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Abstract—Pervasive applications in smart cities rely on a large
number of IoT devices, which are deployed in large geographic
areas. Smart cities can manage these devices using Service-
Oriented Architectures (e.g., micro-services) by encapsulating
devices capabilities as IoT services. Distributed service discov-
ery architectures reduce search spaces and perform discovery
processes closer to consumers on edge devices. However, request
management, a key task in distributed service discovery, is
still challenging because requests must be forwarded through
large networks where nodes have partial knowledge about other
participants. Previous research has shown that social-based and
bio-inspired methods can be used to manage requests in small-
scale environments, but such approaches do not scale to large
environments. This paper adds urban context to a social-based
and bio-inspired mechanism to forward requests where they are
most likely to be solved. Results show that our model has the
best rate of solved requests, and intermediate latency.

Index Terms—Internet of Things, Smart Cities, Service Dis-
covery, Context-aware, Bio-inspired, Social-based.

I. INTRODUCTION

The Internet of Things (IoT) integrates a large number of
devices in smart cities to provide pervasive applications that
support citizens’ activities [1]. Service oriented architectures
(SOAs) are commonly used to manage these devices by
abstracting their capabilities as IoT services [2] (e.g., micro-
services). Services are self-contained pieces of software that
offer functionalities according to a specification (e.g., a service
that reports the wind speed in the city centre). SOAs include
processes to register, discover, compose, execute, and monitor
services, enabling the development of applications [3]. Service
discovery is a process for SOAs in IoT as services need to
be located before using them [4]. Web services discovery
has been widely explored [5]. However, service discovery
is still challenging in smart cities [6]. The IoT encapsulates
millions of services that generates enormous search spaces
where efficient discovery is difficult. Existing research has
addressed these large search spaces by organising services in
distributed architectures. Our previous work manages services
in a network of IoT gateways based on the city places that sur-
round them [7], [8]. This urban-based organisation improved
the discovery efficiency compared against approaches based
on services’ attributes. However, efficiency is still affected
because nodes fail to forward requests to relevant search
spaces. Architectures in large environments must forward
requests where they are most likely to be solved as it is
impractical to scan all service repositories [9].

Research on IoT service discovery has proposed to man-
age requests based on social-based or bio-inspired methods.
Social-based approaches use relationships between devices
to forward requests to relevant communities [10], [11]. Bio-
inspired approaches take ideas from nature to propagate re-
quests to desired destinations (e.g., ants colony) [11], [12].
However, social-based and bio-inspired approaches have is-
sues in large networks because they are based on flooding
strategies [13]. Such strategies usually depend on a time to
live (TTL) parameter that limits data propagation. A TTL
parameter in large networks can cause network overhead when
its value is high. Or, data propagation can fail to reach target
nodes if the TTL value is low and the knowledge that drives
the propagation is not enough. Contextual information can
enrich these approaches to make well-informed decisions,
when propagating information in large environments. This
paper proposes to add urban context to a social-based strategy
and a bio-inspired mechanism to forward requests to the most
promising search spaces in large smart city environments.
We evaluate our model in a simulated city environment and
measure the rate of solved requests, simulated response time,
number of hops, and exchanged discovery messages. Results
are compared against four baselines, two of them are social-
based [10], [14], one is bio-inspired [12], and one is hybrid
(i.e., social-based and bio-inspired) [11].

II. RELATED WORK

Current research on IoT service discovery has used social-
based or bio-inspired methods to forward consumers’ requests.

A. Social-based Management

Fredj et al. [10], [15] propose to cluster services according
to their location. This approach uses a hierarchical network
that represent different smart spaces and host service descrip-
tions. Nodes are connected in a tree topology, where the
lowest level represents spaces containing physical connected
devices and upper-levels represent spaces that include lower-
levels. This structure is used to forward requests at discovery
time. CORDIAL. [16] is an algorithm for service discovery
that forwards requests in a distributed network of smart
phones according to human periodic movements and interests.
CORDIAL relies in the assumption that nodes with similar
interests tend to meet more frequently. TSSD is a model for
service discovery that exploits the temporal-spatial correlation
between mobile nodes [14]. This model creates communities,
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which evolve over time to reflect nodes interests. TSSD for-
wards requests in these communities with an epidemic routing.
Corbellini et al. [17] propose to create clusters that group
services according to users’ interests. This model calculates
similarity between services using neighbour-based metrics,
which assume that nodes are more likely to link if they
share neighbours. This structure is used to forward requests
to the more relevant servers. Xia et al. [18] propose a service
discovery mechanism that mimics human-like behaviour. This
approach forwards requests to the most relevant subset of
devices according to a correlation degree.

