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Abstract—Service providers typically utilize Web APIs to
enable the sharing of tenant data and resources with numerous
third party web, cloud, and mobile applications. Security mech-
anisms such as OAuth 2.0 and API keys are commonly applied
to manage authorization aspects of such integrations. However,
these mechanisms impose functional and security drawbacks
both for service providers and their users due to their static
design, coarse and context insensitive capabilities, and weak
interoperability. Implementing secure, feature-rich, and flexible
data sharing services still poses a challenge that many providers
face in the process of opening their interfaces to the public.

To address these issues, we design the framework that al-
lows pluggable and transparent externalization of authorization
functionality for service providers and flexibility in defining and
managing security aspects of resource sharing with third parties
for their users. Our solution applies a holistic perspective that
considers service descriptions, data fragments, security policies,
as well as system interactions and states as an integrated space
dynamically exposed and collaboratively accessed by agents
residing across organizational boundaries.

In this work we present design aspects of our contribution and
illustrate its practical implementation by analyzing case scenario
involving resource sharing of a popular service.

I. INTRODUCTION

The value of data produced and stored at a multitude of
interconnected devices strongly depends on the capacity to
manage its sharing in a flexible and overseeable way. Web
API represents one of the ordinarily applied mechanisms to
expose data and services [1]. Being initially related to the
realm of cloud and web services, Web APIs now exhibit a
more pervasive context with IoT [2] and mobile devices [3].

Traditional solutions for access control of Web APIs tend to
deal with a restricted subset of authorization related aspects
[4]. As one of the examples, OAuth 2.0 [5] establishes the
interactions for communicating resource requirements and
credentials among different systems. Access scopes, as its
means for conveying permissions, are built as opaque data
references and specified in natural language. It is thus not
possible for a machine to understand and autonomously derive
or adjust the meaning of a provided scope. OAuth furthermore
does not deal with a model to establish or manage security
policies, nor it knows anything particularly about the structure
of APIs and exposed data it is intended to protect.

XACML [6], on the other hand, focuses on policy-related
aspects of authorization control, providing a comprehensive
and extensive framework for definition and evaluation of
security policies. In the context of Web APIs, the primary
link between API or data structure and XACML policies

is an attribute, whose meaning is arbitrary determined by
developers and interpreted strictly in the domain of a particular
environment. Driven by intra-enterprise use scenario, XACML
does not support clients in defining their security requirements,
nor provides a framework on how to specify and apply security
policies beyond a single system and domain.

UMA [7] adopts and extends cross-system interactions from
OAuth 2.0 and further introduces an entity functionally similar
to XACML’s policy decision point to allow externalizing
access decisions to user’s domain [8]. UMA is, however,
neutral with regards to the structure of APIs, protected data, or
policies. Their representation and use beyond a single domain
are thus left to implementing entities to decide.

The consequences of such design choices are manifold.
Incomplete aspects of existing frameworks leave implementing
organizations with too many gaps in the process of exposing
their services and tenant resources to third parties. To sup-
port their customers in reaping the benefits of a data-driven
economy [9], organizations typically need to evaluate various
possibilities and decisions related to strategical, architectural,
and security aspects of data sharing. While many services rely
on similarly conceptualized Web APIs [1], [10], many of these
entities have to independently and repetitively face similar sets
of questions and decisions in practically (re-)implementing
data sharing and authorization capabilities.

One of the consequences of incomplete building blocks is
a widespread prevalence of APIs with similar rudimentary,
shallow and inflexible security capabilities [11].

For consumers, suboptimal solutions imply less control,
basic security, and minimal flexibility in managing authoriza-
tions. For providers, this also means increased implementation
costs and reduced range of provided functionalities. For both
of them, reduced security features may negatively impact the
perceived value of distributed data, resources and services.

II. PROBLEM ANALYSIS

Access scopes in OAuth 2.0 allow service providers to define
abstract ranges of coarse-grained permissions as concepts
that can be referenced across interacting entities to request
and provide authorization consents. OAuth 2.0 specification
introduces scopes as parameters with the purpose to (1) allow
clients to specify the degree of their access requests, and to
(2) enable providers to inform the clients about the range
of accepted or provided permissions [5]. The permissions
implicitly communicated within the OAuth 2.0 scope are
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associated with each access token provided to the clients for
single or repetitive accesses [12], [13].

OAuth 2.0 defines the structure of the scope parameter as a
list of space-delimited, case-sensitive strings, whose inherent
permission extent is predefined by the provider and typically
left unchanged during the lifecycle of an API version. Multiple
of these strings (scopes) can be combined in scope parameter
to express a combined range of access permissions.

Besides recommending that service providers should docu-
ment their scopes, OAuth 2.0 specification does not provide
any additional details that would allow dereferencing of scopes
or establishing of cross-system interoperability at a higher
level, beyond the opaque strings and hard-wired logic [14].

