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Abstract—Chronic obstructive pulmonary disease (COPD) and
asthma are the most common respiratory diseases that impact
millions of people worldwide annually. With advances in mobile
computing and machine learning techniques, there has been
increased interest in using mobile devices to monitor pulmonary
diseases. Nevertheless, the current state-of-the-art technology
requires active involvement and high-effort input from the users,
impeding continuous monitoring of pulmonary conditions. In this
work, two algorithms are proposed for passive assessment of
pulmonary condition: one for detection of obstructive pulmonary
disease and the other for estimation of the pulmonary function
in terms of FEV1/FV C ratio, which is an established clinical
metric. The algorithms were developed and validated using the
data sets from two studies: research study (healthy=40, patholog-
ical=91) and in-clinic study (healthy=10, pathological=60). From
the cross-study validation where a classifier was trained on the
research data set and tested on the in-clinic data set, the detection
accuracy of the pathological class was obtained as 73.7% and the
F1 score was 84.5% (87.2% precision and 82.0% recall). In our
regression analysis, the FEV1/FV C ratio was predicted with
a mean absolute error of 8.6%. Our analysis shows promising
results and this work presents a meaningful milestone towards
the passive assessment of pulmonary functions from spontaneous
speech collected from a mobile phone.

Index Terms—Mobile Computing, Pulmonary Assessment,
COPD, Asthma, Natural Speech, Inspiratory Sound

I. INTRODUCTION

Chronic obstructive pulmonary disease (COPD) and asthma
are the most common respiratory diseases affecting greater
than 500 million people worldwide [1]. Among the deaths
caused by non-communicable diseases(NDS), respiratory dis-
eases were reported as the fourth leading cause with 4 million
deaths in 2012 [2], and this number is projected to contin-
uously increase [3]. The high economic burden associated
with this increasing prevalence is another problem. According
to Nurmagambetov et al., the total cost of asthma in the
United States was estimated to be $81.9 billion in 2013 [4],
and the total healthcare cost associated with COPD in the
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United States was estimated to be $32.1 billion in 2010 and
is expected to increase to $49 billion by 2020 [5].

Asthma and COPD are classified into four stages based on
the severity of the symptoms [6], [7]. There is strong evidence
that early diagnosis plays an important role in delaying the
progression of symptoms to more severe stages, leading to a
better prognosis [8]. However, the early symptoms are often
too subtle to be sensed by the patients, and thus, patients often
miss the optimal window for treatment [9]. In case of asthma
exacerbations, experimental testing with human rhinovirus
(HRV) inoculation indicates that peak upper respiratory symp-
toms appear within 2-4 days from infection [10]. With earlier
intervention, it could be possible to prevent exacerbations
requiring ER visits and hospitalizations [9]. However, to
realize early intervention, more frequent assessment of phys-
iological conditions is a prerequisite. Given today’s hospital-
centric paradigm of health care, this requirement of frequent
assessment of pulmonary conditions presents a challenge since
people tend to visit hospitals only when they get sick.

With advances in mobile computing technology, there has
been increased interest in leveraging mobile and wearable
devices for monitoring pulmonary conditions. Utilizing mobile
devices presents many advantages compared with traditional,
on-site pulmonary examinations. One advantage is portability;
mobile devices can be carried around and stay closely coupled
with the individual. Thus, the portability aspect alleviates the
limitation imposed on the physical location (e.g. hospitals)
of pulmonary assessment. Also, since mobiles devices are
already widely used, a large number of people can readily
utilize the new developments without having to purchase
additional devices. Nonetheless, there are many challenges that
need to be overcome to reliably use mobile-based pulmonary
assessment approaches. One of the greatest challenges would
be the reliability and accuracy of the mobile-based approach.
Spirometry, practiced in hospitals for pulmonary assessment,
is an accurate and established medical examination whereas
pulmonary assessment using mobile devices needs to be vali-
dated and proven to be accurate.
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In this paper, we present novel features and algorithms
in an attempt to extend the boundaries of mobile-based pul-
monary assessment technology. In our approach, we leverage
spontaneous speech sound collected from a smartphone to 1)
detect pulmonary diseases and 2) predict pulmonary function
in terms of FEV1/FV C ratio, an established spirometry
parameter frequently employed in clinical settings. FEV1

represents the forced expiratory volume in 1 second, and FV C
is the forced vital capacity; the ratio of the two is a measure
of pulmonary obstruction. Being able to leverage the daily
activity of natural speech for low-effort, passive assessment
of lung function implies a significant leap towards ubiquitous
monitoring of pulmonary functions. The contributions of this
work are summarized below:

• The development of novel features from inspiratory
sounds

• The development of a detection algorithm that detects
obstructive pulmonary disease from natural speech

• The development of a regression algorithm that predicts
the user’s FEV1-to-FVC ratio from natural speech.

