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Abstract—WiFi time of flight (ToF) measurement has been
supported recently by the wireless LAN protocols to improve
WiFi localization. Specifically, the IEEE 802.11-2016 standard
has a fine-time measurement (FTM) protocol that can be used to
measure the WiFi signal round trip time (RTT). In this paper,
we present the design and implementation of WiNar, a WiFi
RTT-based indoor location determination system that combines
the advantages of both fingerprint and ranging-based techniques
to overcome the different challenges of indoor environments.
Using commercial-off-the-shelf access points and mobile phones,
WiNar leverages the propagation time of the wireless signal with
a fingerprinting model to address the multipath, non-line-of-
sight, signal attenuation, and interference challenges of the indoor
environments. Moreover, when leveraging the round trip time
measurements, WiNar does not require clock synchronization
between the transmitter and the receiver. We discuss the different
components of the system and its implementation on the Android
operating system. Our results show that WiNar has a sub-
meter localization accuracy with an average localization error
of less than 0.86 meters for two different testbeds. This accuracy
outperforms the performance of the traditional signal strength
(RSS) fingerprinting technique by at least 38% and ranging-
based multi-lateration technique by at least 148%. Finally, our
system is also robust to heterogeneous devices.

Index Terms—Indoor Localization, WiFi Localization, Time-
based Localization, Time-based Fingerprinting, Fine Time Mea-
surement.

I. INTRODUCTION

The indoor localization problem has been an active research
area over the years [1]–[9]. Unlike outdoor environments,
where GPS can be used ubiquitously to determine an estimate
for the user location within a few meters [10], indoor envi-
ronments require more precise positioning to support various
IoT-based and context aware applications [11]–[17]. Various
solutions that involve multi-lateration, fingerprinting, angle of
arrival, or time-based localization techniques, have been pro-
posed to overcome the challenges related to indoor localization
[18]–[23]. These solutions leverage different technologies such
as WLAN, Bluetooth, UWB, visible light, ultrasound, and
acoustic signals. The two most researched approaches have
been those related to fingerprinting and time-based techniques.

Fingerprinting is an indoor localization technique that re-
quires an environmental survey during an offline phase to
obtain features of the physical signals where the localization
system will be used [3], [24]–[26]. When the localization
system is deployed, real-time, or online, sensory measurements

are compared with offline measurements and a user location is
estimated based on matching scores. Fingerprinting techniques
are widely used with WLAN localization systems, where
different signal properties like received signal strength (RSS)
or channel state information (CSI) can be used as physical
signal features [3], [24], [25]. The main challenge with these
approaches, however, is that RSS values can easily be affected
by signal attenuation from traveling through walls and other
large obstacles. Another challenge is signal fluctuation due to
multipath fading and indoor radio noise, as well as changes in
the device hardware that lead to changes in the received RSS
from APs due to different chips and antenna locations. More-
over, modern APs usually change their transmission power
dynamically to accommodate different traffic and attenuation
patterns. All of these issues have a negative impact on the
accuracy of RSS fingerprinting-based techniques.

Time-based localization techniques, on the other hand, have
been used for different indoor and sensor localization systems
[27], [28]. They leverage the signal propagation time to esti-
mate the distance between the transmitter and the receiver after
multiplying it by the signal’s velocity. Different approaches
have been proposed to measure the signal propagation time as
Time of Arrival (ToA) and Round Trip Time (RTT). Recently,
the IEEE 802.11-2016 standard has introduced the Fine Time
Measurement (FTM) protocol which supports the round trip
time measurement and its Android API support has followed
[29], [30]. With increasing support for this protocol in the
commercial WiFi chipsets and mobile devices, it becomes a
promising approach for providing high accuracy and easily
deployable indoor localization systems.