The mechanism involving access scopes allows authorized
clients to perform unlimited accesses, restricted only by ab-
stract, unilaterally defined and non-inferrable scope coverage.
As scopes relate to concepts, rather than to data or object
instances, their use in controlling access based on dynamic
properties or structure of protected resources is practically
not feasible. We can observe this property from the example
presented in Section V-B, where the scopes allow restricting
accesses using only a range of activities predefined by the
service provider, which stay static during the lifecycle of
related API version.

A similar limitation applies to the specification of dynamic
data transformations, which are necessary to implement ad-
vanced privacy and legal requirements. Notably, the range
of exposed data rarely equals to exact requirements of data
sharing use case. Rather, clients usually get a broader degree
of permissions than needed for the successful execution of
their use case. Moreover, the overall mechanism behind access
scopes does not accommodate the derivation of contextual
confinements, which allow access control based on a range of
contextual parameters relating to the resource or environmental
conditions. These limitations stem from the tight expressive
capability, lack of scope structure and its relational detachment
from systems and the environment.

In our previous contribution, we have analyzed the applica-
tion of authorization mechanisms on RESTful APIs on a large
scale. For further details and identified issues, we refer the
reader to that work [11].

In the rest of this work, we first introduce the high-level
design and architectural aspects of our solution. We then
provide additional details on system interactions, underlying
capabilities, and internals. In the subsequent chapter, we
demonstrate the application of our framework based on the
motivational case scenario using a popular web service, which
is followed by the discussion of results and related work.

III. DESIGN AND OPERATION

To address the deficiencies of currently applied solutions we
propose conceptual framework and implement demonstration
prototype to demonstrate and examine its applicability.

A. Design goals
Our goal is twofold. First, we aim to support companies in

integrating multilateral data sharing within their services by

providing a fully externalized, pluggable, flexible and context-
sensitive authorization management solution that integrates
well with existing protocols and technologies.

Following the drawbacks of existing approaches, we intend
to establish API-aware security policies that allow dynamic
evaluation of structural parts of protected resources, interaction
states, and environmental properties. Moreover, the policies
should allow the client or state-driven online adjustment of
information footprint of shared resources.

As second, we want to enable users to independently man-
age access to their resources across different service providers
using a single, integral framework that allows rich and granular
expressivity of security goals and their enforcement at user or
provider premises. It should improve the balance of power in
the current environment, where service providers unilaterally
decide on degree of supported security capabilities in sharing
of their services, and typically on the lower level [11].

B. Unified situational model

For this purpose, we establish the framework that applies
a holistic approach by integrally considering and interrelating
different building blocks relevant for authorization manage-
ment of Web APIs. In vertical integration plane, our solution
couples API structure, representations of data flow interac-
tions, and authorization models. In the horizontal integration
plane, we facilitate interoperability and reuse of security
controls among diverse subjects, which reduces implemen-
tation friction and allows a higher degree of flexibility and
capabilities in security management.

To enable integral authorization management we leverage
the concept of knowledge graph to interconnect representa-
tions of web service resources, their organizational structure,
requests, and interactions occurring in the system with entities
describing security functionalities.

This graph uses the model of a web service as a starting
point to define unified situational model. Our conceptual basis
for the structural description of a web service relies on broadly
applied concepts across RESTful deployments in the practice
[15]. We hence adopt the view of a RESTful service based on
resource and operation and reuse these concepts as a basis for
Web API descriptive building block in our model.

Formally, the definition of the underlying structure of the
knowledge graph relies on three sets. The first set T defines
a range of usable types, whose instances are represented
as the members of the second set E. T thus establishes a
selection of entities that form a conceptual basis to build the
knowledge graph. Instantiations of entities from this set are
used to describe Web APIs, interactions between systems, and
applicable security controls. Sets T and E can be characterized
as T-Box and A-Box knowledge, respectively [16].

The third set R consists of binary, asymmetric relationship
labels, which are applied to instantiated entities in the API
model and express their behavioral or structural interdepen-
dencies.

The instance of an integrated model can be represented as
directed, multi-labeled graph G(V,A), with vertices consisting
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of elements from E and edges connecting these elements with
relationships defined in R.

Types and relationships defined in sets T and R can be
further refined and separated in subsets Tn and Rn, where
n represents a particular aspect or subdomain of the in-
tegrated model. In our framework, we group related types
and relationships in different subdomains to allow flexible
and pluggable representations of the knowledge graph. This
is beneficial, for instance, in providing support for different
security mechanisms applicable in a particular case scenario,
such as OAuth 2 and API keys. It also allows using different
representations of web service structure, allowing for greater
flexibility and customization of the framework. The instance
of an integrated model can be represented as directed, multi-
labeled graph G(V,A), with vertices consisting of elements
from E and edges connecting these elements with relationships
defined in R.