• Validation of the approaches using two data sets that are
independently collected from different environments

II. RELATED WORKS

A. Electronic Diaries

Johnston et al. investigated the possibility of using a Black-
Berry smartphone for tracking COPD patients and detecting
COPD exacerbations [11]. Over a 2-year period (from Decem-
ber 2007 until April 2009), 79 COPD patients with severity
ranging from GOLD stage I to IV, were alerted to complete a
daily diary with questions regarding their current symptoms.
Their answers were used to assess the progression of their
symptoms and apply appropriate interventions to the patients.
Johnston et al. reported that near complete detection of COPD
exacerbations was possible using electronic diaries.

Chan et al. conducted a large-scale clinical observational
study where they monitored 7,593 asthma patients using
a smartphone application called Asthma Health Application
(AHA) for a 6-month study period [12]. The participants
were asked to answer daily asthma surveys to record their
symptoms, presumed triggers, and compliance for medication
intake [12]. The contribution of the work by Chan et al.
was that through electronic diaries, they were able to identify
environmental risk factors or triggers associated with asthma.

B. Mobile Spirometry

Many mobile spirometers have been developed and are
commercially available today [13]–[16]. However, the com-
mercially available spirometers require dedicated hardware
that needs to be purchased and carried. As such, there have
been attempts to leverage the smartphone’s computing power
to enable mobile spirometry without requiring any additional
hardware. In 2012, Larson et al. presented SpiroSmart, a
mobile application that evaluates pulmonary function via
similar assessment procedure as the clinical spirometry [17].
SpiroSmart utilizes the sound captured by the microphone

to estimate the flow exiting a patient’s mouth. SpiroSmart
was evaluated on 52 participants, and the mean absolute error
(MAE) to clinical spirometer was 5.1% [17]. In 2016, Goel et
al. presented SpiroCall, an algorithm that works through the
GSM network to enable spirometry over the call [18]. Using
SpiroCall, anyone with access to GSM network can have their
pulmonary function tested over a phone call.

C. Continuous Monitoring

While electronic diaries and mobile spirometry show
promising results, the approaches necessitate active involve-
ment of the users. For electronic diaries, the users need to
manually input their response every day, and this approach
is prone to recall bias. Mobile spirometers require users
to master performing the spirometry maneuver without the
oversight of a respiratory technician. Such requirements for
active input from the users make continuous assessment of
pulmonary function burdensome for the user and the individual
assessments susceptible to errors.

A number of different studies have investigated the use of
sound data, which contains rich information about pulmonary
symptoms and allows passive data collection. Many studies
focused on common pulmonary symptoms such as cough,
shortness of breath, and wheeze [19]. Anderson et al. explored
the possibility of detecting wheeze, one of the common symp-
toms in asthma, using sound analysis from mobile devices
[20]. Shaharum et al. analyzed wheeze sound to classify the
severity of asthmatic symptoms [21]. Larson et al. presented an
algorithm that detects coughs from a stream of audio collected
from a mobile phone [22].

Despite the significant body of work dedicated to leveraging
sound data as exemplified in the aforementioned studies, most
of the previous work mainly targeted the symptoms. Thus,
there remains the question on whether or not the speech data
can be utilized for detecting pulmonary disease and assessing
pulmonary function for these patients. To the best of our
knowledge, only a few studies have explored the possibility
of identifying patients with pulmonary disease from speech
data. Nathan et al. presented a work on passive detection of
obstructive pulmonary diseases such as COPD and asthma
from scripted speech [23]. In the study, over 90 pulmonary
patients and 40 healthy subjects were recruited, and their
pulmonary conditions were assessed with spirometry. Then,
a set of passages was provided to each participant, and the
reading sound was recorded using a smartphone. The recorded
audio data was analyzed to develop a classification algorithm
that can detect patients with pulmonary disease [23]. Nathan
et al. reported the overall accuracy of 65% and F1-score of
62% (61% precision and 65% recall) [23].

III. BACKGROUND AND MOTIVATION

The gold standard approach for pulmonary function test
(PFT) today is spirometry. Spirometry is performed by having
a person pinch his or her nose, inhale to maximum lung
volume, and then forcefully exhale. Despite the reliability of
the approach, spirometry is rarely accessible to individuals
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outside of clinical settings due to the requirement for a special-
ized device. Moreover, performing the spirometry maneuver
correctly requires training, and in most in-clinic settings there
is a clinical professional present at the time of spirometry
to encourage a proper effort. In addition, as a high-effort
examination requires the user to repeatedly forcefully exhale,
spirometry is difficult to be used for continuous monitoring
of pulmonary function. As mobile computing technologies
advance, an extensive body of work has been dedicated to
pulmonary monitoring as exemplified in the previous section.
Despite the efforts, the state-of-the-art technology still requires
high-effort activity (e.g. forceful blowing) from the user.

Speech is the generation of meaningful sounds that are mod-
ulated by the vocal fold movements. The pressure generated
by the diaphragm forces the air out through the airways, and as
the air passes through the airways and vocal folds, the sound is
created. Due to this sound generation mechanism, the speech
signal contains rich information about the airways as well as
vocal folds. With this as the basis, many studies explored
the possibilities of leveraging speech analysis to assess the
severity of pulmonary diseases, and promising results have
been reported [19]–[21]. Nevertheless, speech alone has not
been extensively explored in the context of detection of
pulmonary diseases and assessing pulmonary function.