Despite the promising improvement of time-based local-
ization systems on the indoor localization accuracy, and its
resilience to changes in transmission power and radio interfer-
ence, they do not eliminate the significant localization errors in
the indoor environments. This drawback is due to multipath
propagation errors and non-line-of-sight transmissions when
the direct path between the transmitter and receiver is not
available. As a result, signals travel on longer indirect paths
resulting in longer distance estimation [31]. These time-based
ranging errors can be partially corrected through filtering and
map matching techniques but they require obtaining a map for
the area of interest in advance [32]. Also, multiple ranging
measurements of the same location can be averaged to help
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filter out hardware and software noise, but cannot eliminate the
multipath and non-line-of-sight effects which lead to distance
overestimation [31].

In this paper, we present WiNar: a time-based fingerprinting
indoor localization system that aims to combine the advantages
of both fingerprinting and ranging-based techniques by using
RTT as a physical signal feature. This approach enables WiNar
to overcome the different indoor environment localization
challenges and becomes more resilient to radio interference.
Our system overcomes traditional time-based multi-lateration
localization systems which suffer from the multipath propa-
gation errors and non-line-of-sight transmissions resulting in
distance overestimation. We also address the inaccuracies of
these multi-lateration based localization systems which are af-
fected by distance underestimations; these are situations where
negative ranging distances can be returned by the ranging
software under some conditions, especially when the mobile
phone is close to the access point [31]. WiNar overcomes these
challenges by leveraging the RTT values as a fingerprint profile
and estimates the user location based on the similarity between
the online and offline profiles.

WiNar works in two phases. The offline phase is when
the RTT fingerprint map is collected at discrete locations
in the building. The online phase is where a location is
estimated based on a similarity between real-time sensed RTT
measurements and the collected RTT Map data. WiNar uses
different modules to handle the RF noise, provide similarity
weights over the discrete grid locations, and localize the user
in the continuous space.

We implement WiNar over different Android phones and
evaluate its performance in two different testbeds: a 560m2

college campus floor, and a 141m2 work office floor. These
testbeds represent a wide variety of environments that can
make use of indoor positioning systems. We installed seven
commercial Google WiFi access points (APs) in each testbed
along with the presence of other traditional non RTT-enabled
APs that can act as an added source of interference. Our results
show that the WiNar system achieves a sub-meter localization
accuracy for both testbeds with an average localization error
of 0.86m and 0.84m for the two testbeds respectively. These
results reveal an improvement over the traditional RSS finger-
printing accuracy by at least 38% and outperform the ranging
based multi-lateration localization approach accuracy by at
least 148%. This accuracy is maintained under heterogeneous
devices which qualifies WiNar as a robust and accurate indoor
localization technique.

The remainder of this paper is structured as follows. Sec-
tion II provides a brief introduction on the IEEE802.11-2016
FTM protocol. In Section III, we provide a general overview
of the WiNar system architecture and present its different
components. Section IV evaluates the different parameters of
the system and shows its overall performance compared to
the other approaches. In Section V, we discuss related work.
Finally, Section VI concludes the paper and discusses future
work.
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Fig. 1: FTM protocol overview.

II. FTM PROTOCOL BACKGROUND

IEEE 802.11-2016 has standardized the fine timing mea-
surement (FTM) protocol that allows a station to accurately
measure the round trip time (RTT) between it and another
station. Fig. 1 shows a single burst of the FTM process with
three FTM interchanges per burst. The protocol starts with
an FTM Request packet sent from the initiating station (the
mobile phone) to the responding station (the access point) to
check the availability of the responding station to perform
ranging and to negotiate the FTM process parameters. The
responding station replies back with an ACK packet indicating
its availability.