C. Core vocabularies

To facilitate the definition and the practical application
of our integrated model-based approach, we establish DASP
(DAta Sharing and Processing) framework consisting of a set
of vocabularies separated into functional layers. The primary
purpose of this framework is to provide a structured and
modular conceptual basis for descriptions of entities and
processes that take part in service-based interactions. This
basis enables the instantiation of a view that unifies both
service and data descriptions, security policies, and interaction
elements to allow expressive specification and enforcement of
security policies beyond a single service.

Fig. 1. Layers and vocabularies in DASP framework

DASP framework considers the existence of three primary
actors: (1) service provider (SP) hosts resources, provides
services or performs data processing, (2) resource owner (RO)
or user (tenant) owns resources hosted at SP or subscribes for
its services, and (3) client (C) accesses resources or consumes
services at SP on behalf of user or according to its policies.

We model the domain using three layers. Service layer pro-
vides the view of information and behavioral model of a web
service. Interaction layer provides vocabularies that support
describing the interaction that occurs among the actors in the
system, including requests, responses, contextual properties,
and resource (transformational) restrictions. The third layer
allows the definition and integration of different access control
models or web authorization frameworks. While DASP-Service
and LEAR are primary vocabularies used in this work, the
modular nature of the framework allows definition and use of
different vocabularies that may better suit particular use case.

DASP vocabularies are specified in a compact, lightweight
manner, following self-descriptive and bottom-up approach
[17]. Due to the size of vocabularies and space restrictions, we
refer to a web location that provides vocabularies in human
and machine-readable forms [18].

D. Externalized authorization

The core functional entity in DASP framework is ∆gw, a
modular middleware component deployed in front of service
provider API that jointly integrates both functionalities of
management and enforcement of authorizations.

∆gw name relates to two characteristics of this component.
Gateway represents its functional role in the network to accept,
examine, and translate client requests. Delta as the second
aspect is related to the active role in dynamically adjusting the
information footprint of client requests and service responses.
Namely, ∆gw implements a range of functionalities that allow
enforcement of the principle of least privilege [19] by dy-
namically transforming the content of incoming or outgoing
messages in a context-sensitive manner.

In terms of enforcement, ∆gw supports user-centric and
provider-centric mode. In provider-centric deployment, ∆gw

executes as a part of SP’s infrastructure, controlled and ad-
ministered by its authoritative entity. This typically implies a
coupling with (single) SP service. In user-centric deployment,
one ∆gw can intercept and translate requests for resources
associated with a tenant domain of a single user, the resources
being hosted at several different backend SPs.

Fig. 2. Management and deployment of ∆gw

Figure 2 depicts two deployment modes from the per-
spective of the administration of security goals. The left
part of the figure shows provider-centric deployments that
enforce security policies over the tenant resources hosted at
a service provider. The right part of the figure shows the
user-centric deployment, where one middleware instance can
manage resources at several SPs for a single user. In this case,
∆gw instances can be deployed at user premises or third party
providers, where the latter may be delivered under Security as
a Service model.

From the perspective od clients accessing user resources at
a service provider, the interfaces are transparent and conform
to the API contract of a target service provider. From the
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user (tenant) perspective, the presented setup allows for greater
flexibility in managing the security of resource sharing as the
user is able to use a single, unified, cross-provider framework
to control its resources scattered at different clouds.

IV. AUTHORIZATION MANAGEMENT WORKFLOW

In this chapter, we describe the phases in the overall process
of managing access authorizations over user resources at a web
service. We leverage the model-based approach that relies on
lightweight, modular, and self-contained semantic descriptions
of services, processes, and policies. We integrally employ and
use these descriptions across different subjects involved in the
authorization workflow in the end-to-end manner. Considering
its context and domain, each subject and phase of the workflow
reuse and augment a model originating from the initial service
description. Figure 3 gives an overview of this process and its
key aspects. In the following sections, we leverage examples
from running case scenario to describe each of these key
aspects and present the phases of our model-based approach.

Fig. 3. Phases of authorization management process

A. Defining service model.

To enable the specification and enforcement of user security
goals, it is first necessary to define a model that represents the
service and its exposed resources which we need to protect.

A service model is described by expressing its structure as
a directed graph using instantiations of concepts established
in DASP-Service vocabulary as nodes, and interrelating them
using supported properties as links (see Figure 1).
This model is then retrieved and its entities reused by parties
involved in the management workflow for the purposes includ-
ing: 1) expressing permissions and service resources requested
by clients, 2) specifying security goals of resource owners, and
3) enforcing security goals in access infrastructure.

