forced exhalation event detection: We detect the presence of
the forced exhalation in each window using machine learning
classification algorithms. In the positive examples, we consider
the annotated forced exhalation examples. In the negative
examples, we include common pulmonary sounds such as
coughs, deep inhalations, regular breathing sounds, ‘Aaa...’
vowel sound, other ambient noise (e.g., silence). We use 210
positive examples and 3953 negative examples to build our
model. To reduce the skewness of the data, we downsample
the negative class in a way so that it has similar number of
samples, however, contains representative samples from each
negative category. We split the dataset into train (80%) and val-
idation set (20%). We further use 10-fold cross validation on
the train dataset and use Random Forest ensemble classifier to
detect forced exhalation event. Finally, the model performance
is tested using left out validation dataset.

Effort quality assessment: Once we detect a window of
6-second audio as a forced exhalation segment, we further
pinpoint the start of the exhalation by removing the initial
silence based on an empirically learned energy threshold. We
then assess the quality of the forced exhalation effort based
on the American Thoracic Society guidelines [20]. It is to
note that the ATS/ERS guidelines are mostly related to the
traditional spirometer where the patient needs to insert a tube
in their mouth and blow their breaths into the spirometer. We
observe that the audio of the forced exhalation is mostly audi-
ble in first 2-3 seconds out of the 6 second effort. Therefore,
the most important quality parameter from ATS/ERS that is
applicable for smartphone spirometry is the Time To Peak
Flow (TTPF). We compute the TTPF and if it is below the
ATS/ERS threshold (less than 300 milliseconds), we consider
it as a poor effort and discard from the assessment.

To ensure that we detect the high quality effort and provide
appropriate feedback to the patient who is using the smart-
phone spirometry at home without any clinician supervision,
we further analyze the shape of the envelope of a forced
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expiratory effort sound. We develop a shape based time series
data modeling approach to detect a template of the forced ex-
halation sounds from the rigorously annotated sound segments.
We use percentile based envelope approach described in audio
preprocessing subsection to generate individual envelope. We
compute the mean of the individual envelopes from the train-
ing data to generate the template envelope for high fidelity
forced expiratory effort sounds (Figure 9). We compute the
TTPF for the template envelope for the sanity check. We find
that it is less than 300 milliseconds which ensures that the
envelope template also meets the ATS/ERS criterion.

We propose the similarity between the template and the
individual envelope as a metric for smartphone spirometry.
We compute the similarity as the absolute distance between
the template (which is the expected shape) and the envelope
from individual forced expiratory sound segment as described
in the equations below. First, we describe the construction of
the template:

T [n] =
1

K

K∑
k=1

Envk[n], ∀ n ∈ [1, N ] (2)

where T [n] is the nth sample of the envelope template T ,
Envk[n] is the nth sample of the kth envelope Envk in the
training set, K is the total number of envelopes that have an
available sample at the nth position, and N is the total number
of samples in the longest envelope. The distance metric is then
computed as the absolute difference between each of the data
points of the current envelope Envc and the template envelope
T as the equation given below:

D =
M∑
i=1

||Envc[i]− T [i]|| (3)

where M is the total number of samples in the current
envelope Envc, and it is assumed that M <= N , where N is
the total number of samples in the template T .

We compare the similarity between the template and the
domain expert annotated forced exhalation sounds. We observe
that the higher the distance, the lower the quality of the
effort (Figure 6). From our dataset, we compute the similarity
metric for all the smartphone spirometry efforts and plot the
distribution of the distance. We observe that similarity distance
more than 15 divides the high quality efforts from the poor
efforts (Figure 10).

Regularized regression to estimate lung function: We predict
lung obstruction parameter called FEV1/FVC ratio. Since the
forced expiratory flow during the initial one second is critical
for the lung obstruction estimation, we compute the same au-
dio features from the first one second of the window to enforce
importance of the initial one second in the model. Therefore,
we have 312 features for lung obstruction estimation. We then
follow a hierarchical feature selection approach to select the
best features among them to estimate lung obstruction. First,
we apply linear regression with L1 regularization which selects

Fig. 9: Template from high quality blowing exhalation on a smartphone
microphone while doing the spirometry test on the phone.

