
Artifact Abstract: Deployment of APIs on Android
Mobile Devices and Microcontrollers

Sergio Laso∗, Marino Linaje∗, Jose Garcia-Alonso∗, Juan M. Murillo∗ and Javier Berrocal∗
∗University of Extremadura

Caceres, Spain
Email:{slasom, mlinaje, jgaralo, juanmamu, jberolm}@unex.es

Index Terms—Microservices, Android, Microcontroller, Ope-
nAPI, Edge Computing

I. INTRODUCTION

This artifact is a guideline for the generation of APIs
through the APIGEND (API Generator for End Devices) tool.
This tool is an extension of the OpenAPI Generator [1]. It
originally allows developers to create both the client and
server side through an OpenAPI Specification with a Server-
Centric style in different languages. The extension developed
also allows one to generate APIs for end devices, specifically
for Android devices and ESP32 Microcontrollers, making the
application of the Edge [2] and Mobile-Centric [3] paradigms
easier.

II. REQUIREMENTS AND DEPLOYMENT

APIGEND is a web application developed with Spring1and
uses Mustache’s templates2 for code generation. APIGEND
can be deployed locally using the development environment
by running the openapi-generator-online module as shown in
Figure 1, on a Docker3 container as it has a DockerFile or
directly on a cloud environment. This last option has been
followed for deploying APIGEND on Heroku4 and which can
be accessed through the following link:

https://openapi-generator-spilab.herokuapp.com

The source code can be dowloaded from the following
public Bitbucket repository:

https://bitbucket.org/spilab/openapigenerator

III. GENERATING APIS

This section shows the complete process to generate APIs,
specifically for Android devices with MQTT [4] as com-
munication protocol, although to generate APIs with other
languages, the procedure is practically the same.

When we access the web interface we have three sections
(Gen-Api-Controller , Clients and Servers). We will have to
access the Servers section and the endpoint called ”Generates
a server library” as shown in Figure 2.

1https://spring.io
2https://mustache.github.io
3https://www.docker.com
4https://heroku.com

Fig. 1. Module Package.

Fig. 2. Web Interface.

To generate the API for an Android device with MQTT, we
must select the option Try it Out. This will allow us to specify
the parameters required for generating the API. Concretely, we
have to specify in framework the ”android-server” option. In
the parameters section, we have to indicate in ”openAPIUrl”
the url of the API specification and in ”options” we have to
indicate as library, ”mqtt” (if no library is indicated, by default
it is generated using Firebase Cloud Messagging [5]). Figure 3
shows an example for the use case that will be followed during
the demo.

To generate the API, click on the Execute button and if

2020 IEEE International Conference on Pervasive Computing and Communications (PerCom)

978-1-7281-4657-7/20/$31.00 ©2020 IEEE 212

Fig. 3. Parameters to generate the Android application using the MQTT
library.

there is no error in the specification, we will get as a result a
JSON. Inside the JSON, the link option specify the URL for
downloading the application as Figure 4 shows. If we copy and
paste it into the browser bar, a .zip file with the API generated
will be downloaded automatically.

Fig. 4. Correct Generation.

IV. DEPLOYING APIS ON END DEVICES

In this section, we will proceed to show how the deployment
could be done for Android devices. Having downloaded the
.zip file, it have to be unzipped in order to finish the implemen-
tation of the different endpoints defined in the specification and
also to configure the MQTT communication protocol. To do
this, it is necessary to access the MQTTConfiguration.java file
located in the following path:

src/main/java/org/openapitools/server/
service/

In the file, we must introduce the IP and the port of the
MQTT broker to which we want to connect the API for the
reception of requests.

Fig. 5. Android Configuration.

V. REQUESTS ON END DEVICES

This section explains the structure that has to be followed
to invoke an endpoint employing MQTT. The Listing 1 shows
the content of a request to one of the endpoints declared in
the Event Alerts API5. This is the specification that will be
used during the defined demo.

The different parameters that have to be specified are:
• resource: this parameter corresponds to the names of the

Tags created in the specification. There are two in this
specification, Event and Location.

• method: corresponds to the operationId of each endpoint
in the specification.

• sender: this parameter is automatically included in the
Response of the API (it is not necessary to indicate it in
the specification), it can be useful to introduce, to which
client we want to respond to. In this case, the sender’s
topic is specified to receive the reply.

• params: in this parameter are included the objects or
parameters that go in the request. In this method, the
specification has a request body with the Event object
schema as a parameter.

The MQTT topic for sending requests to the API is the title
of the specification without spaces. In this case, EventAlerts.

Listing 1. Content of an Event Alerts API request.
{

"resource": "Event",
"method": "postEvent",
"sender": "client3248",
"params": {

"event": {
"id": 1,
"title": ’Football Match!’,
"description": ’Football match at 11:00 in CC’,
"location":{

"latitude": 38.514377,
"longitude":-6.844325,
"radius": 200
}

}
}

}

ACKNOWLEDGMENT

This work was supported by the Innovation and Universities
(MCIU) (RTI2018-094591-B-I00) (MCIU/AEI/FEDER, UE),
by Government of Extremadura (GR18112, IB18030), and by
the European Regional Development Fund.

REFERENCES

[1] “Openapi Generator.” [Online]. Available: https://github.com/
OpenAPITools/openapi-generator

[2] K. Dolui and S. K. Datta, “Comparison of edge computing implemen-
tations: Fog computing, cloudlet and mobile edge computing,” in 2017
Global Internet of Things Summit (GIoTS). IEEE, 2017, pp. 1–6.

[3] J. Guillén, J. Miranda, J. Berrocal, J. Garcia-Alonso, J. M. Murillo, and
C. Canal, “People as a service: A mobile-centric model for providing
collective sociological profiles,” IEEE Software, vol. 31, no. 2, pp. 48–
53, 2014.

[4] “MQTT.” [Online]. Available: http://mqtt.org/
[5] “Firebase Cloud Messaging.” [Online]. Available: https://firebase.google.

com/docs/cloud-messaging

5https://raw.githubusercontent.com/slasom/OpenAPI/master/EventAlerts.yaml

2020 IEEE International Conference on Pervasive Computing and Communications (PerCom)

213

