2020 IEEE International Conference on Pervasive Computing and Communications (PerCom)

Artifact Abstract: MBP: Not just an IoT platform

Ana Cristina Franco da Silva
IPVS, University of Stuttgart
Stuttgart, Germany
franco-da-silva@ipvs.uni-stuttgart.de

Abstract—This artifact contains the Multi-purpose Binding
and Provisioning Platform (MBP), an open-source IoT platform
developed for easy binding, provisioning, and management of IoT
environments. In the following, a guide is introduced how to set
up and use the MBP.

Index Terms—Internet of Things, IoT environments

I. MBP SETUP

In this section, we describe different ways to set up the
MBP IoT platform: using Docker, Windows, or Ubuntu 16.04.
The MBP is available on Github. For this artifact submission,
we created a branch!, which should be used for evaluation.
Furthermore, a Docker installation? is provided on Github. The
MBP platform has the following dependencies and software
requirements:

o Git, Java 8 (or up), Apache Maven

o Apache Tomcat Application Server 8 (or up)

o MongoDB 4.2.2 (standard port: 27017)

o InfluxDB 1.7.9 (standard port: 8086)

e Mosquitto MQTT Broker 1.6.8 (standard port: 1883)
o Web Browsers: Chrome or Firefox

The easiest way to set up the MBP is using Docker:

1) Clone the Docker repository?.
2) Build the Docker image: In the repository folder run

docker build -t mbp —--build-arg
branch=percom_artifact full/

3) Run the image as container:

docker run —-it —--name mbp
-p 80:80 -p 1883:1883 mbp:latest

4) The MBP can be accessed on your Browser through the
container’s HTTP standard port 80.

The following steps set up the MBP on Windows:

1) Install the dependencies manually: Java 8, Apache Tom-
cat, MongoDB, InfluxDB, Mosquitto Broker

2) Clone the MBP repository'

3) Build .war file using Maven: In the repository folder run
mvn clean install

4) Rename the resulting .war file to MBP . war and copy it
into Tomcat’s webapps folder

5) Start Tomcat by running /bin/startup.bat

This work is partially funded by the BMWi project IC4F (01MA17008)

Thttps://github.com/IPVS-AS/MBP/tree/percom_artifact
Zhttps://github.com/IPVS-AS/MBP-Docker

978-1-7281-4657-7/20/$31.00 ©2020 IEEE

Jan Schneider
IPVS, University of Stuttgart
Stuttgart, Germany
st117301 @stud.uni-stuttgart.de

Pascal Hirmer
IPVS, University of Stuttgart
Stuttgart, Germany
hirmer @ipvs.uni-stuttgart.de

6) Access the MBP on your Browser

http://localhost:8080/MBP
As an alternative, you can also use the already provided
.war file in the folder packaged of the MBP repository'.
On Ubuntu 16.04, the setup of the MBP only requires the
following steps:

1) Clone the MBP repository'

through

2) In the repository folder, run the Shell script
install.sh.
3) Access the MBP on your Browser through

http://localhost:8080/MBP

II. USING THE MBP

After successful setup, the MBP can be accessed through
the browser and can be used to set up [oT environments. In the
following, we describe the usage of the MBP. Furthermore, a
Quick Start guide is available on Github’.

A. User Creation, Login, and Home Page

On the login page, you can already log in using the default
user admin. The password is admin. As an alternative, you can
create a new user account by selecting Register. Here, you can
provide your user name and password. Once logged in, you
will be forwarded to the MBP’s home page, which is depicted
in Figure 1 of the attached paper. On this page, the number
of currently registered devices, sensors, actuators, operators,
and IoT environment models are shown. Initially, they should
all be zero. Furthermore, a short tutorial guides you through
creation of an IoT environment. In the following, we explain
how to use the core functionalities of the MBP.

B. Registration of Devices

First, we register an IoT device in the MBP. This is
done through the Tab Devices. By pressing the + button,
a new device can be created. For this, you should either
create a virtual machine, simulating an IoT device (e.g., using
VirtualBox) or add a Raspberry Pi or another ssh accessible
device, such as a Laptop or PC to your network, which can also
serve as IoT devices. Next, give your device a name, a type,
enter the correct IP address (make it static to be sure), the user
name to access it through SSH, a password if existent, and the
SSH RSA key to access the device. By selecting Register, the
device is created. In the device list, it should now appear as

3https://github.com/IPVS-AS/MBP/wiki/Quick-Start

218

2020 IEEE International Conference on Pervasive Computing and Communications (PerCom)

MBP: A Platform for Managing loT Environments

Welcome!
The MPB is here to help you manage your IoT environments!

Youc

et up your IoT e

Step1-Ci r sensors and actuators.