Service discovery based on social networks suits mobile
environments because they mimic human social features to
forward requests in peer to peer networks by using flooding-
based strategies. These strategies affect the discovery effi-
ciency because they are likely to fail when delivering messages
in networks, where sources and targets might never have a
direct link between them [13]. More informed strategies can
forward requests to relevant devices in short time [13].

B. Bio-inspired Forwarding

Ebrahimi [19] present an approach that uses an ant-based
algorithm to create clusters based on sensors’ QoS attributes.
This approach extracts required attributes from consumers’
queries and forwards them to the most relevant clusters.
Rapti et al. [12] propose a service discovery approach based
on artificial potential fields (APFs). Each provider has an
APF, and its strength depends on the type of requests that
the provider solved in the past. Providers apply attraction
or repulsion forces to requests according to APFs to mimic
electrically charged particles. These forces drive requests to
the most promising providers in IoT networks. Wanigasekara
et al. [20] introduce an approach based on usage patterns
to support service composition in medium IoT environments
such as smart buildings. Service discovery is modelled as a
contextual bandit problem. Services are the set of bandits, the
reward is based on the service usage (i.e., positive reward if the
user selects the service), and the expected pay-off represents
how many times the service was successfully selected. The
approach maximises the expected pay-off by recommending
relevant IoT resources. Yuan et al. [11] combines a social-
based strategy with a bio-inspired approach to manage re-
quests in a self-organised network. They build an overlay that
manages services, according to the nodes interactions (i.e.,
friendship). A score is calculated for the associations between
nodes, and provides an adaptive request forwarding to discover
the shortest paths to a desired service.

Bio-inspired approaches propagate requests in an effective
fashion even when nodes have a limited knowledge about
other nodes. However, they also use flooding strategies in
smaller IoT environments. Urban context has the potential
to mitigate the remaining limitations of social-based and bio-
inspired strategies in large scale environments. The addition
of this knowledge enables to make well informed decisions to
forward requests where they are most likely to be solved.

III. REQUEST MANAGEMENT MODEL

We propose an urban-driven, social-based, bio-inspired re-
quest management model for smart cities, which works in a
network of IoT gateways that manages services and attends
requests. Gateways can be static or mobile and have a local
registry where descriptions and other gateways information
are stored. Each gateway exchanges messages with providers,
consumers, and other gateways, and uses a planner to search
for services in the local repository [21]. A gateway forwards
requests to other gateways when it cannot solve them locally.
The proposed approach uses urban context (i.e., surrounding
places) to define gateways interests. A social-based strategy
uses these interests to configure the network of gateways,
register services, and attend discovery requests. This urban
context drives a bio-inspired method based on an ant colony
mechanism [22] to forward requests in the network. We define
a gateway as gw = 〈gwid, gwloc, SP,D,GR,GWS,P,C〉,
where gwid is its identifier, and gwloc is its location. The set
SP represents the city places that surround the gateway. The
set D represents the gateway’s domains, which are defined
based on SP . The set GR represents the relevance of the
gateway for each domain in D, each relevance is computed
using the equation 1 according to our previous work [7].

rel(gw, d) =
ncs

ds
(1)

where ncs is the number of city services of domain d
that the surrounding places of gw offer, and ds is the total
number of domains of all these city services. The set GWS
is the list of other gateways in the network that the gateway
gw knows. P represents the pheromone values for the links
between gw and the gateways in GWS. Each gateway updates
these pheromone values according to its interactions with other
gateways in the network initialisation, service registration, and
service discovery processes. The set C represents the cost for
sending a message from gw to each gateway in the set GWS.