The protocol then follows by sending multiple FTM packets
where the mobile device can obtain the RTT without knowing
the clock offset by using the four send and receive timestamps
of one FTM interchange as shown in Fig. 1. Specifically,
the estimated round trip time between the source and the
destination can be calculated as:

RTT = (t4− t1)− (t3− t2) (1)

The term (t4− t1) represents the estimated round trip time
including the processing time at the mobile device while the
term (t3 − t2) represents the processing time at the mobile
device. By subtracting the latter from the former, one can
get the estimated round trip time between the source and
the destination. Note that the transmit (t1) and receive (t4)
timestamps at the access point side, of one FTM interchange,
are transmitted to the mobile phone in the following FTM
interchange. The last FTM interchange (FTM 3) is used only
for timestamps transmissions and not for RTT estimations.
Transmitting all timestamps to the mobile device allows the
location estimation to be performed at the device side, pre-
serving user privacy.

To provide a more accurate RTT estimation, the FTM
interchanges can be repeated multiple times in the form of
bursts. The FTM session parameters, like the number of bursts
and the burst duration, are set in the negotiation phase of the
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FTM protocol between the mobile phone and the access point
[29]. The distance is obtained from the estimated RTT as:

Distance =
RTT× c

2
(2)

where c is the speed of light.
Note that the device performs RTT ranging to all RTT-

capable APs in range. Traditionally, these have been used to
multi-laterate the user location [31]–[33]. The WiNar system,
on the other hand, leverages these RTT values, collected
through the FTM protocol and available through the Android
RTT API [30], as fingerprint features as we will show in the
following section.

III. THE WINAR LOCALIZATION SYSTEM

WiNar is a time-based indoor localization system that
leverages the round trip time as a fingerprint feature to provide
accurate location estimation. Our system overcomes the typical
indoor environment localization challenges such as multipath
interference and non-line-of-sight-related transmissions prob-
lems by leveraging the RTT values as a fingerprint profile and
estimates the user location based on the similarity between
the online and the offline profiles. WiNar utilizes the FTM
protocol, introduced by the IEEE802.11-2016 standard and
recently supported by commercial off-the-shelf access points
and the Android mobile phones, as a protocol to measure
the round trip time between the mobile phone and the access
points. In the next subsections, we introduce the WiNar system
architecture and then discuss WiNar components in detail.

A. System Overview

Fig. 2 shows the WiNar system architecture. The WiNar
system works in two phases: The first phase is the Offline
Phase where it divides the area of interest into discrete grid
locations and builds the round trip time (RTT) fingerprint map.
This fingerprint data collection phase needs to be done only
once when the system is deployed for the first time. By using
the round trip time from the different APs as an environment
feature, the RTT fingerprint map becomes more resilient to
the environment changes and radio interference which allows
the fingerprint data to provide high accuracy localization over
a long period of time (as we quantify in Section IV). This
is compared to other fingerprint profiles, e.g. using the RSS,
which can be easily affected by the existence and removal of
other radio noise sources and access points as well as changes
in the APs transmit powers.

The second phase of WiNar is the Online Phase, where it
estimates the user location based on the measured round trip
time values to the different access points and the generated
RTT fingerprint map.

The WiNar system consists of multiple key modules that
belong to the offline and online phases as shown in Fig. 2.
The RTT Collector module is used to scan for the APs and
collect the associated RTT values at the different locations in
the area of interest during both the offline and online phases.
The Pre-processing module arranges the collected RTT values
to construct the RTT feature vectors. The RTT Map Builder

RTT Collector

Location API

RTT Map Builder

Preprocessor Module

Single Sample Estimator

....... .......

Multiple Sample Estimator

Estimator 1 Estimator 2

Offline Phase  Online Phase 

List of RTT
Map locations

with their
weights 

Location Estimation

RTT Map

RTT AP1, RTT AP2,...., RTT APt

�¯�1

�2

��

�1

�2

��

Preprocessor ModuleLoc 1 Loc 2 Loc m
...

Fig. 2: The WiNar system architecture.

module constructs the RTT fingerprint from the estimated RTT
to the different APs in the area of interest. The Single Sample
Estimator module works during the online phase to calculate
the similarity weight of each fingerprint location given the
currently estimated RTT vector from different access points at
the unknown user location. The Multiple Samples Estimator
module combines the number of estimates output by the Single
Sample Estimator to get a more accurate location estimation
in the continuous space.