An example excerpt from the specification of a service
model is depicted in Figure 4. This fragment reflects the
second API endpoint introduced in Section V-B, which corre-
sponds to the operation of email retrieval exposed by Gmail
RESTful API.

In this specification, we observe node labeled as Gmail
service, which is an instance of Service class (S) from DASP-
Service vocabulary and represents a root concept in describing
services. The property labeled with hasAction defined in the
same vocabulary connects Gmail service node with the node
labeled as Retrieve email (A). This relationship is used to
express that Gmail service exposes an action to Retrieve email.

Fig. 4. Service model fragment - action and resource structure

The links to other nodes further specify the action’s properties.
This way, the instance of HTTP GET method (M) labeled as
Get method indicates that Retrieve email action receives API
calls using HTTP GET method.

Further entities on the figure, referenced under hasURL-
Path:n properties, indicate the elements of the API endpoint
path of the action. We can observe the use of classes of
Static path element (SE) and Dynamic path element (DE).
The former relies on a string value to represent a relative
fragment of the URL endpoint. The later serves to indicate
API endpoint fragments whose values may change depending
on the context. This case is depicted on the figure as a dynamic
element without predefined value, corresponding to the sixth
element of the second API endpoint shown in Section V-B.

The excerpt in Fig. 4 further shows two instances of
Element classes (EL) connected with a node using hasElement
property. These instances refine the description of the Message
resource (ER) exposed (or handled) by the corresponding
action Retrieve Email. Each of these elements represents an
entity in a hierarchical structure of a complex data object.
This enables dealing with representations common in RESTful
services, which typically rely on JSON or XML data formats.

The capability to granularly represent data structures allows
fine-grained specification of security goals, as each of these
elements can be directly referenced in security policy. The
enforcement of such goals, however, requires mechanisms to
enable automated retrieval and evaluation of nested elements
from API resources. This is enabled by using instances of
Element extractor class (EE) to define extraction rules for
resource entities in multiple data formats. An instance of such
a rule is illustrated in Fig. 5 with MsgLabelExtractor node,
which extends the initial service model with the instruction
on element retrieval using JSON Path expressions [20]. The
rule for other data formats is analogously defined by relying
on properties corresponding to other languages.

B. Requesting client access

The definition of user security goals can generally take
place in two ways. In a first instance, users may establish
security goals in a proactive manner, by a priori specifying
security rules for still unknown access requests that potentially
may occur. XACML [6] follows this approach by separating
policy definition from client requests. If there is a basis
that involves a client in an a priori definition of rules, this
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Fig. 5. Service model fragment - retrieval instructions

basis is communicated in an out-of-the-band process. Alter-
native possibility follows a reactive approach, where clients,
prior to performing access to a resource, request necessary
permissions. This is usually performed using interactive or
backend channels, allowing a resource owner to approve or
revise requested permissions and integrate them as a part of
a corresponding security goal. OAuth [5] web authorization
framework applies this approach.

Our framework considers a hybrid definition of security
goals that combines both of these approaches. While explicitly
requesting access is seen as an optional step, it allows context-
driven fine-tuning of the degree of API access capabilities in
a cooperative manner that promotes adaptive balancing be-
tween utility for clients and security for resource owners. The
cooperative aspect is further supported by a mechanism that
allows clients to express not only their resource requirements
but also the acceptable restrictions applicable over requests or
resources.

To express its request, a client has first to retrieve the model
of service and, based on entities and relations given in model
descriptions, structure its request. The access request typically
includes required actions or resources, and optionally may
specify an acceptable degree of restrictions that are deemed
as non-critical for the client’s use case.

Fig. 6. Access request model fragment

Figure 6 provides an example of this specification consider-
ing the scenario from Section V-D. In this instance, the client
specifies the request to access the action corresponding to
email retrieval and declares that the sanitization of elements
corresponding to the message label or internal date of emails
is acceptable for its use case.

The specification from Figure 6 is dealt with three steps.
In the first step, the client retrieves the service model, whose
fragment is provided in Figure 4. Based on this model, the
client forms a request by instantiating a node corresponding
to access request (AR) class of DASP-Interaction and connects

it with the required action from the service model. The access
request illustrated in Figure 6 is additionally connected with
the node of class Sanitize Element (SE). This instance is
created by the client according to exposed capabilities in
the service model and connected using properties with two
elements contained in the structure of email resource, as shown
in Figure 4. In such an arrangement, the client declares non-
relevance of the content of referenced entities for its data
processing.

C. Specifying and enforcing user policies.

Once the service model is defined and available, the re-
source owner can start formulating security policies that
govern access to exposed resources. This definition is per-
formed similarly as the specification of a service model - by
instantiating the concepts established in the vocabularies of
the framework. While our framework envisages support for
several access control mechanisms, in this work, we rely on
LEAR and DASP-Interaction vocabularies.