A. Network Initialisation

Gateways configure the network by sending their infor-
mation to other gateways. Each gateway uses a gateway
advertisement message that contains the identifier of the
receiver gateway, the information of the sender gateway, and
the number of hops of the message to avoid network overhead.
When a gateway gwi receives an advertisement message from
another gateway gwj (Algorithm 1), gwi stores the data of
gwj(Lines 5 and 6). It updates the pheromones information by
creating an entry for each domain of gwj with its respective
relevance score (Lines 7 and 8). Gateways initialise pheromone
values based on the urban context represented by the relevance
score, which specifies how relevant is gwj for each domain.
These pheromone values enable the integration of the urban
context of each gateway to be used in the discovery process.
The gateway gwi also updates the communication cost by
creating an entry for gwj with the respective physical distance
(Line 10). Finally, gwi advertises the gateway gwj to other
gateways, if the number of message hops is less than the
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Algorithm 1 Network Initialisation.
1: function MESSAGE ARRIVES(msg)
2: if msg is GwAdvmsg then
3: gwj ← msg.gw
4: hops← msg.h
5: if gwj not in GWS then
6: GWS.add(gwj)
7: for each d ∈ gwj .D do
8: τ(d)gwi,gwj

← rel(gwj , d)
9: end for

10: Lgwi,gwj ← distance(gwi, gwj)
11: hops← hops+ 1
12: if hops <= hopsLimit then
13: destinations← byInterest(gwj .D)
14: for each gw ∈ destinations do
15: sendMessage(GwAdvmsg, gw)
16: end for
17: end if
18: sendMessage(GwAdvmsg, gwj)
19: end if
20: end if
21: end function

limit of hops. These destinations are selected according to the
social-based strategy that defines how interesting is gwj to
other gateways (Lines 10 to 17). The interest of a gateway
gwk in a gateway gwj follows equation 2.

interest(gwk, D) =

n∑
x=1

rel(gwk, dx) (2)

where dx belongs to D, which is the list of domains of the
surrounding places of the gateway gwj . This equation reflects
that a gateway gwk is interested in gwj , if gwk is relevant
for one or more domains from D. Finally, gwi responds to
gateway gwj by sending its information (Line 18).

B. Services Registration

Gateways register services when they receive registration
messages from providers or other gateways. A registration
message has the identifier of the receiver gateway, the service
description to be registered, and message limit of hops. Once
a gateway gwi receives a registration message from a provider
p, or a gateway gwj , to register a description sdesc, gwi
notifies p or gwj about the registration success. This response
contains the receiver identifier, the information of the gateway
that registered the service, and the service description that
was registered. Algorithm 2 shows the process that gateways
perform when they receive a registration request (Lines 2 to
20). When a gateway gwi receives a registration message,
it validates if the received description sdesc already exists
in its repository. gwi stores sdesc and sends a registration
response, if the service description is not in the repository
and shares domains with gwi (Lines 6 to 12). Gateways
advertise sdesc by sending the description to other gateways

Algorithm 2 Service Registration.
1: function MESSAGE ARRIVES(msg)
2: if msg is Regmsg then
3: sdesc ← msg.sdesc
4: hops← msg.h
5: gwj ← msg.sender
6: if sdesc not in localRepository then
7: SD ← sdesc.D
8: if shareDomains(D,SD) then
9: localRepository.insert(sdesc)

10: sendMessage(RegResmsg, gwj)
11: end if
12: end if
13: hops← hops+ 1
14: if hops <= hopsLimit then
15: destinations← byInterest(sdesc.D)
16: for each gw ∈ destinations do
17: sendMessage(Regmsg, gw)
18: end for
19: end if
20: end if
21: if msg is RegResmsg then
22: gwj ← msg.sender
23: sdesc ← msg.sdesc
24: for each d ∈ sdesc.D do
25: τ(d)gwi,gwj ← τ(d)gwi,gwj + ρ
26: end for
27: end if
28: end function

(Lines 13 to 19). Destination gateways are selected according
to their interest in the description following the equation 2,
where D is the list of service domains. These interests (i.e.,
social-based) enable each gateway to advertise descriptions
to relevant gateways based on their surrounding places (i.e.,
urban context). The gateway gwi updates its pheromones’
values when a registration response arrives (Lines 21 to 27).
It increases the pheromones value by adding ρ for each
domain in the sdesc that was registered by gwj . This increment
reinforces the links between gwi and gwj for the service
domains (Lines 24 to 26) to be used in the discovery process.