According to Klemmer, people spend approximately 50-
80% of their work time communicating, and two-thirds of
the communication time is spent talking [24]. If this common
activity can be leveraged for low-effort, passive assessment
of pulmonary functions, continuous assessment of people’s
pulmonary functions would be possible. This notion of lever-
aging speech for pulmonary disease detection and pulmonary
function assessment motivated our research.

IV. APPROACH

In this study, our goals were to develop algorithms that can
detect obstructive pulmonary diseases and assess pulmonary
functions from natural speech. To this end, the speech data
were processed through the 4-step signal processing pipeline
shown in Figure 1. The first step was the frame generation
step using a sliding window method. In this step, a window 20
milliseconds in size was moved across the audio data without
overlap, resulting in a stack of frames. In the second step,
the stack of frames was input to the speech detection block,
which identified the speech and pause frames using the Long-
Term Spectral Divergence (LTSD) algorithm. The third step
extracted features using the pause and speech frames. For
clarification, each participant’s audio data generated a single
set of features at the end of the third step. In the fourth step,
the generated features from multiple participants were used to
build and test a classification and regression model. A more
detailed description of the approach is provided below.

A. Voice Activity Detection

Speech data is a mixture of voiced segments and pause
segments. This is because people take pauses to inhale between
each voiced segment. Prior to extracting features from the

audio file, we identified voiced segments and pause segments
from the speech audio data using the LTSD-based algorithm
proposed by Ramirez et al. [25] as the basis. This algorithm
looks at the long-term divergence between the noise spectra
and potential voice spectra. We chose the LTSD-based voice
activity detection (VAD) algorithm because this approach was
rather simple to implement and robust to background noise
[25]. The VAD algorithm used in this study starts from defin-
ing the order, which describes how many frames to account for
before and after the current frame in computation of LTSD. In
this study, the order was set as 10. After defining the order, we
compute the long-term spectral envelope (LTSE). The LTSE
was obtained by getting the maximum spectral amplitude from
the frames within the range defined by the order. Hence, in
our example case, LTSE will be the spectral envelope of 21
consecutive frames (10 frames before and after the current
frame). Then, LTSD was computed according to the following
formula:

LTSDk(l) = 10 log10

(
1

NFFT

NFFT−1∑
i=0

LTSE2
k(i)

N2(i)

)
In the formula, k indicates the frame number (i.e., k-th

frame). NFFT is the number of frequency bands and N is
the average noise spectrum magnitude. In our VAD algorithm,
we assumed that the lowest 5% of given audio recording was
comprised purely silence or any background noise, and not
the primary user’s speech data. With this assumption, we used
these segments for constructing the noise profile.

B. Inspiration Filtering

The act of vocalization process involves continuous exha-
lation. To compensate for the loss of air during the voice
activity, there are often sharp inspiration periods right before
or after long vocalization periods. In order to extract the
inspiration segments, we further processed the pause segments.
Inspiration sound is generally independent of the vocal fold
movements, but rather more influenced by the obstruction in
the airway and the rapidness of inspiration [26]. While slow
inspiration tends to make a quiet sound, rapid inspiration tends
to generate relatively louder, high energy signal. Based on
this observation, inspiration frames were identified via two
steps. In the first step, the potential inspiration frames were
identified by computing the energy in the given pause segment
and selecting the frames whose energy falls in between the
60th and 95th percentiles. In the second step, the selected
frames are clustered using Density-Based Spatial Clustering of
Applications with Noise (DBSCAN). The extracted inspiration
frames were input to the feature extraction block along with
the voiced frames.

C. Feature Extraction

Two types of features were employed in our work: acoustic
features and pulmonary features. The acoustic features are
included to account for dysphonia, a comorbidity frequently
observed in pulmonary patients [27], [28], and the pulmonary
features are incorporated to indirectly extract information
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Fig. 1. Overview of the signal processing approach. Model testing consists of leave-one-participant-out (LOPO) or 10 iterations of 10-fold cross-validation
with data shuffling in each iteration.

about the pulmonary obstruction. Acoustic features include
shimmer and jitter. Pulmonary features include pause fre-
quency, vocalization to inhalation ratio, average phonation
time, and inspiration sound energy. Initially, we explored
other features such as harmonic-to-noise ratio (HNR), mean
pause time, variance in inspiratory periods, etc.; we narrowed
down to the set of 7 features which resulted in the best
classification performance. A more detailed description of the
feature selection is provided in Section VII-E. A detailed
description of the selected features follows in this section.

1) Shimmer (apq3): Shimmer is a measure of cycle-to-
cycle amplitude perturbation of the dominant frequencies. In
healthy individuals, shimmer value is smaller compared with
the shimmer values from individuals with dysphonia. A high
shimmer value may be an indication that one’s pulmonary
symptom is getting worse. Shimmer can be calculated in sev-
eral different forms such as three-point amplitude perturbation
quotient (apq3), five-point (apq5), or eleven-point (apq11). In
our analysis, we used apq3 to compute the shimmer. The
specific shimmer measure we used was obtained using the
following equation expressed in percentage:

1
N−1

N−1∑
i=1

∣∣∣∣Ai −
(1
3

i+1∑
n=i−1

An

)∣∣∣∣
1
N

N∑
i=1

Ai

× 100%

In the equation, N indicates the number of periods of the
fundamental waveform in the given vowel sound, and Ai

indicates the amplitude of the i-th peak of the fundamental
waveform.