As specifying security policies is performed analogously
as the description of a service model or an access request, we
elaborate technical details of this aspect in the following chap-
ter as part of a detailed use case study. Prior to transitioning to
the analysis of use cases, however, we introduce the concept
of a unified model, which is essential for the enforcement of
user policies.

As depicted in Figure 3, each phase in the management
workflow builds upon previous, phase-specific iterations of
existing models. So the policies established in the third phase
rely on service description defined in the first phase by
referencing its entities. Specification of policies may optionally
integrate client access requests as well. During the online
client accesses, the model resulting from the third phase is
further extended with the entities that describe intercepted
and processed interactions in a system. Two main activities
characterize the management of these interactions.

The first activity, the extension of the model, is performed
during the monitoring and interception of events related to the
protected service. At this point, the enforcement component
instantiates descriptions of identified interactions and injects
them in the existing graph. This step allows the enrichment
of the initial model with entities that describe requests asso-
ciated with service and policy resources. In this regard, the
enforcement gateway builds and maintains a unified model,
which contains the necessary information to continue with the
subsequent process steps.

The second activity in the third phase relates to the policy
decision process. This activity starts from the intercepted and
modeled interactions by performing the exploration of the
unified model to retrieve relevant data and relationships. The
policy decision is derived based on identified security policies,
relevant contexts, and then implemented at the enforcement
gateway.

The following chapter illustrates the representative parts of
this process through real-world use cases.
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V. CASE SCENARIO

In this chapter, we illustrate the application of our frame-
work on a real-world use case scenario represented by the
popular and broadly used Gmail service. We particularly focus
on practical aspects of specifying and enforcing user security
policies based on DASP framework and its components.

A. Personal data sharing using GMail

In recent years various applications emerged that extract
information from unstructured email messages and integrate
it into further commercial workflows and process automation.
One of the prerequisites for this activity is the sharing of email
messages with third-party services that periodically extract and
process client data for further business workflow integration.

Our scenario considers the use of the freely available Google
Mail (GMail) service for email hosting. Google exposes
RESTful API [21] for email account management and relies
on OAuth 2.0 [5] to authorize access for third parties. The
sharing of email with external subjects typically relies on
owner consent provided in one of the supported OAuth flows.
This consent associates an accessing client, user’s (tenant’s)
resources at GMail, and the scope, which describes the au-
thorization extent, and implicitly defines the degree of client
access permissions.

Resource sharing and data integrations with third parties
generally rely on Web APIs [1]. OAuth and API keys are
typically applied to control access to shared resources [11].

The following subsections deal with two examples related
to data sharing, which may be implemented with any external
entity, or potentially with the services such as Zapier or IFTTT,
which represent popular variants of iPaaS [22], [23].

B. Case scenario context and requirements

Assume that external service periodically checks user’s
email box, selects and retrieves particular messages, extracts
their data, and integrates that data further into its process flow.
The user wants to restrict the service to retrieve only emails
that are classified under the label Status updates and that are
no older than one day relative to the temporal point of retrieval.

Following this requirement and Gmail API workflow, the
user’s security goal can be formulated in a free form as the
following:
Allow retrieval of list of messages at user’s Gmail account
Allow retrieval of messages classified under ’Status updates’
label, considering only the messages arrived today

The first operation, retrieval of list of messages, is enabled
by issuing GET request to the following API endpoint:
/gmail/v1/users/{userId}/messages

This endpoint consists of several statically defined elements,
with the element {userId} corresponding to an id of the
mailbox owner.

After the client retrieves the list of emails, each of the items
in the list will contain basic data about available emails. This
data includes email identifier, which can be used to retrieve
a particular message with its accompanying details. The API

endpoint for the retrieval of single messages is defined by the
following skeleton:
/gmail/v1/users/{userId}/messages/{id}

The issue with executing the workflow of current case
scenario, from the perspective of the user and considering the
security capabilities of Gmail service, is that only one of the
following access scopes can be associated with the client to
give the necessary authorization for executing the workflow:
https://mail.google.com/
https://www.googleapis.com/auth/gmail.modify
https://www.googleapis.com/auth/gmail.readonly
https://www.googleapis.com/auth/gmail.metadata

According to Gmail REST API [24], the first two scopes
provide broad access to API functionality, which also in-
cludes the account-wide modification and deletion of resources
and settings. From the items present on this list, the third
scope covering read-only functions could be considered as
partially narrow for the current case scenario. However, this
scope enables clients to read all Gmail account resources and
metadata [25], which among others include, a full history of
mailbox changes, the content of all mailbox messages, and
their attachments, the content of all currently active message
drafts, and user’s settings.