C. Services Discovery

The discovery process starts when a request arrives. A
request contains the identifier of the receiver gateway, the
service request, the consumer, the set of gateways that the
request has visited, the set of partial solutions that previous
gateways have discovered, and the hops limit for the message.
Gateways send request response messages when they solve a
request. This message has the receiver identifier, the consumer
identifier, the request, the list of plans that solve the request,
and the set of gateways that participated in the discovery
process. Algorithm 3 shows the process when a gateway gwi
receives a request (Lines 7 to 27). The gateway first searches
for services in its repository to solve the request (Line 8). If
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Algorithm 3 Request Manager.
1: function MESSAGE ARRIVES(msg)
2: r ← msg.r
3: c← msg.c
4: PGWS ← msg.PGWS
5: PSOL← msg.PSOL
6: hops← msg.h
7: if msg is Reqmsg then
8: SOL← heuristicP lanning(r, PSOL)
9: PGWS.add(gwi)

10: if solved then
11: sendMessage(DiscResmsg, c)
12: if ¬received then
13: PGWS.remove(gwi)
14: gw ← getPreviousGateway(PGWS)
15: sendMessage(DiscResmsg, gw)
16: end if
17: else
18: PSOL.add(SOL)
19: hops← hops+ 1
20: if hops <= hopsLimit then
21: destinations← byPheromones(r.D)
22: for each gw ∈ destinations do
23: sendMessage(Discmsg, gw)
24: end for
25: end if
26: end if
27: end if
28: if msg is ReqResmsg then
29: sendMessage(DiscResmsg, c)
30: if ¬received then
31: PGWS.remove(gwi)
32: gw ← getPreviousGateway(PGWS)
33: sendMessage(DiscResmsg, gw)
34: end if
35: end if
36: end function

the request is solved, gwi sends the response to the consumer.
If the consumer does not receive the response, gwi sends the
response to other participant in the discovery process (Lines
12 to 16). If the request is not solved, gwi forwards the
request and the partial solutions to other gateways. It selects
the destinations using the pheromones and cost information as
inputs for the forwarding mechanism, which selects gateways
according to their potential to solve a request (Equation 3).

potential(gwj , D) =
n∑
x=1

τ(dx)gwi,gwj

α
ηgwi,gwj

β∑m
y=1 τ(dx)gwi,gwy

α
ηgwi,gwy

β

(3)
where D is the list of domains of the request with size n.

τ(dx)gwi,gwj
is the pheromone value for the link from gwi

to gwj for the domain dx that belongs to D. α controls the
influence of τ(dx)gwi,gwj and is greater or equal to 0. ηgwi,gwj

is the cost of sending a message from gwi to gwj (i.e., the

distance) and is defined as ηgwi,gwj
=

1

Lgwi,gwj

. β controls

the influence of ηgwi,gwj
and is greater or equal to 1. α = 1

and β = 2 in this work based on the previous study on the
ACO algorithm [22], and to prioritise closer gateways which
might imply less hops and lower latency. m is the number
of gateways that are relevant for the dx according to the
pheromones in gwi. If a gateway gwi receives a response
message, it tries to send the response to the consumer c
(Line 29). If the consumer does not receive the response,
gateway gwi sends the response to the previous gateway that
participates in the discovery process (Lines 30 to 34).