2) Absolute Jitter: Jitter is another acoustic feature that
measures the cycle-to-cycle frequency perturbation of the
dominant frequencies. As with shimmer, higher jitter values
may indicate greater possibility of dysphonia in voice and
worsening of pulmonary symptoms. The absolute jitter is com-
puted by taking the average of variations in periods between
every two consecutive peaks of the fundamental waveforms.
The absolute jitter was computed according to the following
equation and was expressed in microseconds:

1

N − 1

N−1∑
i=1

|Ti − Ti+1|

In the equation, N indicates the number of periods of the
fundamental waveform, and Ti indicates the duration of the
i-th period of the fundamental waveform in the given vowel
sound.

3) Relative Jitter: The relative jitter is the average varia-
tions in periods between every two consecutive peaks of the
fundamental waveforms, relative to the overall average period.
The relative jitter was computed according to the following
equation and expressed as a percentage:

1
N−1

N−1∑
i=1

|Ti − Ti+1|

1
N

N∑
i=1

Ti

× 100%

As with the absolute jitter, N is the number of periods of
the fundamental waveform, and Ti is the duration of the i-th
period of the fundamental waveform in the given vowel sound.

4) Pause Frequency: For patients with obstructive pul-
monary disease, breathing is made more challenging due to
the increased airway resistance [29]. They frequently note
increased breathlessness and may have increased respiratory
rates when their pulmonary symptoms are exacerbated. Based
on this reasoning, we captured the information related to
the shortness of breath by computing the average number of
pauses per minute in each user’s speech.

5) Vocalization to Inhalation Ratio: As the voice is gener-
ated, a small amount of air is expelled continuously from the
lung through the airway (Figure 2A). Due to this steady loss of
air and pressure inside the lung, quick inspiration is required
during speech to replenish the air in the lung (See Figure 2A).
Since pulmonary disease can affect the ability to speak for long
periods and the amount of air inhaled at the end of the speaking
period, we considered the inhalation duration during the pause
for breath relative to the immediately preceding vocalization.
This feature is hereby referred to vocalization to inhalation
ratio. We built a simple model for lung volume change during
speech (See Figure 2B). In this model, we assumed that the
rate at which lung volume decreases during the vocal period
was a constant, denoted ϕ, and approximated the relative
inhalation duration using the durations of the corresponding
vocalization and inhalation sounds. (See Figure 2B).

6) Average Phonation Time: Vocalization may exert ad-
ditional burden in patients with dyspnea (also known as
shortness of breath), as it requires higher than usual expiratory
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Fig. 2. (A) Actual Respiratory Impedance Plethysmography (RIP) of a par-
ticipant from the research study is shown here. This plot shows a segment of
RIP data during the spontaneous speech task. Slower expiration during vocal
period is followed by rapid inspiration. (B) The vocalization to inhalation
ratio was approximated by computing the inverse tangent of T1 to T2 ratio.
One assumption employed in this approximation was that the expiratory rate
during speech indicated by the angle ϕ was constant.

pressure and slowing of the expiratory rate. Due to this high
burden in vocalization, patients with obstructive pulmonary
disease may present alterations in speaking and swallowing
patterns [30]. Specifically, the need for frequent pauses and
inspiration imposes limits on the phonation time. Based on
this reasoning, we computed the average phonation time from
the voice segments and utilized it as one of the features.

7) Inspiration Sound Energy: Previous studies utilizing the
inspiratory sound have been done mainly with the auscul-
tation sounds, and their analysis primarily focused on the
lower frequency bands (<1,000 Hz) because high frequency
components in auscultation sounds are attenuated by the lung
and chest cavities, which act as a low pass filter [26]. On the
other hand, the inspiration sound collected from the mouth still
contains high frequency components. These high frequency
components from the inspiratory sounds are generated by
the turbulent flows in the airways [26], [31]. In this study,
we looked at the frequency band ranging from 7,800 Hz to
8,000 Hz. In this band, the maximum frequency component
from the healthy inspiratory sound and pathological inspiratory
sound showed meaningful differences, with a larger maximum
frequency component in pathological inspiratory sounds.

D. Model Building and Evaluation

We developed two kinds of models from the collected
data sets: classification model and regression model. The

Fig. 3. Study Setup

classification model was designed to detect participants with
pathological conditions, and the regression model was built to
predict the participant’s FEV1-to-FVC ratio, which is one of
the standard measures for pulmonary function.

1) Classification Model: The classification model was built
with 5 kinds of classifiers (Table I) that are frequently em-
ployed in machine learning context. The model development
is done using the data set from the research study, and
the performance is evaluated in two ways: 10-fold cross-
validation for 10 iterations with randomization, and leave-
one-participant-out(LOPO). The model developed from the
research study data set is evaluated on an independent in-
clinic dataset for validating generalizability. The two datasets
are described in more detail in Section V.