Considering that the scopes designed under Gmail’s OAuth
2.0 implementation are not appropriate for the security goal
expressed above, the following sections exhibit and discuss
the policies that allow the conformance to the security goal.

C. Retrieve a list of emails

Figure 7 depicts the fragment of the security policy targeting
the first workflow step concerned with the retrieval of the list
of email messages available in the user’s account.

Fig. 7. Security policy to allow providing a list of emails

Referring back to Section III-C with layers of domain-
specific vocabularies, we can observe the reliance on particular
vocabularies from the DASP framework in the presented
security policy. Circles on the figure represent instances of
classes defined in the vocabulary that is represented by the
color of the circle. The instances serve as A-Box knowledge
[16] that renders information on API resources and their
structure, policies and other objects. This arrangement is based
on the shared conceptualizations established through the T-Box
knowledge given in each domain-specific vocabulary [26].

Policy #1 in Figure 7 is an instantiation of the class
SecurityPolicy from LEAR vocabulary. It contains one security
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rule SecRule #1 whose context has to evaluate to true in order
for security effect represented by the class of instance Permit
#1 to hold. In a default configuration, if no context, rule or
policy is found to hold and set a positive evaluation, the system
considers the request as not allowed.

This policy refers to one particular context and one action.
The action List emails is an instance of a class Action from
DASP-Service vocabulary. Actions are exposed by a service
model, which is retrieved during the policy specification phase
and whose instances are referenced from the policy. For
readability reasons, the service model and its relationships are
not included in the figure, and hence List emails appears to
be isolated in the policy specification.

The context Client #1 represents a class of AccessClient
from DASP-Interaction vocabulary. In order for the underlying
conditions represented by this instance to hold, all its contexts
also have to hold. In this case, the client that connects to
service has to provide OAuth 2.0 bearer token represented by
OAToken #1 and its value, as shown on the figure. Note that
here other conditions can be used or added to this particular
client. For instance, by relying on properties defined under
DASP-Interaction vocabulary, the client could be restricted to
a source IP address or a geographical region as well.

Once the contextual condition for the first security rule
is met, the rule is allowed to evaluate the positive result
represented with Permit #1 effect. The evaluating environment
then interprets given an evaluation and allows the intercepted
transaction.

D. Retrieve single email satisfying particular criteria

The API endpoint for the retrieval of single messages an-
swers on GET calls by delivering the structured representation
of the requested resource. Figure 8 shows the excerpt of that
representation using a JSON message format.

The second part of the previously stated user security goal
relates to two entities in the message structure, shown in the
figure under labelIds and internalDate fields. In deciding
on client request, the policy enforcement system has to check
if the corresponding fields of the structured resource conform
to requirements given in the authoritative security policy.

Fig. 8. Representation of a single message in Gmail (excerpt)

For this activity, the enforcement system has first to derive
the model of a resource structure and then to retrieve and
compare values of respective fields with policy requirements.
If the requirements in the policy refer to dynamic parameters,
the enforcement system has to resolve the corresponding
values in order to be able to reach the policy decision.

Figure 9 shows the example of policy that addresses the
requirement of the second workflow step. Policy #2 is an
instance of class SecurityPolicy from LEAR vocabulary. It
contains one security rule SecRule #2 whose contexts have

Fig. 9. Security policy to restrict retrieval of single emails

to evaluate to true in order for security effect represented by
the class of instance Permit #2 to hold.

In this particular example, we identify three contextual
conditions. First, Client #1 represents a class of AccessClient
from DASP-Interaction vocabulary. In order for the underlying
conditions represented by this instance to hold, all its contexts
also have to hold. In this case, the client that connects to
service has to provide OAuth 2.0 bearer token represented by
OAToken #1 and its value, as shown in the figure.

The second and third contextual conditions are expressed
by nodes MsgLabel Restriction #1 and MsgDate Restriction
#1. These objects are instances of class ElementRestriction
from DASP-Interaction vocabulary. The purpose of this class,
defined under the hierarchy of Intrinsic Context, is to express
a state that refers to the entity present in the structure of
the target asset. The first restriction refers to the output of
RetrieveEmail action, where the output element related to
Message Label has to conform to the rule expressed by data
property in MsgLabel Restriction #1. In this specific case, the
field corresponding to the message label, as identified and
classified by Gmail, has to contain the value related to status
updates. Should the element value fail to deliver a match, the
restriction could not hold and the permissive rule, as well as
its corresponding policy, would not be applicable.

Similarly, the third contextual condition imposes the restric-
tion for the subjected email message to be received during
the current day. Current day is the instance of the class
TodayEpoch, defined as a part of the hierarchy of Extrinsic
Context in DASP-Interaction.