We will now discuss the functionality of these modules in
more detail.

B. System Details

We start by introducing the mathematical model of the
WiNar system. Without loss of generality let X be a two-
dimensional physical space. At each location xi ∈ X we can
get the round trip times RTT from t access points in the area
of interest. We denote the t-dimensional round trip time space
as R. The RTT fingerprint map M contains m entries, where
the ith entry contains the coordinates of a discrete location
li ∈ X and a fingerprint profile pi ∈ R. Let r ∈ R be an RTT
ranging sample vector that contains the round trip time to the
t access points during the online phase.

1) Pre-processing Module: The pre-processing module is
used to convert the input RTT vector to a fixed length feature
vector by mapping each collected RTT value to its entry in
this vector. Since not all of the t access points installed in
the area of interest can be heard in every scan at the different
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locations, this module assigns the RTT value of 2 × 10−4

milliseconds (which corresponds to 60 meters in the distance
domain) to the APs that are not heard in a specific scan. This
value is selected to be larger than any of the collected RTT
values. The intuition is that a not heard AP is supposed to
be far away from the current location. Therefore, it should be
assigned a high RTT value.

We also observed that under some conditions, mainly when
the mobile phone is too close to the access point that is
performing the ranging to, the Android API can return negative
estimated ranging distances. These negative distance values
are due to the internal calibration of the WiFi cards or the
multipath compensation algorithms that process the measure-
ments in firmware before they are delivered to the driver.
These negative ranging values usually cause a problem for
traditional multi-lateration algorithms [31]. However, since
WiNar is a fingerprint-based technique, these negative values
are implicitly handled as being part of the fingerprint of a
particular location and hence do not affect the system accuracy.

2) The RTT Map Builder Module: The RTT Map Builder
module constructs the WiNar fingerprint. Specifically, for each
fingerprint location l, it stores the coordinates of the location
as well as the average of all the RTT measurements performed
at this location for each AP. In particular, at each fingerprint
location l, a vector p =

〈
Avg RTT1,Avg RTT2, ...,Avg RTTt

〉
is stored to reflect the RTT fingerprint.

3) Single Sample Estimator Module: During the online
phase, the goal of this module is to use the received RTT
ranging vector at an unknown location to estimate the user
location.

Specifically, given an RTT ranging sample vector r ∈ R,
the Single Sample Estimator module returns a score for each
fingerprint location representing the likelihood of the user
being at that location.

More formally, the module returns a list of the grid locations
and their weights (L̄(li, wi)), where 1 ≤ i ≤ m, in the RTT
fingerprint map ordered by their score of similarity (weight) in
descending order, where the weight of the location li is given
by:

Weight(li) =
1

Euclidean Distance(pi, r)d
(3)

where d is a parameter to the system.
This ordered list of weights reflects the similarity between

the current single ranging sample r and the RTT profile vectors
p over the discrete locations of the RTT fingerprint map M.

4) The Multiple Samples Estimator Module: To give a more
accurate user location estimation in the continuous space, the
Multiple Samples Estimator Module processes s RTT ranging
sample vectors r ∈ R together, where s is a parameter to the
system. Specifically, given the ordered list of grid locations and
their similarity weights L̄j obtained from the Single Sample
Estimator module for each ranging sample vector j, where
1 ≤ j ≤ s, this module fuses these discrete locations to output
a more accurate user location estimation in the continuous
space. We present two different fusion techniques:

a) Technique 1: For each ranging sample rj ∈ R, 1 ≤
j ≤ s, an initial location estimate xj in the continuous space
is first calculated by taking the weighted average of the K
most probable fingerprint locations. More formally:

xj =

∑K
n=1[L̄j(wn)× L̄j(ln)]∑K

n=1 L̄j(wn)
(4)