2) Regression Model: The regression model was built to
predict the FEV1/FV C ratio using the features extracted
from the speech data. FEV1/FV C ratio is considered one of
the standard methods utilized in clinics for the assessment of
an individual’s lung function. According to GOLD guidelines,
an FEV1/FV C less than 0.7 is consistent with an obstructive
ventilatory defect [6]. We evaluate the performance of the
regression model in terms of mean absolute error (MAE).

V. STUDY DESIGN

Two large-scale studies, a research study and an in-clinic
study, were conducted to collect speech data from pulmonary
patients and healthy individuals using smartphones. The pur-
pose of the research study was to develop features for a
pulmonary disease detection model under acoustically quiet
conditions in a research setting. The second study was con-
ducted in collaboration with a hospital to verify the model
with a separate data set collected under more realistic, noisy
conditions in a clinical visit. Both studies were approved by
the Institutional Review Board and a written consent form
was obtained from each participant. Both studies shared a
similar experimental setup and protocols. Detailed descriptions
of each study are provided below.

A. Research Study

1) Participant Recruitment: A total of 131 participants
were recruited. Of the 131 (67 males and 64 females) par-
ticipants, 91 participants had pulmonary conditions and 40
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participants were healthy. Among the participants with pul-
monary conditions, 69 participants had a history of asthma and
9 participants had a history of COPD. 13 participants reported
a history of both asthma and COPD.

2) Measures: The general setup of the research study is
described in Figure 3. The audio data were collected from a
Samsung Note 8 smartphone. Along with the audio data, the
participant’s lung function was also measured using a GoSpiro
spirometer and respiratory impedance plethysmograph (RIP)
from the Zephyr BioHarness 3.0. The spirometer measured the
participant’s forced expiratory volume in one second (FEV1)
and forced vital capacity (FV C). The RIP band continuously
tracked the chest wall excursions throughout the entire study
session.

3) Procedures: There was one participant per study session.
Upon the participant’s arrival, a brief introduction about the
study was given and a written consent form was signed by
the participant and a researcher. Next, the participant was
provided with a Samsung Note 8 smartphone and asked to
keep the smartphone either in their hands or on a table within
arm’s reach while the smart phone was continuously recording
audio data. The first task was a pulmonary function test (PFT)
using a GoSpiro spirometer. The participant was asked to pinch
their nose with the nose clip and inhale deeply followed by
maximum exhalation. This process was repeated three times
and the best effort was used as the final pulmonary function
measurement. The second task was spontaneous speech where
the participant was asked to continuously talk for 3-5 minutes
on any topics of their choice. After the spontaneous speech
task, a scripted speech task began. For this task, the participant
was asked to read aloud the ’Rainbow Passage’, which is
frequently employed in speech analysis due to its phonetic
richness. After the scripted speech, the data collection was
terminated.

B. In-Clinic Study

1) Participant Recruitment: Initially, a total of 70 partici-
pants (60 pulmonary patients and 10 healthy) were recruited
from the visitors to the pulmonary clinic who consented
to participate. Among the 60 participants with pulmonary
conditions, 25 participants had asthma, 10 participants had
chronic cough, and 25 participants had COPD. Subsequently,
the chronic cough patients were excluded from the classifi-
cation problem for disease state since the diagnosis for these
patients is indeterminate. However, they were included for the
regression problem attempting to estimate lung function.

2) Measures: Similar to the research study, the participant’s
lung function (FEV1, FV C) was assessed using a clinical
grade spirometer (Pneumotrac Portable Screening Spirometer)
during the in-clinic study. As in the research study, the
smartphone was either held by the participant or placed on
the table for recording their speech. One difference between
the research study and the in-clinic study was the addition of
a Samsung Note 8 smart phone in the participant’s pocket
(Figure 3). The audio data collected from the smartphone
inside the pocket was used to examine the feature robustness

for a different acoustic profile that can be expected in a real-
world scenario (Section VII-D).

3) Procedures: One subject participated in the study per
each session. Prior to the beginning of the study, a brief
overview about the study was given and a written consent form
was signed by the participant and a researcher. The first task
was spontaneous speech. In this task, a smart phone was placed
anywhere within arm’s reach. The participant was requested
to speak continuously for 1 minute on a topic of their choice.
The following task was the scripted speech session where the
participant was given a passage to read. After 1 minute of
reading, the session was stopped. The duration of the speech
tasks was reduced compared to the research study in order
to be respectful of logistics and patient care in the clinical
setting. Subsequently, the participant’s pulmonary function
was measured using a spirometer. In this step, a certified
respiratory technician helped the subject perform spirometry.
Three trials were attempted by the participant and the best
effort was automatically selected by the spirometer. The FEV1

and FV C values were recorded.