Step2-s ment with the MBP modeling tool.
Step 3 - Register @ your modeled loT environment.

Step 4-Deploy & your modeled loT environment.

Now you can access your devices, sensors and actuators!

Fig. 1. Login page of the MBP

Available. If the state is Unavailable or No SSH, the device is
not reachable in the network or the SSH RSA key is incorrect.

C. Registration of Extraction/Control Operators

Extraction and control operators are pieces of source code,
usually scripts implemented, e.g., in Python or Shell, that ac-
cesses sensors and actuators of IoT devices, and communicate
with the MBP platform to transfer sensor data or to control
actuators. In order to set up a very small demo scenario,
we provide an extraction operator in our repository*. This
extraction operator does not require actual IoT hardware, since
it simulates accessing a temperature sensor and sends random
values to the MBP platform. This makes the artifact evaluation
more easy, however, if you have available, e.g., a Raspberry
pi and a temperature sensor, feel free to adjust our script with
your configuration. To register this extraction operator, select
the Tab Extraction/Control Operators of the MBP, select +,
give it a name, select the Unit °C and drop the content of
the operator folder in the file drop zone (install.sh, start.sh,
stop.sh, and temperature_stub.py). By selecting Register, the
extraction operator is created.

Next, we create a control operator, which is responsible
to activate an actuator. The same steps as above are taken,
however, another operator script is used, which you can find
also in our repository®. This script also does not require a
physical actuator, it logs activation events to a text file on the
device’s file system.

D. Registration and Deployment of Sensors/Actuators

Now, all required steps are done to create a sensor and bind
it to the MBP platform. For this, select the Tab Sensors, select
the +, give it a name, select the type temperature, and select
the previously created extraction operator and device. After
selection of Register, the newly created sensor should appear
in the list of sensors as Ready. Next, click on the newly created
sensor, which redirects you to a detailed view. Here, sensor
data and basic statistics can be viewed. In order to bind the
sensor, select Deploy Sensor, which is only available if the
device has the state Available. During deployment, the MBP

“https://github.com/IPVS-AS/MBP/tree/percom_artifact/resources/adapter-
scripts/temperature_stub

Shttps://github.com/IPVS-AS/MBP/tree/percom_artifact/resources/adapter-
scripts/actuator_stub

connects to your device, deploys the extraction operator on it,
and runs its install.sh script to install necessary dependencies.
After deployment, the button Start sensor should appear,
which will start extraction of data from the sensor. After
selecting this button, a new view will appear, showing the live
sensor data in a diagram. Historical values can be depicted
after refreshing the historical sensor values view (top right
corner of the diagram).

After that, repeat the same steps by registering an actuator
in the Tab Actuator, using the control operator. Create, deploy
and start the actuator accordingly.

E. Creation of Rules

After the sensor is bound, we can define a simple rule,
which will be continuously evaluated by a CEP system. To do
so, select the Tab Rules. Then, select Conditions and select +
to add a new condition. Give it a name and select Nexz. On
the right, under sensors, drag our created sensor and drop it
in the zone in the middle. Click on the sensor and toggle the
field Filter condition to On. Now, click on the “=" until the
“>” icon appears. As a value, enter the number 20. Hence, if
the sensor value is greater than 20 °C, the condition evaluates
to true. You also have the possibility to create very complex
conditions, however, for this example, we keep it simple. Now,
select Next and you will be shown a CEP query, which will be
used to evaluate the condition. After selecting Finish, change
to the Tab Actions. Here, we define what should happen if the
condition evaluates to true. In our case, we want to activate the
actuator. Select +, give the Action a name and select Actuator
action as Type. Next, select the previously created actuator
and select Register. To create the rule based on Condition and
Action, select the Tab Definitions tab, select + and choose the
previously created condition and action. As soon as the sensor
sends values greater than 20 °C, the rule will be activated,
which you can also see in the table.

F. Modeling of IoT Environments

Another functionality is modeling IoT environments graph-
ically. To do so, select the Tab IoT Models, which opens a
modeling tool. Select, e.g., the Raspberry Pi from the palette
(under Device types) and drag and drop it onto the canvas.
Click on the Raspberry Pi and enter its information on the
right. Next, select a Temperature sensor from the palette (under
Sensor types), drag and drop it to the canvas and create an edge
from the Raspberry Pi to the sensor by clicking on the box
and dragging a line. Then, select the sensor, give it a name and
select the corresponding Extraction Operator from the Adapter
drop-down menu. Next, select Register components (the small
cloud icon on the top right), which will create the device and
sensor entities. Select Deploy model on the top right to bind
the sensor. You can access the sensor data through the sensor’s
detailed view as shown before.

219