Given these initial location estimates xj , 1 ≤ j ≤ s, the final
fused location estimate is calculated as the weighted average
of these initial locations, taking the highest of the weights of
each estimate as its weight. More formally, the final location
estimate x is calculated as:

x =

∑s
j=1 weight(xj) ∗ xj∑s

j=1 weight(xj)
(5)

where the weight of xj is the weight of the first location in
the ordered list (L̄j)

weight(xj) = L̄j(w1) (6)

b) Technique 2: Unlike the previous fusing technique
that leverages each ranging sample vector individually to get
an initial location estimation, this technique calculates a total
weight vector by summing the weights of each ranging sample
vector r over the s ranging samples as:

Total weight(li) =
s∑

j=1

L̄j(wi) (7)

The final location estimation x is calculated as the weighted
average of the fingerprint locations li, 1 ≤ i ≤ m using these
total weight values as:

x =

∑m
i=1 Total weight(li) ∗ li∑m

i=1 Total weight(li)
(8)

By leveraging multiple ranging samples and a weighted
average approach to calculate the location estimation, this
enables WiNar to be resilient to the environment dynamics by
dominating the noisy weights, resulting from noisy ranging
samples due to the environment dynamics or other hardware
and software noises, by the weights that are calculated from
the other accurate majority of the collected ranging samples.
This weighted average approach enables WiNar to estimate
a robust and accurate location estimation in the continuous
space.

IV. SYSTEM EVALUATION

In this section, we evaluate the performance of WiNar in two
typical indoor environments: a college campus building floor
and a work office floor. We start by describing the testbeds
and the data collection procedure. Next, we analyze the effect
of different parameters on the WiNar performance. Finally,
we present the overall system performance and compare it
with the traditional RSS fingerprinting and time-based multi-
lateration approaches.
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Fig. 3: Testbed 2 floor plan (work office).
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Fig. 4: Testbed 1 floor plan (college campus).

TABLE I: Testbeds Summary

Testbeds Parameters Testbed 1 Testbed 2
Area 15.6m× 35.9m 4.5m× 31.5m

Number of RTT APs 7 7
Average heard APs by Pixel XL 2.86 3.07

Average heard APs by Pixel 2XL 4.47 4.71
Training Points 143 76
Testing Points 30 17

A. Experimental Setup and Data Collection

The performance of the WiNar system is analyzed in two
testbeds. Table I summarizes the testbeds. The first testbed
(Fig. 4) is a floor at our college campus that contains nine
rooms/labs connected with a large corridor and covers an area
of 560m2. The second testbed (Fig. 3) is an office building
that consists of five rooms and a large meeting room, all
connected with a long corridor and covers an area of 141m2.

For both environments, we use a wireless network consisting
of seven Google WiFi APs uniformly distributed over the
experiment floor area and two mobile phones: a Google
Pixel XL and a Pixel 2XL running Android API level 28 as
receivers. Other APs that do not support RTT are also installed
in both testbeds.

The fingerprint grid locations are taken to be one meter
apart from each other in the building areas we have access to
(we evaluate the effect of changing the fingerprint density later
in this section). The first testbed has 143 fingerprint locations
while the second has 76 locations. 100 ranging samples are
performed at each fingerprint location. Independent test sets
collected at different days, locations, and by different persons
are used for testing. Each location has a minimum coverage
of one Google WiFi AP.

TABLE II: System and Evaluation Parameters

Parameter Possible Values Testbed 1
default val.

Testbed 2
default val.