VI. RESULTS

A. Classification

1) Research Study: Of the 131 participants recruited in
the study, 4 healthy participants’ data were excluded from
the analysis since their FEV1/FV C ratio was less than
0.7, and one patient’s data was not included in the analysis
because the speech session was not recorded correctly due to
device/app malfunction. In total, data from 126 participants
(90 patients, 36 healthy) have been used for the analysis.
We built a binary classifier with pathological class (label=1)
and healthy class (label=0). The participants who have been
diagnosed with obstructive pulmonary diseases such as asthma
and COPD were assigned the pathological class. The classifier
was examined using two approaches: 10-fold cross-validation
and Leave-One-Participant-Out (LOPO).

In 10-fold cross-validation, the process was repeated for 10
iterations with data shuffling in each iteration. We explored
several classifiers that are frequently employed in many ma-
chine learning applications (Table I). While the best result
was obtained using a random forest classifier, gradient boost-
ing classifier and neural network also produced competitive
results.

In LOPO, the data from a single participant was left out
for testing and the rest of the participants’ data were used
for training. After iterating through each participant’s data for
testing, the average result was obtained. With random forest
classifier, we obtained an accuracy of 78.6%, F1 of 85.1%
(84.6% precision and 85.6% recall), and specificity of 61.1%.

2) In-Clinic Study: An in-clinic study was conducted with a
similar protocol, but at a different place and time. Of the initial
70 participants recruited in the clinical study, 9 patients with
chronic cough were excluded from classification as mentioned
before. In addition, the data from three healthy participants
failed to be recorded correctly, and could not be used in
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TABLE I
SUMMARY OF 10-FOLD CROSSVALIDATION ON DATA SET FROM RESEARCH

STUDY

Classifier Accuracy F1 Specificity AUC
Logistic Regression 0.574 0.670 0.500 0.533

SVM 0.653 0.736 0.677 0.699
Random Forest 0.752 0.829 0.525 0.766

Gradient Boosting 0.725 0.802 0.544 0.725
Neural Network 0.739 0.811 0.530 0.716

the analysis. Lastly, one additional participant’s data were
excluded because there was a high level of vocal sound in the
background from another individual. Even though the ultimate
goal is to develop a robust algorithm that can work in all
environments even with background speech, we first wanted
to validate the features without this challenge. In total, 13
participants’ data were not incorporated into the analysis for
classification. The classifier trained from the research study
was applied to the data from the remaining 57 participants
(50 pathological and 7 healthy) in the clinical study. Class
imbalance in the in-clinic study was extreme, and thus, the
in-clinic study data were decided to be used for cross-study
evaluation. In the cross-study evaluation, a random forest
classifier was trained on the data set from the research study
and tested on the data set from the in-clinic study. With the
random forest classifier, we obtained an accuracy of 73.7%,
F1 of 84.5% (precision of 87.2% and recall of 82.0%).

B. Regression

1) Research Study: A neural network based regressor was
built to predict the FEV1/FV C ratio, using the same set of
features used in the classification problem. The neural network
was comprised of two dense layers with 8 units, each followed
by dropout layers. From LOPO analysis, a mean absolute error
of 8.6 % was obtained (Table II).

2) In-Clinic Study: The same regression analysis approach
was applied to the in-clinic data set. The nine participants,
who were excluded from the classification analysis due to the
possibly non-obstructive nature of the pulmonary symptoms,
were included in the regression analysis. Seven participants
were not included in the analysis due to missing FEV1/FV C
ratio values for various reasons, including an inability to
perform the spirometry correctly. In total, 59 participants were
included in the regression analysis. A neural network based
regressor was built using the same set of features used in the
classification problem. From LOPO analysis, a mean absolute
error of 12.5% was obtained (Table II).

VII. DISCUSSION

A. Classification

A binary classifier for distinguishing pathological state
(class=1) from healthy state (class=0) was built and evaluated
using 1) 10-fold cross validation, 2) LOPO, and 3) cross-study
validation. To clarify, the training was only performed on the
data set from the research study, and the data set from the in-
clinic study was only used for testing and never for training

TABLE II
SUMMARY OF REGRESSION ANALYSIS IN TERMS OF MAE BETWEEN

PREDICTED AND TARGET VALUES

Target Data Set Reading Speech Reading &
Speech

In-Clinic 12.8% 12.5% 12.5%
FEV1/FVC Research 8.9% 8.6% 8.9%

In-Clinic +
Research

10.7% 9.7% 9.8%

FEV1% In-Clinic 20.6% 21.4% 21.2%

due to the small number of samples and severe class imbalance
problem.

1) Cross Validation: Cross validation provides a simple
and effective way to evaluate models, and thus, is frequently
employed in many machine learning applications today [32].
In our analysis, we employed 10-fold cross validation because
it is known to work well on real world data sets [33]. We
examined the performance of five different machine learning
models as summarized in Table I. While similar performance
was obtained from the random forest, gradient boosting, and
neural network classifier, the best overall performance was
obtained from the random forest classifier with the accuracy
of 75.2%, F1 score of 82.9% and AUC of 76.7%.