Fig. 10: Distribution of the distance between the template and the smartphone
spirometry efforts. It seems that cut off threshold divides the high quality
efforts from the poor efforts.

185 features. Then, we compute correlation (Pearson’s r) with
the target variable (FEV1/FVC ratio from spirometers). We
select the features that are significantly correlated (p < 0.05)
with the target variable. Then, the features set reduces to 45.
Finally, we use this feature set to train a linear regression with
ridge regularization.

We split the dataset into train (90%) and validation (10%)
set. We train a L2 regularized linear regression with 10-fold
cross validation and test the model on the validation dataset.
We do this split randomly 100 times.

V. RESULTS

Forced exhalation detection performance: As described in
the previous section, we develop a binary classifier that detects
forced exhalation effort sounds from other sounds. Using Ran-
dom Forest classifier, we can achieve F1-score of 96.74%+/-
1.84%. We find that the most discriminating features are the
mean of first mel-frequency cepstral coefficient, energy, kurto-
sis of energy entropy, skewness of envelope, standard deviation
of the second chroma feature are the top five important features
in identifying a forced exhalation from other sounds in a audio
timeseris data. Figure 8 shows the feature importance from
high to low for our model to detect forced exhalation. It is to
note that MFCC represents spectral envelope of a sound signal.
We observe that energy features of the forced exhalation effort
sound, spectral envelope feature, and the percentile envelope
features are having more discriminatory power to identify a
smartphone spirometry event.

Quality assessment performance: In addition to following
the time-to-peak-flow (TTPF) recommended by ATS/ERS
standard, we develop that distance based quality metric. We
observe from the distribution of the distance metric in our
dataset that distance cut-off 15 can identify around 93.3% of
the high fidelity smartphone spirometry effort from the poor
efforts (Figure 10). It demonstrates the strength of our distance
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TABLE I: Top ranked features after doing LASSO regularization and cor-
relation based selection to estimate FEV1/FVC ratio. Feature names with

1s indicate that those features are computed from initial one second of the
window. Other features are computed from the whole window.

Rank Feature Name Rank Feature Name
1 Chroma5 kurtosis 13 MFCC7 skewness
2 Exhalation duration 14 Chroma std mean 1s
3 MFCC5 skewness 1s 15 MFCC1 skewness
4 Chroma6 kurtosis 16 Chroma 11 kurtosis
5 Spectral density[1.6k-1.7k] 1s 17 Chroma 11 skewness
6 Spectral density[1.6k-1.7k] 18 Chroma8 skew 1s
7 Chroma6 skewness 19 Spectral spread skewness
8 Envelope slope 1s 20 Envelope area
9 Chroma10 kurtosis 21 MFCC4 skewness 1s

10 Chroma10 skewness 22 MFCC4 kurtosis
11 Chroma3 kurtosis 23 Spectral entropy skewness
12 Chroma std skewness 24 Spectral spread kurtosis 1s

Fig. 11: Prediction performance of FEV1/FVC ratio using Linear Regression
with Ridge regularization. Mean Absolute Error (MAE) for this model is
7.57%.

metric to distinguish high fidelity forced exhalations from poor
efforts. Future works can explore how this accuracy can further
be improved by this distance metric in conjunction with other
envelope parameters such as mean, variance, and correlation
between the envelope and the template envelope.