Ranging Samples [5:100] 100 100
Weight Func. Pow. (d) [1:5] 3.5 3.5

Estimator Approach Estimator 1, 2 1 1
Num. Neighbours K [1:10] 1 1

Access P. Density [1:7] 7 7
Fingerprint Gap 1, 2, 3 m 1 m 1 m

B. Effect of Changing WiNar Parameters

In this section, we show the effect of changing different
parameters of the WiNar system on the localization accuracy.
Table II summarizes the parameters and their default values.
We use Testbed 1 as the main testbed for reporting the results
and provide the overall accuracy of Testbed 2 in the overall
system comparison in Section IV-D. Note that exactly the same
set of default parameter values are used for the two testbeds,
highlighting WiNar robustness to different environments.

1) Impact of Number of Ranging Samples: Fig. 5 shows the
performance of the WiNar system while varying the number of
the ranging samples for the first testbed. The results show that
as the number of the ranging samples increases, the WiNar
system accuracy improves as the noise in the RTT ranges
are averaged out. WiNar can achieve a sub-meter localization
accuracy of 0.86 meters with an average delay time of less than
2.7 milliseconds per location estimate. Note that the average
time per location estimate increases linearly with the number
of ranging samples used.

Depending on the application where the WiNar system will
be used and the accuracy level required, a lower number of
ranging samples can be used to reduce the latency. The local-
ization latency can also be reduced by leveraging the initial
ranging samples to output an initial rough location estimation
that can be improved by accumulating the remaining ranging
samples over time.

2) Impact of Weighting Function Power: Fig. 6 shows
the effect of increasing the euclidean distance power of the
weighting function (parameter d in equation 3) on the average
localization error and average time per location estimate. The
results show that increasing the weighting function power
leads to increasing accuracy until we reach about 3.5 then
the accuracy decreases while the average time per location
estimate remains constant. We set the default power to 3.5.
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3) Impact of the Multi-samples Fusion Technique: Fig. 7
shows the effect of the the different multiple samples esti-
mators discussed in Section III. The figure shows that the
performance of the first and second estimators is comparable
with a slight advantage to Estimator 1.

4) Impact of the Number of Nearest Neighbours: Fig. 8
shows the impact of increasing the number of nearest neigh-
bors, k, on the average localization error and time per location
estimate. The figure shows that the performance is not sensitive
to the number of used neighbors. Therefore, we choose to use
k = 1 to reduce computation cost.

C. Robustness Experiments

In this section, we evaluate WiNar performance robustness
using two experiments: reducing the density of the access
points and reducing the number of the fingerprint points.

1) Impact of Access Points Density: Fig. 9 shows the effect
of increasing the access points density on the average localiza-
tion error and average time per location estimate. The density
is reduced by manually removing APs while maintaining their
uniform distribution over the testbed area. The results show
that increasing the APs density leads to increasing accuracy.
This can be explained by noting that the number of APs heard
per scan increases with the increase of the number of APs
installed in the area of interest. The time per location estimate

increases linearly with the number of APs installed with worst
case of less than 2.7 milliseconds per location estimate.

2) Impact of Fingerprint Points Density: Fig. 10 shows the
effect of increasing the distance between the fingerprint grid
locations on system performance.

The results show that decreasing the fingerprint density,
i.e. increasing the distance between fingerprinting points,
has a sub-linear effect on accuracy. Specifically, even when
the fingerprint points are spaced every three meters, WiNar
average accuracy is about 1m. This highlights the advantage
of WiNar in requiring lower overhead compared to traditional
RSS fingerprinting techniques that usually require higher fin-
gerprinting densities.

D. Overall System Performance and Comparative Evaluation

In this section, we show the performance of the whole
WiNar system compared to two related approaches: RSS fin-
gerprinting and RTT multi-lateration. The RSS fingerprinting
technique uses the same modules as WiNar but with RSS
instead of RTT.

We use the default values of the system parameters indicated
in Table II.

Fig. 11 shows the performance comparison for the two
testbeds respectively while Table III summarize the results.
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TABLE III: Average accuracy and percentiles comparison between different approaches as WiNar, RSS fingerprint and multi-
lateration in the two testbeds (errors in meters).