In addition to the 10-fold cross validation, we also evalu-
ated the model using LOPO cross validation because LOPO
analysis is virtually unbiased albeit with high variance [34].
With the random forest classifier, we noticed approximately
3% improvement in accuracy and F1 score, and approximately
9% improvement in specificity (See Section VI-A1). This
improvement in classifier performance is likely due to the
increased number of samples in the training set.

2) Cross Study Validation: To better evaluate the perfor-
mance of the model and its generalizability, we trained a
classifier using the data set from the research study (n=126)
and applied the classifier to the in-clinic data set (n=57).
Compared with the results from the LOPO cross validation,
the accuracy decreased by 5% and F1 score decreased only
by 0.6%. Despite the reduction in accuracy and F1 score,
the comparable results between the LOPO cross validation
from the research study and the cross-study evaluation are
encouraging in terms of the generalizability of the algorithm.

B. Regression

FEV1/FV C ratio and FEV1% are two established met-
rics for the assessment of obstructive pulmonary diseases.
The GOLD (Global Initiative for Chronic Obstructive Lung
Disease) guidelines suggest FEV1/FV C ratio less than 0.7
as the criterion for diagnosing COPD, and subsequently divide
COPD severity into four stages based on the percent predicted
FEV1 (a.k.a FEV1%) [35]. Here, we discuss the regression
results for both FEV1/FV C ratio and FEV1%.

1) Predicting FEV1/FV C ratio: Table 2 summarizes the
regression error in MAE from LOPO evaluation. Across all tri-
als, a neural network was trained with the 7 features described
in Section IV-C to predict FEV1/FV C ratio. The regression
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analysis was performed on the nine different combinations of
data sets from the research study and the in-clinic study (Table
II). In each study, the data sets from the spontaneous speech
session (”Speech” column) and the scripted speech session
(”Reading” column) were used to predict FEV1/FV C ratio
(Table II). Then, the data from the two sessions were combined
(”Reading + Speech” column) for regression. The data sets
were also combined across different studies as indicated by
”In-Clinic + Research” in Table II.

From the different combinations of the data sets, we noticed
minimal differences in regression error among the reading,
the speech and the combined (reading + speech) activities.
However, there were noticeable differences in regression error
when the two studies were combined; in-clinic study has
significantly higher MAE compared with research study. The
overall regression error of the combined data sets was higher
compared with the regression error from the research study
only. We suspect that this decrease in regression performance
was due to the greater level of noise present in the in-clinic
data set (See Section VII-C), which may have introduced noise
to the feature set.

2) Predicting FEV1%: FEV1% was available only from
the in-clinic study, and thus, the regression performance was
compared using the data set from the in-clinic study. As with
FEV1/FV C ratio described above, there was no significant
differences in MAE among reading, speech, and combined
data sets. However, the overall MAE of FEV1% regression
was significantly greater compared with the MAE of the
regression for the FEV1/FV C ratio (Table II). The large
difference in MAE between the research study and the in-clinic
study may have been due to the large variance of FEV1%;
the standard deviation of FEV1/FV C ratio in the research
study was 0.12 while that of FEV1% from the in-clinic study
was 0.26.

C. Generalizability

We investigated the generalizability using cross-study evalu-
ation where we trained a model on a data set from the research
study and tested the model on the clinical data set. Compared
with the 10-fold crossvalidation within the research study data
set, there was a significant drop in cross-study evaluation (Ta-
ble I and Section VI-A2). This difference is most likely caused
by the presence of significant noise in the clinical data set.
While the research study was conducted in a quiet environment
with lesser background noise (-28.8 dB), the in-clinic study
took place in a room where there was a constant fan noise
in the background as well as other miscellaneous background
activity such as door opening/closing and background speech
(-10.6 dB). The higher level of the background noise level
in the clinical study made it more challenging to identify
speech segments and extract reliable features from the data
set. Specifically, we noticed that the shimmer and jitter features
were noisier in the clinical data sets due to the poor SNR in the
audio data. While F1 measure of 76.4% with 82.9% precision
and 71.0% recall is encouraging, we believe more robust VAD
and feature generation will lead to improved generalizability.

D. Feature Robustness

Speech provides rich information not only about the vocal
folds but also about an individual’s breathing pattern and
potentially airway conditions. However, the analysis of the
speech also depends on various factors such as the background
noise, distance, and any obstacles between the source and
the sensor as such factors may interfere with the feature
extraction algorithm. To assess the robustness of the features,
we examined the audio files collected from a smartphone in the
pocket. Participants from the in-clinic study were asked to put
an additional smartphone in their pocket throughout the entire
study session, and spontaneous speeches of the participants
were recorded simultaneously from the two phones - one on
the table within arm’s reach and the other in the pocket. We
extracted the same set of features described in Section IV-C
and applied the classifier trained on the data set from the
research study (i.e. cross-study classification analysis).

In this analysis, 55 participants’ data were analyzed because
the smartphones in the pocket from the two additional partic-
ipants failed to record audio. As with the previous analysis
on the in-clinic data, the random forest classifier trained on
the data set from the research study was applied to detect
participants with pulmonary diseases. The performance of the
classification on the data set collected from the pocket was
comparable to the previous result. The accuracy of classifi-
cation was 70.9%, and the F1 measure was 82.2% (88.1%
precision and 77.1% recall). Compared with the classification
result from Section VI-A2, accuracy dropped by 2.8% and F1
measure dropped by 2.3%. Based on this comparable accuracy
and F1, the proposed algorithm seems robust to the placement
of the phone.