IV. EVALUATION

We use Simonstrator [23] to simulate a network of gateways
that covers Dublin city centre (i.e., 2Km2 approx.), with static,
semi-mobile, and fully-mobile scenarios. All gateways are
fixed in the static scenario, 50% of gateways are static and
50% are mobile in the semi-mobile scenario. All gateways
are mobile in the fully-mobile scenario. Static gateways are
distributed in a grid and mobile gateways follow a social
movement pattern provided by Simonstrator, with a speed that
varies from 2.7m/s (i.e., 10Km/h approx) to 13.8m/s (i.e.,
50Km/h approx). The number of gateways varies from 100 to
500, increased by 200 in each experiment. A service provider
per gateway, and one consumer are simulated to register
and request services. The number of services varies from 20
thousand to 100 thousand, increased by 20 thousand. Each
provider sends a registration message until the desired number
of services are registered in the network. The consumer does
100 sequential requests to the network. Service descriptions
and requests are randomly selected from a data set, which
is composed of service descriptions, service requests, and
service responses formulated as JSON documents according
to our previous work [7]. Each simulation is repeated 10 times
and run on the Kelvin system, a high performance compute
cluster managed by the Trinity Centre for High Performance
Computing (TCHPC). Each node in the cluster has a Linux
OS, 12 2.66GHz Intel processors, and 24GB of RAM1. We
measure the rate of solved requests, simulated response time,
number of hops, and number of exchanged messages in each
simulation.

We compare our approach against two baselines that are
social-based, one baseline that is bio-inspired, and one baseline
that combines both a social-based and a bio-inspired mecha-
nisms. These baselines are described as follows:

• Proximity based: It is a social-based approach that for-
wards requests through the network based on gateways
proximity based on the work of Fredj et al. [10]

• Interactions based: This is a social-based approach that
manages requests in the network based on gateways
interactions based on TSSD. [14]

1Kelvin Details - https://www.tchpc.tcd.ie/resources/clusters/kelvin
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Fig. 1. Median rate of solved requests with a variable number of gateways.

20 40 60 80 100

Number of Services (thousand)

0

0.5

1

R
at

e 
o
f 

S
o
lv

ed
 R

eq
u
es

ts

Static Environment

Proximity Interactions APF
Bio-social Urban-driven

20 40 60 80 100

Number of Services (thousand)

0

0.5

1

R
at

e 
o
f 

S
o
lv

ed
 R

eq
u
es

ts

Semi-mobile Environment

Proximity Interactions APF
Bio-social Urban-driven

20 40 60 80 100

Number of Services (thousand)

0

0.5

1

R
at

e 
o
f 

S
o
lv

ed
 R

eq
u
es

ts

Fully-mobile Environment

Proximity Interactions APF
Bio-social Urban-driven

Fig. 2. Median rate of solved requests with a variable number of services.
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Fig. 3. Median simulated response time with a variable number of gateways.
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Fig. 4. Median simulated response time with a variable number of services.

• Artificial Potential Fields (APF) based: It is a bio-inspired
approach that forwards requests in the network accord-
ing to attraction and repulsion forces between gateways
according to Rapti et al [12].

• Bio-inspired and Social Based (Bio-social): This baseline
uses a social-based approach to form communities and a
swarm mechanism that reflect changes in the network to
manage requests based on Yuan et al. [11]

A. Results

Figure 1 shows the rate of solved requests with a variable
network size, different mobility scenarios, and 100 thousand
registered services. The rate of solved requests for the urban-
driven approach varies from 0.87 with 500 gateways in the
semi-mobile environment to 0.98 with 100 gateways in the
fully mobile environment. Our approach manages to keep this
rate of solved requests despite the mobility scenarios and the
network size. This performance demonstrates the effectiveness
of adding urban information to the social-based and the bio-
inspired mechanisms. The proximity based approach has the

second best rate of solved requests, which varies from 0.71
with 300 gateways to 0.96 with 500 gateways in the static
scenario. This approach has the best performance with 500
gateways because gateways are closer to each other. The rate
of solved requests for the interactions based approach varies
from 0.64 with 300 gateways in the semi-mobile environment
to 0.93 with 300 gateways in the static scenario. The rate of
solved requests for the APF based approach varies from 0.2
with 100 gateways in the fully-mobile environment to 0.95
with 500 gateways in the static environment. Finally, the bio-
social based approach has the worst rate of solved requests
which varies from 0.016 with 300 gateways in the fully-
mobile environment to 0.67 with 300 gateways in the static
environment. Figure 2 shows the approaches performance with
a variable number of services, different mobility scenarios,
and 100 gateways. The proposed approach has the best rate of
solved requests (i.e., from 0.88 to 0.98) despite the number
of services and the mobility environments. The proximity
and interactions based approaches have similar behaviour in
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Fig. 5. Median number of hops with a variable number of gateways.
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Fig. 6. Median number of hops with a variable number of services.
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Fig. 7. Median number of discovery messages with a variable number of gateways.
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Fig. 8. Median number of discovery messages with a variable number of services.