Testbed 1 (college campus floor) Testbed 2 (work office floor)

Average Std Dev 50th

Percentile
90th

Percentile
100th

Percentile Average Std Dev 50th

Percentile
90th

Percentile
100th

Percentile
WiNar 0.86m 0.43m 0.77m 1.37m 1.95m 0.84m 0.51m 0.62m 1.55m 2.29m
RSS

Fingerprint
1.55m

(-80.23%)
0.87m

(-102.33%)
1.45m

(-88.31%)
2.64m

(-92.7%)
4.33m

(-122.05%)
1.16m

(-38.09%)
0.94m

(-84.31%)
0.91m

(-46.77%)
2.37m

(-98.06%)
3.80m

(-65.93%)
Multi-

lateration
2.14m

(-148.84%)
1.26m

(-193.02%)
1.95m

(-153.25%)
3.61m

(-163.5%)
8.86m

(-354.36%)
2.28m

(-171.42%)
0.98m

(-92.15%)
2.12m

(-241.94%)
3.63m

(-134.2%)
8.62m

(-276.4%)
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Fig. 11: Comparison between the error CDF for WiNar, RSS
fingerprinting and Multi-lateration for the two testbeds.

The WiNar system can achieve a sub-meter localization ac-
curacy with an average localization error of 0.86 meters for
the first testbed and 0.84 meters for the second testbed. This
is better than RSS fingerprinting by more than 80% for the
first testbed and more than 38% for the second testbed. This
comes also with a decrease in the worst-case error by more
than 122% for the first testbed and more than 65% for the
second testbed.

Comparing the WiNar system performance to the time-

based ranging multi-lateration localization techniques shows
that WiNar can achieve a better localization accuracy by more
than 148% for the first testbed and more than 171% for the
second testbed. The worst-case error is decreased by 354%
and 276% for the first and second testbeds respectively in this
case.

Fig. 12 also shows the effect of the heterogeneity of the
devices on the performance of WiNar and RSS fingerprinting
approach. The figure shows that WiNar is more robust to
device heterogeneity compared to RSS-based techniques. This
can be explained by noting that changes in the device hardware
lead to changes in the received RSS from the APs (due to
different chips, form factors, antenna locations, etc). This has
a lower effect on the calculated RTT values.

The difference in the performance of WiNar for the two
phones is related to two factors. First, the number of ranging
samples the mobile device can perform successfully out of
the one hundred ranging samples. Second, the number of
access points that the mobile device can successfully hear and
perform ranging to in each ranging sample individually. Fig. 13
shows the probability distribution of the number of successful
ranging samples the two mobile devices are able to perform.
From this figure, we can see that the mobile device Pixel 2XL
is able to perform more successful ranging samples compared
to the other device Pixel XL. Also from Fig. 14, which shows
the quartiles (0th, 25th, 50th, 75th, 100th percentiles) box plot
for the number of successfully heard access points in each
ranging sample for both the mobile devices, we can see that
the Pixel 2XL is able to hear and perform ranging with more
access points in each ranging sample and hence achieving
better localization accuracy.

These results confirm the advantages of using RTT finger-
printing compared to RSS fingerprinting or multi-lateration.
This is due to the ability of RTT fingerprinting to tolerate
the multi-path effects, non-line-of-sight transmission, radio
interference, changes in the APs transmit power, and device
heterogeneity.

V. RELATED WORK

Many systems have been developed over the years to
tackle the problem of indoor localization. Ultrasound based
localization systems leverage the time of flight of the ultra-
sound signals and the sound velocity to estimate the distance
between the transmitter and the receiver [34], [35]. These
systems usually require special infrastructure to operate, which
increases their cost. Visible light based localization systems
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use light sensors to measure the angle of arrival (AOA) of
the light signals transmitted by LED emitters [36], [37]. The
main drawback of these systems is that they can only operate
under the availability of the direct line of sight between the
transmitter and the receiver.