Lung obstruction estimation performance: We trained a
linear regression model with L2 regularization based on 45
best features and predict lung obstruction measures called
FEV1/FVC ratio (a continuous value between 0 and 1). We
observe that our cross validated model can predict FEV1/FVC
ratio with mean absolute error (MAE) of 7.57%. Figure 11
shows that the distribution of the actual FEV1/FVC ratio
values in test dataset and predicted FEV1/FVC ratio values
are having quite similar distribution. As we mentioned in the
model development section, the lung obstruction prediction
model includes features from both initial one second and the
whole window of a forced exhale effort. We observe that
chroma5 kurtosis, exhalation duration, MFCC5 skewness from
initial one second, chroma6 kurtosis, spectral density between
1600Hz-1700Hz band from initial one second, spectral den-
sity between 1600Hz-1700Hz band from the whole window,
chroma6 kurtosis, envelope slope from initial one second,
chroma10 kurtosis and skewness are the top 10 features.
Several of the most important features selected by LASSO
and Pearson’s r based feature selection method are shown in
Table I.

Patient comfort with smartphone spirometry: In Study-I
and Study-II, we asked the participants on their preferences
between mobile phone spirometry and connected portable
spirometry, and between smartphone spirometry and hospital-
grade spirometry. We find that 42.18% participants in Study-I

preferred phone spirometry whereas 39.06% preferred blowing
on the portable spirometer. The reasons of choosing phone
spirometry were the availability of the devices, easy to use,
doesn’t need anything to insert into mouth, among several
others. The reasons of choose portable spirometry were the
tube that helps focus the effort and the blow for the patients
compare to the phone spirometry. We see a bigger difference
in the Study-II where 72.41% participants preferred phone
spirometry over the hospital grade spirometry (13.79%). Per-
haps, it is because the hospital-grade spirometry was a big
machine, need to sit in a special housing, and overall, it was
more cumbersome and effortful experience for the patients
compare to the mobile spirometry.

VI. APPLICATION AND USER BEHAVIORS

We have implemented the model on device using Samsung
Note8 smartphone. This is an on-demand app where the user
can press the start button and perform the spirometry on-
device. The data is not sent to the server in order to preserve
user privacy. To understand the user behavior, we give the
app to 10 subjects to follow the instructions on the phone
screen and try a smartphone spirometry test. The instructions
are the following: “Inhale deep and exhale all air as fast as
you can to the phones bottom sensor. Please blow for at least
6 seconds”. We didn’t provide any further encouragement
or guidance as we want to understand actual behavior of a
new user. Each participant forcefully exhales their breaths
three times on the phone to measure their lung obstruction.
We find that the time gap between the start button and the
actual blowing affects the accuracy of the model. From this
experiment, we find that time gap between the start button
press and the actual blowing is 0.95+/-0.56 seconds. It further
supports our motivation of detecting and pinpointing the forced
exhalation effort sound which is crucial for field deployment.
It is because forced expiratory volume in the initial one second
is the most important lung function. Therefore, first one second
cannot be just noise or silent sound for high fidelity pulmonary
function assessment.

VII. DISCUSSION, LIMITATION, AND FUTURE WORKS

Ensuring the quality of the patient effort during the spirom-
etry test is one of the biggest challenges for pulmonary
function test. Our model error is around 7.57%. Usually, 15-
20% decline in lung function is considered the significant
deterioration or pulmonary exacerbation [19]. In future, we’ll
incorporate our quality metric to model the lung function
change from our rigorously collected clinical dataset to see
whether our model can predict significant lung deterioration.

Since smartphone spirometry at home, in free-living con-
dition, is still a promising novel direction, there can be a lot
of future studies to understand the performance of the system
at home. Forced exhalation detection and effort estimation on
smartphone can help quantify patient engagement and com-
pliance in those field studies. For example, if the participants
is asked to do smartphone spirometry once a day, the study
coordinator may want to know whether the participants is
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(a) Instructions (b) Blowing Start (c) Blowing Stage (d) Blowing Complete (e) Estimated Results

Fig. 12: Design of our intuitive interface for patient encouragement to achieve high quality effort on smartphones. This figure shows that stages of a smartphone
spirometry test from sensing to lung condition estimation.

indeed performing the test on the phone to generate high
quality data for model development.