It should be noted that Figure 9 provides a simplified policy
view for space reasons and clarity. Some nodes from the
figure exhibit additional relationships with other parts of the
model. The depiction of these entities is not necessary for the
illustration of the policy specification mechanism.

Note also the labeling of instances in the figures provided
above. As these representations exist in the same unified
security model stored in a ∆GW system related to a service
and a tenant, a particular degree of concept reuse is applicable
and necessary. For instance, Policy #1 and Policy #2 are
different instances of the same concept; they hold different
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identifiers and refer to different security goals. However, Client
#1 and OAToken #1 from both figures represent the same
instances in the unified model.

This reuse of concepts shows that various distinct policies
and rules may reference a single registered client, if necessary.
The same approach applies to actions exposed by GMail Web
API specification, which is also part of a unified security
model stored in the gateway.

E. Summary

The examples provided in this section illustrate the specifi-
cation of two security policies implementing the user security
goal using gradual levels of complexity and expressivity. The
first policy illustrates the basic underlying idea behind the
policy specification, which is the association of security rules
with client actions (intents) and the reliance on the evaluation
of rule contexts to allow the policy decision to be actuated in
the form of a corresponding policy effect.

In the first example, we can observe the reliance on in-
stances (nodes) from several vocabularies. The specification of
an API is exposed by a service using DASP-Service vocabulary
and integrated into a unified security model utilized by the
gateway instance to analyze requests and enforce policies.
The policies specified by the resource owner rely on this API
description by referencing its entities in the policy designation
process executed a priori to client accesses. As LEAR policy
vocabulary acts agnostically in terms of a mechanism em-
ployed to authenticate the accessing client, the supplementary
nodes shown in the example express a particular authentication
mechanism represented by their source vocabularies.

As a result of integrating the specifications drawn by the
service and the user, ∆gw derives a unified model consisting
of interrelated API and policy specifications. This model gets
eventually enhanced and updated at the time of client accesses
to extend the horizontal plane of contextual conditions by
describing requests occurring in the domain.

While the practical implementation of the system may
vary in terms of the application of these capabilities, the
enhanced version of the unified model allows the interweaving
of both vertical and horizontal specification, connecting both
structural and temporal dimensions of the client accesses.
This further allows the expression of cross-request contextual
conditions, such as defining a sequence of allowed interactions
or specifying the allowable number of client requests per time
slice.

The second example described in this section illustrates
the application of contextual restrictions, which control the
access to API resources based on environmental states. These
states can express the intrinsic and extrinsic conditions, which
are then used to decide on the applicability of security rules.
The reliance on contextual restrictions allows the specification
of fine-grained security requirements that allow integration
of dynamic and transparent evaluation properties related to
a resource, process, or external environment.

VI. EVALUATION AND DISCUSSION

A. Authorization middleware

We have implemented ∆GW prototype as a modular ap-
plication based on Java, PlayFramework and OWL-API. Our
design aims at providing containerized, scalable instances that
serve resources from a single-tenant domain, and that can be
easily extended with additional functionality according to the
client needs.

1) Test configuration: To investigate the practical use of
our prototype, we have focused on two important phases in
the execution of ∆GW interception and security evaluation
functionality. The first phase corresponds to the identification
of policies relevant for a particular intent derived from the
intercepted request. After their identification, security policies
are subjected to the second phase of policy evaluation. This
activity comprises the retrieval of data referenced in policy and
the evaluation of all applicable contextual conditions. Based
on this evaluation, the system decides whether the request is
applicable or not, and which effects (obligations) have to be
imposed.

Our test configuration includes four sets T1-T4 of registered
policies for the protected API, ranging from 1 (T1), through
50 (T2) to 250 policies (T3 and T4). All the policies from sets
T1, T2 and T4 are applicable for a given test request. Contrary
to that, in set T3 only 40% of policies are applicable for the
given intent and thus subjected to evaluation.

Fig. 10. Identification and evaluation of relevant security policies

2) Results: We have executed each of the said phases on
Amazon EC2 instance of c5d.2xlarge type with 8 vCPU and
16 GB RAM, running Amazon Linux 2 x86 64 on Intel
8124M CPU. We gathered more than 100 subsequent data
observations. Figure 10 presents observed results.

Our results indicate linear dependency between evaluation
timings and the size of the policy store. Most tenants tend to
deploy less than 50 policies, which renders expected policy
evaluation in an average case to take up to 10 ms per client
access. Our goal for the next prototype iteration is to reduce
overhead at 1 ms per request.

B. Synergy with other frameworks

1) Service description frameworks: OpenAPI [27] is the
effort organized and backed by Linux Foundation and several
industry players. It builds on Swagger, an initiative aimed
at developing an open specification for machine-readable
interfaces for describing, producing, consuming, and visual-
izing RESTful services. OpenAPI is widely used by service
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providers in the process of service development, testing, and
documenting. At the end of the year 2019 popular directory,
APIs.guru provides more than 500 regularly updated specifi-
cations of public APIs.