E. Feature Selection

Overfitting is one common problem in machine learning ap-
plications, which impacts the generalizability of the algorithm.
In order to avoid overfitting and improve the generalizability,
we selected only a subset from the original set of features listed
in Table III. We used recursive feature elimination with cross
validation (RFECV) to select the final set of features (Figure
4) [36]. As the number of features increased from 1 to 4, the
cross-validation accuracy improved and gradually decreased
afterwards albeit with large variability as highlighted by the
shaded area which shows the standard deviation. Even though
the best accuracy was obtained with 4 features, we decided
to use 7 features because an overly small number of features
increases the risk of underfitting and reduces robustness to
noise. In the selection of 7 features, we used recursive feature
elimination (RFE), a feature selection method where weak
features are subsequently removed until only specified number
of features remain in the feature set [36]. From RFE, we
selected the 7 most important features highlighted in Table III.
The feature importance of the selected features was computed
from the random forest classifier as shown in Figure 5. The
vocalization to inhalation ratio, average phonation time, and
relative jitter were the top three most important features.
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TABLE III
SUMMARY OF INITIAL FEATURES.

Feature # Feature Description
1 Pause Frequency (number of pauses / minute)
2 Shimmer (apq1)
3 Shimmer (apq3)
4 Shimmer (apq5)
5 Shimmer (apq11)
6 Absolute Jitter
7 Relative Jitter
8 Harmonic-to-Noise Ratio
9 Sum of FFT of inspiratory sound in frequency greater than 2,000 Hz

10 Sum of FFT of inspiratory sound in frequency from 800 Hz to 1,400 Hz
11 Maximum of FFT of inspiratory sound in frequency from 7,800 Hz to 8,500 Hz
12 Mean Inspiratory Slope
13 Median Inspiratory Slope
14 Mean of Phonation Period to Inspiratory Period Ratio
15 Average Phonation Time

Fig. 4. Recursive feature elimination with cross-validation. The shaded region
indicates one standard deviation above and below the mean accuracy.

F. Class Imbalance

In the research study, a total of 131 participants were
recruited and 126 participant’s data were used in developing
and evaluating the model. Among the 126 participant data,
however, there was a significant data imbalance problem (36
healthy class and 90 pathological class). Class imbalance
causes the classifier to be biased towards the majority class,
and thereby, impedes development of an accurate classifier
model [37]. There are many well-known approaches for ad-
dressing the class imbalance problem, and we chose to address
this issue using an oversampling approach.

We used Synthetic Minority Over-sampling Technique
(SMOTE) to amplify the samples from the minority class [38].
SMOTE generates synthetic data based on the distribution of
the minority class such that the newly generated synthetic
data belongs to the distribution of the minority class. Using
SMOTE, the number of minority class was matched with the
number of majority class during training. SMOTE was not
applied to testing. With SMOTE oversampling method, we
noticed significant improvement in specificity from the cross
validation.

G. Comparison Between Spontaneous and Scripted Speech

Both spontaneous speech and reading involve continuous
vocalization. However, spontaneous speech and reading have

Fig. 5. Feature Importance

different patterns of breath events and different distribution of
inspiratory durations [39], [40]. Specifically, there are very
short silence periods right before and after the breathing
sound in reading [40] whereas spontaneous speech only entails
a single silence period [39]. Furthermore, reading activity
allows the participant to foresee the sentences to be vocalized,
thereby allowing better management of breathing and differed
distribution of breathing sounds [39].

As part of the study protocol, the participants were given
a set of passages to continuously read out loud for reading
task. We selected the passages, like the ”Rainbow Passage”,
that are typically employed by speech pathologists for their
phonetic richness. To compare how the performance of our
algorithm differs based on type of speech activity, we used
the reading audio data collected from the research study. To
reiterate, the analysis was performed on the audio data from
126 participants (90 patients and 36 healthy). Random forest
classifier was evaluated via 10 repetitions of 10-fold cross-
validation, with data shuffling between each repetition. To
balance the classes, SMOTE oversampling method was used.
The overall accuracy was 62.7% and the F1-score was 73.1%
(73.6% precision and 74.6% recall).

VIII. CONCLUSION

We proposed two algorithms that could potentially be
applied towards passive assessment of pulmonary function:
one for differentiating between healthy individual and those
with possible obstructive pulmonary disease, and the other
for using speech features to estimate FEV1/FV C ratio,
a clinically accepted pulmonary function metric. From two
large data sets collected from mobile devices in controlled
settings, the proposed algorithms have been evaluated. Our
analysis shows promising results for obstructive pulmonary
disease detection and pulmonary function assessment. This
work presents a meaningful milestone towards the passive
detection of pulmonary disease and the passive assessment of
pulmonary functions from spontaneous speech collected from
a smartphone.
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