Our studies were conducted in lab and hospital environment.
Although there are noises from other patients, nurses, and the
machines around the patients, the noise at home can be differ-
ent from the noise in our data. Therefore, it warrants studies
at home to understand the performance of our algorithm in
free-living conditions.

VIII. CONCLUSION

Smartphone spirometry has a great potential to make pul-
monary assessment and tracking available anywhere, anytime.
However, the lack of methods to reliably assess patient’s
spirometry effort on smartphone at home is a big challenge.
This paper takes an important step towards moving the smart-
phone spirometry from feasibility to the consumer space.
Based gold-standard spirometers and rigorous data annotation,
we present models to detect forced exhalation efforts on
smartphones, assess the quality of the effort, and estimate
the lung obstruction. We show that our model can detect
forced exhalation with 96.74% F1-score and estimate lung
obstruction with less than 8% mean absolute error. We propose
explainable metrics to assess quality of smartphone spirometry
effort which is informed by American Thoracic Society and
European Respiratory Society guidelines. We believe that our
approach makes a strong impact towards taking the smart-
phone spirometry into patient’s home.

ACKNOWLEDGEMENTS

We want to thank Matthieu Chaminade and Philip Park for
the app interface design, Hujun Cui for the android framework
development, Leonardo Jimenez Rodriguez for preparing the
back-end servers, crowd contributors for data annotation, Nazir
Saleheen for data analysis feedback, Daniel McCaffrey for
managing the multi-disciplinary project, Keiko Kurita for
the review and valuable feedback, Alex Gao for his overall
feedback in the project and the presentation.

REFERENCES

[1] H. Ritchie, and M. Roser, “Causes of Death.
https://ourworldindata.org/causes-of-death,”, in 2019.

[2] World Health Organization, “Chronic obstructive pulmonary disease
(COPD). https://www.who.int/en/news-room/fact-sheets/detail/chronic-
obstructive-pulmonary-disease-(copd),” in 2019.

[3] Masekela, Refiloe and Zurba, Lindsay and Gray, Diane, “Dealing with
Access to Spirometry in Africa: A Commentary on Challenges and
Solutions,” in Journal of Environmental Research and Public Health,
2018.

[4] Juen, Joshua, Qian Cheng, Valentin Prieto-Centurion, Jerry A. Krishnan,
and Bruce Schatz. “Health monitors for chronic disease by gait analysis
with mobile phones.” in Telemedicine and e-Health, 2014.

[5] Juen, Joshua, Qian Cheng, and Bruce Schatz. “A natural walking monitor
for pulmonary patients using mobile phones.” in IEEE Journal of
biomedical and health informatics, 2015.

[6] Cheng, Qian, Joshua Juen, Shashi Bellam, Nicholas Fulara, Deanna
Close, Jonathan C. Silverstein, and Bruce Schatz. ”Predicting pulmonary
function from phone sensors.” in Telemedicine and e-Health, 2017.

[7] Infante, Christian, Daniel Chamberlain, R. Fletcher, Y. Thorat, and Rahul
Kodgule. “Use of cough sounds for diagnosis and screening of pul-
monary disease.” in IEEE Global Humanitarian Technology Conference,
2017.

[8] Goel, Mayank and Saba, Elliot and Stiber, Maia and Whitmire, Eric
and Fromm, Josh and Larson, Eric C. and Borriello, Gaetano and Patel,
Shwetak N., “SpiroCall: Measuring Lung Function over a Phone Call,”
in ACM SigCHI 2016.

[9] A. Mariakakis, and E. Wang, and S. Patel, and M. Goel, “Challenges
in realizing smartphone-based health sensing,” in IEEE Pervasive Com-
puting, 2019.

[10] V. Viswanath, and J. Garrison, and S. Patel, “SpiroConfidence: Deter-
mining the Validity of Smartphone Based Spirometry Using Machine
Learning,” IEEE EMBC, 2018.

[11] U. Melia, and F. Burgos, and M. Vallverdú, and F. Velickovski, and
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