different mobility environments, where their rate of solved
requests increases as the number of services does. However,
these rates of solved requests are lower than the rate of our
approach (i.e., urban-driven). The APF based approach has a
similar performance to the urban-driven approach in the static
environment. However, it is negatively impacted by gateways
mobility because attraction and repulsion forces get outdated.
Finally, the bio-social based approach has the lowest rate of
solved requests, which varies from 0.08 with 20 thousand
services in the fully-mobile environment to 0.62 with 60
thousand services in the static environment.

Figures 3 and 4 show the simulated response time in
logarithmic scale with different number of gateways and
services respectively. Latency values are highly related to the
median number of hops (Figures 5 and 6) as the response time
increases when more gateways are explored to solve a request.
All approaches need more time in the static environment than
in the mobile ones because there are more information about
gateways where to forward requests. The proximity based
approach has a low latency in most of the cases, which

varies from 35ms to 3s because most of the requests are
solved by the gateway that receives them (i.e., number of
hops close to 0 in Figures 5 and 6). The interactions based
approach has a high latency (i.e., 11s) in the static environment
with a larger network (i.e., 500 gateways) when the median
number of hops is around one (Figure 5), but it decreases
when there are mobile gateways to a minimum of 26ms in a
network with 100 gateways and 20 thousand services when
the median number of hops is closer to 0. The APF based
approach has the highest latency (e.g., around 50s in the
static environments) as this approach also uses more hops
(i.e., more than one in most cases) than others according
to Figures 5 and 6. The bio-social based approach has a
high latency in the static scenario (i.e., around 50s) when
it reaches the highest rate of solved requests (i.e., 0.66 in
Figure 1) and uses more hops (i.e., around 1 in Figure 5). This
latency decreases when there are mobile gateways together
with the rate of solved requests and the number of hops,
which means that the approach fails to find relevant gateways
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where to forward requests. The urban-driven approach has an
intermediate latency compared against baselines, which varies
from 47ms in the fully-mobile environment, where requests
are solved where they are received (i.e., number of hops close
to 0 in Figures 5 and 6), to 16s in the static environment with
100 gateways where the number of hops is close to 1. The
proposed approach exploits the service organisation provided
by the social strategy when there are mobile gateways and the
bio-inspired approach when there are more information about
other gateways in the static environment.

Figure 7 and 8 show the median number of discovery mes-
sages that each approach uses to solve requests in a logarithmic
scale. Approaches send more messages in static environments
because there is more information about available gateways.
Similarly, the number of messages increases with the network
size. The interactions based approach sends more messages
than other approaches. This number varies from around 650
in fully mobile environments to around 30 thousand in static
environments. The urban-driven approach sends around 300
discovery messages in fully-mobile environments, around
500 in semi-mobile environments, and more than 3500 in
static environments. The APF based approach sends around
350 messages when there are mobile gateways and around
1000 messages in static environments. The proximity based
approach sends between 400 and 800 messages in mobile
environments and a maximum of 1100 messages in the static
environment with 500 gateways. Finally, the bio-social based
approach sends around 100 messages in mobile environments
and around 500 messages in the static environment.

V. CONCLUSIONS AND FUTURE WORK

This paper presents an urban-driven approach that adds
urban context (i.e., information about city places) to a social-
based and a bio-inspired mechanisms that set up a network of
IoT gateways to manage requests in city-scale environments.
We compare our model against social-based and bio-inspired
approaches with regard to the discovery efficiency and network
metrics. Results show that our approach has a better rate of
solved requests, and an intermediate latency regardless of the
network size, the number of services, and gateways mobility,
at the cost of a higher network usage.
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