A service provider wishing to use DASP components can
reuse its existing OpenAPI descriptions in building a service
model, which can be generated by importing resources, opera-
tions and data structures from OpenAPI interface description.
To become operational, the resulting model needs to be ex-
tended with additional properties given in DASP vocabularies.
This approach allows the rapid definition of new service
models by relying on the existing assets.

2) Authentication frameworks: DASP integrates support for
credential-based authentication mechanisms such as bearer
tokens in OAuth 2 [12] or API-keys [28]. The use of bearer
tokens for clients is illustrated in the example from Section
V-D and on Figure 9. This integration is transparent for
the client as ∆gw can be involved in authorization flows
and issuance of tokens. Furthermore, internal representations
of tokens in ∆gw can be synchronized with or dynamicaly
managed based on external, authoritative repositories.

The support for JWT [29], [30] as more advanced signature-
based authentication means is provided using separate vo-
cabulary as well. Similarly, as in the case of bearer tokens,
resources for verification of JWT signatures can be provided
in an integrated model or synchronized with the external
store. DASP can be extended to support other signature-based
approaches by defining a vocabulary for a particular approach
and implementing its related software module.

As DASP relies on an abstract concept of a client, which can
be characterized by one or more contexts (as shown in Figure
9), authentication mechanisms based on other frameworks can
be combined with the other supported contextual parameters.
This way, the use of a particular external mechanism can
be restricted based on geo-region, IP network, access count,
request sequence, or time-of-day, for instance.

C. Limitations and future work

Our solution currently focuses on Web API related interac-
tions. It should be noted that other mechanisms exist to support
resource sharing across entities, such as WebSockets, WebRTC,
or various messaging-based solutions [31]. While the structure
of layers, as shown in Fig. 1 allows the introduction of new
techniques, their definition, and implementation in practice
require additional research efforts.

A growing degree of data, data sharing, and numerous in-
terconnections per se impose additional cognitive overhead in
managing the security of these interactions. From that view, we
envisage two further research directions to address this issue.
The first branch relates to the analysis of usability aspects
and the development of assistive user interfaces to simplify
authorization management. The second direction relates to
the use of autonomous agents. As one of the goals of our
contribution was to render authorization primitives machine-
understandable, the next step would be further research to
enable agents to independently analyze and suggest actions

related to personal and organizational data and sharing con-
tracts at and among diverse providers.

Finally, in terms of technical development, we intend to
optimize the performance of our implementation and provide
modules that would allow its direct integration with popular
gateways such as Nginx.

VII. RELATED WORK

Several initiatives emerged to facilitate interoperability and
connectivity by the means of open vocabularies. These in-
clude Hydra [32], for the creation of generic API clients,
and LOV4IoT for the integration of IoT devices [33]. LOV
by Vandenbussche et al. [34] is envisaged to support the
overall consolidation of linked vocabularies . Our work is
complementary to these approaches as it aims to fill the gap
for specifications in the security domain.

Hüffmeyer and Schreier proposed RestACL language for
the protection of RESTful services [35]. Alam et al. [36]
developed xDAuth framework that supports authorization and
delegation in the RESTful service architecture. Beer et al.
considered the architectural aspects of protecting access to
RESTful service [37]. Both of these approaches consider
the perspective of a single enterprise, providing the access
specification capabilities on a granularity level of a resource,
without tackling contextual dynamics

SUNFISH [38] is an EU-supported initiative to develop a
framework for the establishment of secure cloud-based service
federations. SUNFISH externalizes authorization beyond a
single organization by providing consolidated policy model
and out-of- the-box support for dynamic resource transfor-
mation. It, however, focuses on traditional web services and
imposes high adoption barriers for entities beyond public
administrations.

VIII. CONCLUSION

In this work, we introduced the framework that supports
transparent externalization of authorization functionality for
access control of Web API resources. In our approach, we
leverage the notion of knowledge graph and apply an inte-
gral, model-based view that combines concepts from domains
of service descriptions, data formats, security policies, and
service interactions. Envisaged as a dynamic database that
integrates structural and temporal descriptions of service in-
teractions, our proposal allows feature-rich specification and
enforcement of user security goals over its resources hosted
at distributed services.

In contrast to other approaches, the presented framework
allows security policies to evaluate structural elements of
protected resources and perform an online transformation
of shared data using diverse intrinsic and extrinsic contex-
tual properties. Our solution supports service providers in
reducing efforts to implement comprehensive access control
functionality for the sharing of tenant resources. In parallel,
tenants benefit from the fine-grained security capabilities, on-
premise enforcement, and the consolidated reuse of the same
framework across different services.
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