Recently, WiFi-based localization systems have gained mo-
mentum due to the ubiquity of WiFi devices and APs [38]–
[42]. This reduces the cost of these systems and makes them
easy to deploy without the need for additional infrastructure.
In the rest of this section, we discuss signal the strength- and
time-based WiFi localization systems.

A. Signal Strength-based Systems

Received Signal Strength (RSS) localization approaches use
the signal attenuation of transmitted signals to estimate the
distance between the transmitter and the receiver [43]–[45].
RSS model-based techniques suffer from poor localization
accuracy, especially in non-line-of-sight conditions, due to the
signal attenuation resulting from transmission through walls
and other obstacles as well as RSS fluctuation due to multipath
fading and indoor noise.

To overcome these challenges, RSS fingerprinting ap-
proaches work in two phases: the offline and online phase
[3], [24]. The offline phase is used to collect a fingerprint of
the APs in the area of interest at different discrete locations.
During the online phase, the systems match the current heard
RSS values to those stored in the fingerprint. Different systems
use different features for their fingerprint. Similarly, the chan-
nel state information (CSI) provides more fine-grained and
detailed information about the received signal of the channel in
different frequencies and between separate transmitter-receiver
antenna pairs [46], [47]. Therefore, they are able to provide
more accurate estimates compared to RSS-based systems.
Nonetheless, they require special hardware to capture the
state information. Moreover, both RSS and CSI values are
easily affected by the dynamic changes of the APs transmit
power, which is a common feature of modern APs [48]. In
addition, they are sensitive to the device used to construct the
fingerprint.

B. Time-based Systems

Time-based localization systems, on the other hand, leverage
the wireless signal propagation time to estimate the distance
between the sender and the receiver given the signal velocity
[49]. Time of Arrival (ToA) is a one-way measurement where
the receiver leverages the transmit timestamp (usually included
in the transmitted packet) and the receive timestamps to
measure the signal propagation time. ToA technique requires
strict clock synchronization between the transmitter and the
receiver to estimate the propagation time accurately [50].

Time Difference of Arrival (TDoA) techniques leverage
the difference between the signals propagation times that are
transmitted from three or more transmitters to estimate the user
location. Unlike the ToA technique, the TDoA requires strict
clock synchronization between the transmitters only [51], [52].

Round trip time (RTT) is a two-way measurement technique
where one station responds back to the other with a packet
containing the receive and transmit timestamps. The other
station leverages this information to calculate the round trip
time [33], [53], [54]. Unlike ToA, the RTT technique does
not require strict clock synchronization. Traditional multi-
lateration systems that leverage the RTT measurements to
obtain the location estimate suffer from relatively poor local-
ization accuracy due to processing offsets, multipath effects
and non-line-of-sight transmissions that lead to overestimated
range values [31]. As we quantified in the evaluation section,
WiNar inherently captures these effects in its fingerprint and
hence leads to better accuracy.

VI. CONCLUSION

We presented WiNar, an indoor location determination
system that combines both the advantages of the finger-
printing and the time-based ranging localization techniques.
We showed how the different modules of WiNar overcome
the indoor environment challenges such as non-line-of-sight,
multipath and signal interference.

We evaluated the WiNar system in two different testbeds.
We showed that WiNar system can achieve a consistent sub-
meter localization accuracy of 0.86 meters and 0.84 meters for
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the first and second testbeds respectively. We also compared
the WiNar system performance to the RSS fingerprinting and
time-based multi-lateration localization techniques. Our results
show that the WiNar system can achieve a better localization
accuracy compared to the RSS fingerprinting by more than
38% for the two testbeds. This increases to more than 148%
as compared to the RTT multi-lateration based technique.

As part of our ongoing research work, we aim to reduce
the overhead of collecting the RTT fingerprint data as well as
combine RTT and RSS fingerprinting for better accuracy.
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